

Sri Indu College of Engineering & Technology UGC Autonomous Institution

UGC Autonomous Institution
Recognized under 2(f) & 12(B) of UGC Act 1956,
NAAC, Approved by AICTE &
Permanently Affiliated to JNTUH

HANDOUT

Third Year ECE- Semester II

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ACADEMIC YEAR 2020-21

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HANDOUT-INDEX

S. No	Contents
1	Vision, Mission, PEOs, POs, PSOs & COs
2	Institution Academic Calendar
3	Department Academic Calendar
4	Subject wise
i)	Syllabus Copy
ii)	Lesson Plan
iii)	Question Bank
iv)	End Examination Questions (Previous 3
	Academic Year)
v)	Mid-1 & Mid-2 Questions (Previous 3
	Academic Year)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

INSTITUTION VISION

To be a premier Institution in Engineering & Technology and Management with competency, values and social consciousness.

INSTITUTION MISSION

- **IM**₁ Provide high quality academic programs, training activities and research facilities.
- **IM**₂ Promote Continuous Industry-Institute interaction for employability, Entrepreneurship, leadership and research aptitude among stakeholders.
- **IM**₃ Contribute to the economical and technological development of the region, state and nation.

DEPARTMENT VISION

To be a centre of excellence in Electronics and Communication Engineering Education to produce professionals for ever-growing needs of society.

DEPARTMENT MISSION

The Department has following Missions:

- **DM**₁ To promote and facilitate student- centric learning.
- **DM**₂ To involve in activities that enable overall development of stakeholders.
- **DM**₃ To provide holistic environment with state-of-art facilities for students to develop solutions for various social needs.
- **DM**₄ Organize trainings in embedded systems with Industry interaction.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO	Statements
PEO1	To Attain technical competence for successful career in ECE profession
PEO2	Pursue higher studies with emphasizing design, test and development of the systems to meet the industry needs.
PEO3	Become entrepreneur by practicing ethics, professional integrity and leadership qualities.

PROGRAM OUTCOMES (POs) & PROGRAM SPECIFIC OUTCOMES (PSOs)

PO	Description
PO 1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design / development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological Change
	Program Specific Outcomes
PSO 1	To nurture and empower the SICET-ECE students strong in practical, technical and research domains in the areas of Signal/Image processing, VLSI and wireless Communication.
PSO 2	To design and develop a prototype system that will incorporate user requirements using modern devices and emerging technology for industry automations.
PSO 3	To make the SICET-ECE students as successful industry ready engineers by imparting essential interpersonal skills and widespread exposure on multi-disciplinary technologies

COs MAPPING WITH POS & PSOs

VLSI DESIGN

At the end of the course student will be able to:

Course	Statements
Outcomes	
C324.1	Describe the fabrication process of integrated circuit using MOS transistors. (K2-
	Understand)
C324.2	Choose an appropriate inverter depending on specifications required for a circuit.
	(K4-Analyze)
C324.3	Sketch the layout and estimate parasitic of any logic circuit. (K3-Apply)
C324.4	Design different types of logic gates using CMOS inverter. (K6- Create)
C324.5	Design building blocks of data path using gates and memories using MOS transistors.
	(K6-Create)
C324.6	Design Programmable logic devices and interpret the concept of testing to improve
	testability of system. (K6-Create)

Course Articulation Matrix:

Course	PO	PO	PO	PO	PO5	PO6	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Outcome	1	2	3	4			7	8	9	10	11	12	1	2	3
C324.1	3	2	-	-	-	-	-	-	-	-	-	3	3	2.5	-
C324.2	3	3	3	2	-	-	-	-	-	-	-	3	3	2.5	-
C324.3	3	3	3	2	-	-	-	-	-	-	-	2	3	3	-
C324.4	3	3	3	3	-	-	-	-	-	-	-	3	3	2	-
C324.5	3	3	3	3	-	-	-	-	-	-	-	2	3	2	-
C324.6	3	3	3	3	-	-	-	-	-	-	-	2	3	2	-
C324	3	2.8	3	2.6	-	-	-	-	-	-	-	2.5	3	2.3	-

ANTENNAS AND WAVE PROPAGATION

At the end of the course student will be able to:

Course	Statements
Outcomes	
C321.1	Explain basic terminology and concepts of Antennas (K2 Understanding).
C321.2	Discuss the basic parameters those are considered in the antenna design process and
	the analysis (K2 Understanding).
C321.3	Calculate the electric and magnetic field emission from various basic antennas and
	mathematical formulation of the analysis (K3 apply).
C321.4	Select designed antennas and field evaluation under various conditions (K4 Analyse).
C321.5	Design antennas that suits the propagation of the waves at different frequencies
	through different layers in the existing layered free space environment structure (K6
	Creating).
C321.6	Design the bench setup for antenna parameter measurement of testing for their
	effectiveness (K6 Creating).

Course Articulation Matrix

Course	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
Outcome	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C321.1	3	-	3	-	-	2	-	-	-	-	-	-	3	2	-
C321.2	3	2	3	-	2	2	-	-	-	-	-	-	3	3	-
C321.3	3	3	3	-	2	3	-	-	-	-	-	-	3	3	-
C321.4	3	3	2	-	2	3	-	-	-	-	-	-	3	2	-
C321.5	3	3	3	-	2	3	-	-	-	-	-	-	3	3	-
C321.6	3	3	3	-	3	3	-	-	-	-	-	-	3	2	-
C321	3	2.7	2.8	-	2.2	2.6	-	-	-	-	-	-	3	2.5	-

EMBEDDED SYSTEM DESIGN (C413)

At the end of the course student will be able to:

Course	Statements
Outcomes	
C323.1	Explain the history, classification, characteristics, applications, quality attributes and purpose of embedded systems (K2-Understand)
C323.2	Describe the core of the embedded systems and categorize the types of memories and memory selection sensors and actuators and communication interfaces (K2-Understand)
C323.3	Apply the various embedded systems hardware circuits and embedded firmware design approaches and Development languages (K3-Apply)
C323.4	Discuss the basics of Operating systems and RTOS and explain multitasking and multiprocessing. (K2-Understand)
C323.5	Select the task communication via shared memory Message Passing, Remote Procedure Call and Sockets and explain the Device Drivers (K4-Analyse)
C323.6	Predict the Task Communication/Synchronization Issues and Techniques, and choose an RTOS. (K5-Evaluate)

Course Articulation Matrix:

Course	PO	РО	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
Outcome	1	2	3							0	1	2	1	2	3
C323.1	3	-	2	3	3	-	-	-	-	-	-	-	3	2	-
C323.2	3	2	3	-	2	-	-	-	-	-	-	-	3	2	-
C323.3	3	-	3	2	3	-	-	-	-	2	-	-	3	3	-
C323.4	3	2	3	-	3	-	-	-	-	2	-	-	3	3	-
C323.5	3	2	2	-	2	-	-	-	-	-	-	-	3	3	-
C323.6	3	3	2	-	3	-	-	-	-	2	-	-	3	3	-
C323	3	2.2	2.5	2.5	2.7	-	-	-	-	2	-	-	3	2.7	-

CONSUMER ELECTRONICS

At the end of the course student will be able to:

Course	Statements												
Outcomes													
C325.1	summarize the consumer electronics fundamentals and explain about												
	microprocessors and microcontrollers, energy management and intelligent												
	building perspective (K2-Understand)												
C325.2	Demonstrate Audio systems, Display systems, video systems and recording												
	systems (K3- Apply)												
C325.3	Describe the smart Home, Home Virtual Assistants, Home security systems and												
	Different types of sensors (K2-Understand)												
C325.4	Outline the home enablement systems like RFID Home, kitchen electronics and												
	smart alarms, smart toilet, smart floor and smart locks. (K4-Analyse)												
C325.5	Discuss cordless telephones, Fax machines PDA's TABLETs Smart phones and												
	Smart watches.												
C325.6	Compare and explain Android and iOS and demonstrate Video conferencing												
	systems, Internet enabled systems, Wi-Fi, Li-Fi, GPS and Tracking systems. (K5-												
	Evaluate)												

DIGITAL SIGNAL PROCESSING (C326)

At the end of the course student will be able to:

Course	Statements
Outcomes	
C326.1	Restate time, frequency and Z - transform analysis on signals and systems. (K2
	Understand)
C326.2	Differentiate the inter-relationship between DFT and various transforms. (K2
	Understand)
C326.3	Analyze the Fast computation of DFT and appreciate the FFT processing (K4 Analyze)
C326.4	Analyze IIR Digital Filters for a given specifications (K4 Analyze)
C326.5	Design FIR Digital filters using Window Techniques. (K6 Create)
C326.6	Design FIR Digital filters using Window Techniques. (K6 Create)

Course Articulation Matrix

Course	PO1	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
Outcome		2	3	4	5	6	7	8	9	10	11	12	1	2	3
C326.1	3	3	2	-	-	2	-	-	-	-	-	-	3	2	-
C326.2	3	3	2	-	-	3	-	-	-	-	-	-	3	-	-
C326.3	3	3	3	-	-	2	-	-	-	-	-	-	3	-	-
C326.4	3	3	3	-	2	2	-	-	-	-	-	-	3	-	-
C326.5	3	3	3	-	3	2	-	-	-	-	-	-	3	3	-
C326.6	3	3	3		3	2	-	-	-	-	-	-	3	-	-
C326	3	3	2.6	•	2.6	2.2	-	-	-	-	-	-	3	2.5	-

SAI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

NEA & NAAC Accombined, Approved by ARCTE and Ferniansently attituded to PATEUR

Sheriguda (V), Herethogaroum, R.E. Dist, Hydenabad - 501 St0

HR-16 & BR-18

Le.No. SICET/AUTO/DAE/Academic Calendar/200/2020

Dt: 05.12.2020

Dr.G. SURESH. Principal,

To. All the HODs

REVISED ACADEMIC CALENDAR

Hir.

Sub-SICET (Autonomous) - Academic & Evaluation - Revised Academic Calendar for B. Tech - 2st, 3st & 4th Year - For the academic year 2020-21 - Reg.

The approved Revised Academic Calendar for B. Tech - 2nd , 3rd & 4th Year for the Academic year 2020-21 is given below:

- . B.Tech 2nd Year for (2019 20 Batch) BR 18 Regulation
- . B.Tech 3rd Year for (2018 19 Batch) BR 18 Regulation
- . B.Tech 4th Year for (2017 18 Batch) BR 16 Regulation

Revised Academic Calendar for B. Tech - 2nd, 3rd & 4th Year Students

I Semester Commencement of class work	24.00	5,2020 (Monday)
I Spell of Instructions (Including CRT & Dasara Holidays)	24.08.2020	31.10.2020 - 10 Weeks
Regular End Semester Examinations of Previous Semester (Including Lab Exams)	02.11.2020	11.12.2020 - 6 Weeks
If Spell of Instructions	14.13.2020	13.02.2021 - 9 Weeks
Mid Examinations for II, III & IV Year Stadents	21.12.2020	28.12.2020 - 1Week
I Mid Examinations for II, III & IV Year Students	15.02.2021	20.02.2021 - 1 Week
Practical Classes	22.02.2021	27.02.2021 - 1 Week
Preparations & Practical Examinations	01.03.202.1	06.03.2021 - 1 Week
II, III & IV Semester End Examinations (Regular)	08.03.2021	20.03.2021 - 2 Weeks
Supplementary Examinations	22.03.2021	06.04.2021 - 2 Weeks

Commencement of class work	22.03.2021	(Monday)
I Spell of Instructions		15.05.2021 - # Weeks
Summer Vacation	17.05.2021	29.05.2021 - 2 Weeks
I Mid Examinations for II, III & IV Year Students	31.05.2021	05.06.2021 - 1 Week
II Spell of Instructions	07.06.2021	31.07.2021 - # Weeks
II Mid Examinations for II, III & IV Year Students	02.08.2021	07.08.2021 - 1 Week
Proparation & Project Evaluation (IV B. Tech)	09.08.2021	14.08.2021 - 1 Week
Preparations & Practical Examinations For (II & III B. Tash)	09.08.2021	14.08.2021 - 1 Week
End Semester Examinations for II , III & IV B. Tech)	16.08.2021	28.08.2021 - 2 Weeks
Supplementary Examinations	31.08.2021	14 00 0001 2 0001
Commencement of class work for the A.Y	2021-22 01 00 2022	14,09,2021 - 2 Weeks

SOFTIGHAL CONTROLLES DE STUMMANONE DE DEPT. ANTIQUE LA SEAMA CADEMIC AFFAIRS & EVALUATION DE SEAMAN AUTORITA DE SEAMAN DE SEAMAN CONTRACTOR DE SEAMAN DE SEA Confedence backets - Confedence of the Confedenc World P. Transfer The Land

Charten mate artists

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT CALENDAR - 2020-2021 (SECOND SEMESTER)

DAYS					_				•		-	
SUNDAY		MARCH '21										
MONDAY	1							JUNE '21				
TUESDAY	2						1	MID I EXAM				
WEDNESDAY	3			APRIL '21			2	MID I EXAM		JULY '21		
THURSDAY	4		1				3	MID I EXAM	1			
FRIDAY	5		2	Good Friday		MAY '21	4	MID I EXAM	2			
SATURDAY	6		3		1	MAY DAY	5	MID I EXAM	3	Project Expo (II, III, IV)		AUGUST '21
SUNDAY	7	HOLIDAY	4	HOLIDAY	2	HOLIDAY	6	HOLIDAY	4	HOLIDAY	1	HOLIDAY
MONDAY	8	Maharishi Dayanand Saraswati Jayanti	5	BABU JAGJEEVAN RAM JYANTHI	3		7		5		2	MID II EXAM
TUESDAY	9	•	6		4		8		6		3	MID II EXAM
WEDNESDAY	10		7		5		9	SUBMISSION OF MID I MARKS	7		4	MID II EXAM
THURSDAY	11	Maha	8		6		10	MIDIMAKKS	8		5	MID II EXAM
FRIDAY	12	Shivaratri/Shivaratri	9		7	Project Review	11		9		6	MID II EXAM
SATURDAY	13		10	Career Awareness (III Yr)	8		12	Seminar (II Yr)	10	Design Contest (III Yr)	7	MID II EXAM
SUNDAY	14	HOLIDAY	11	HOLIDAY	9	HOLIDAY	13	HOLIDAY	11	HOLIDAY	8	HOLIDAY
MONDAY	15		12		10		14		12		9	Practical Exam (II, III) Project Evaluation (IV)
TUESDAY	16		13	UGADI	11		15		13		10	Practical Exam (II, III) Project Evaluation (IV)
WEDNESDAY	17		14	DR AMBEDKAR JYANTHI	12		16		14		11	SUBMISSION OF MID II MARKS Practical Exam (II, III) Project Evaluation (IV)
THURSDAY	18		15		13		17		15		12	Practical Exam (II, III) Project Evaluation (IV)
FRIDAY	19		16		14	ID- UL FITR	18		16		13	Practical Exam (II, III) Project Evaluation (IV)
SATURDAY	20		17	Technical Seminar (IV Yr)	15	Technical Talk (III Yr)	19	Webinar (III Yr)	17	Workshop (IV Yr)	14	Practical Exam (II, III) Project Evaluation (IV)
SUNDAY	21	HOLIDAY	18	, ,	16	HOLIDAY	20	HOLIDAY	18	HOLIDAY	15	HOLIDAY
MONDAY	22	Commencement of Classes II,III,IV	19		17		21		19		16	COMMENCEMENT OF
TUESDAY	23		20		18		22		20		17	END SEMESTER EXAM (II,III, IV Year)
WEDNESDAY	24		21	RAMA NAVAMI	19		23		21	BAKRID	18	
THURSDAY	25		22		20		24		22		19	MUHARRAM
FRIDAY	26		23		21		25	Project Review	23		20	END SEMESTER
SATURDAY	27	Guest Lecture (II Yr)	24	Quiz Contest (II Yr)	22	Poster Presentation (II, III Yr)	26	Project Review	24	Workshop (II Yr)	21	EXAM
SUNDAY	28	HOLIDAY	25	HOLIDAY	23	HOLIDAY	27	HOLIDAY	25	HOLIDAY	22	HOLIDAY
MONDAY	29	Holi	26		24		28		26		23	
TUESDAY	30		27		25		29		27		24	
WEDNESDAY	31		28		26		30		28	Project Review	25	END SEMESTER EXAM
THURSDAY			29		27				29	Project Review	26	(II,III, IV Year)
FRIDAY			30		28				30		27	1
SATURDAY					29	Workshop (IV Yr)			31		28	V
SUNDAY					30	HOLIDAY					29	HOLIDAY
MONDAY					31	MID I EXAM					30	JANMASHTAMI

VLSI Design

ELECTRONICS & COMMUNICATION ENGINEERING

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

L T P C 3 1 0 4

(R18ECE3203) VLSI Design

Course Objectives:

The objectives of the course are to:

- Give exposure to different steps involved in the fabrication of ICs using MOS transistor, CMOS/BICMOS transistors and passive components.
- Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
- Give exposure to the design rules to be followed to draw the layout of any logic circuit.
- Provide concept to design different types of logic gates using CMOS inverter and analyze their transfer characteristics.
- Provide design concepts to design building blocks of data path of any system using gates.
- Understand basic programmable logic devices and testing of CMOS circuits.

UNIT -I:

Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS

Basic Electrical Properties: Basic Electrical Properties of MOS and BiCMOS Circuits: I_{ds} - V_{ds} relationships, MOS transistor threshold Voltage, g_m , g_{ds} , Figure of merit ω o; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT-II:

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

UNIT -III:

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan – in, Fan – out, Choice of layers.

UNIT-IV:

Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

UNIT-V:

Programmable Logic Devices: PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design.

CMOS Testing: CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Chip level Test Techniques, Contemporary Topics.

TEXT BOOKS:

- 1. Essentials of VLSI circuits and systems Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition
- 2. CMOS VLSI Design A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3rd Ed, Pearson, 2009.
- 3. VLSI Design M. Michael Vai, 2001, CRC Press.

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Prepared on

Rev1:

Page: 1 of 7

Faculty Name & Designation | B.NEERAJA/PRATHYUSHA V

Unit/		Book	Pag	e (s)	Teaching	Proposed	Actual Date	
Item No.	Topic (s)	Reference	From	То	Methodology	No. of Periods	of Handled	CO/RBT
NO.		UNIT-I				remous		
I		Introduction				18		
	Introduction To IC Technology				Black board		22-03-2021	CO1, L2
1.1		T1, T3	1,1	5,5		03	23-03-2021	
							24-03-2021	
1.2	MOS	T1	6	9	Black board	01	25-03-2021	CO1, L2
1.3	PMOS and NMOS	T1	9	13	Power point	02	26-03-2021	CO1, L2
1.5		11	9	13	Presentation	02	30-03-2021	
1.5	CMOS and BICMOS	T1	13	22	Black board	01	31-03-2021	CO1, L2
	Basic Electrical Properties				Black board		01-04-2021	CO2, L4
1.6		T1	24	28		02	02-04-2021	
	MOS Transistor, Threshold voltage,				Black board			CO2, L4
1.7	Transconductance, output conductance,	T1	28	33		01	05-04-2021	
	Figure of merit							
1.8	Pass transistor, NMOS Inverter	T1	22	40	Black board	01	06-04-2021	CO2, L4
1.8		T1	33	40		01		
	Various pull ups				Black board		07-04-2021	CO2, L4
1.9		T1	40	42		03	08-04-2021	
							15-04-2021	
1.10	CMOS Inverter analysis and design	m,	42	4.5	Black board	0.2	16-04-2021	CO2, L4
1.10		T1	43	46		02	31-03-2021	
	BICMOS Inverter	TT.1	40		Black board	0.2	01-04-2021	CO2, L4
1.11		T1	48	54		02	06-04-2021	
	Review	S	ignature	of the HC	DD/Coordinator	•		
Unit/	m · · · ·	Book		<i>(</i>)	Teaching	Proposed	Actual	G0/55#
Item No.	Topic (s)	Reference Page (s) Teaching Methodology				No. of Periods	Date of Handled	CO/RBT
			UNIT –II		•	2 200	1	
II	V	LSI Design Flov	W			14		
2.1	VLSI Design Flow	R4	79	83	Black board	01	07-04-2021	CO3, L3
۷,1		1/4	17	0.5	Presentation	01		

Prepared on

Rev1:

Page: 2 of 7

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation | B.NEERAJA/PRATHYUSHA V

Unit/			Page	e (s)	T. 1:	Proposed	1. 15	
Item No.	Topic (s)	Book Reference	From	То	Teaching Methodology	No. of Periods	Actual Date of Handled	CO/RBT
2.2	MOS Layers	T1	55	56	Black board	01	08-04-2021	CO 3, L3
	Stick Diagrams				Power point		15-04-2021	CO 3, L3
2.2		T1 D4	56 100	65.116	Presentation	0.4	16-04-2021	
2.3		T1,R4	56,109	65,116		04	19-04-2021	
							20-04-2021	
	Design rules and Layout				Power point		22-04-2021	CO 3, L3
2.2		T1,R4	65,117	71,124	Presentation	02	23-04-2021	
	CMOS Design rules for wires, contacts and				Black board		24-04-2021	CO 3, L3
2.3	transistors	T1	71	74		02	29-04-2021	
	Layout diagrams for NMOS and PMOS				Black board		30-04-2021	CO 3, L3
2.4		T1	74	77		02	03-05-2021	
2.5	CMOS Inverters and Gates	T1	77	79	Black board	01	04-05-2021	CO 3, L3
2.6	Scaling of MOS Circuits	T1,R4	113,125	118,132	Black board	01	05-05-2021	CO 3, L3
	Review		Signatu	re of the HO	D/Coordinator	-1		
			UNIT- III					
III		te Level Desig	gn	I	T=	11		
3.1	Logic gates and other complex gates	R4	135	147	Black board	02	06-05-2021	CO4, L6
							08-05-2021	
3.2	Switch Logic	T1, R3	135,157	137	Black board	01	10-05-2021	CO4, L6
3.3	Basic Circuit Concepts	T1	85-87		Black board	01	11-05-2021	CO4, L6
	Alternate Gate Circuits	T1, T3,	145,175,	151,193,		02	12-05-2021	CO4, L6
3.4		R3	159	163	Presentation		17-05-2021	
3.5	Time Delays	T1	93	98	Black board	02	18-05-2021	CO4, L6
5.5		11	73	90			19-05-2021	
3.6	Driving large Capacitive Loads	T1	98	106	Black board	01	20-05-2021	CO4, L6
3.7	Wiring Capacitance	T1	106	107	Black board	01	21-05-2021	CO4, L6

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Prepared on

Rev1:

Page: 3 of 7

Faculty Name & Designation B.NEERAJA/PRATHYUSHA V

Unit/		Book	Pag	e (s)	Т.	eaching	Proposed	Actual Data	
Item No.	Topic (s)	Reference	From	То		chodology	No. of Periods	Actual Date of Handled	CO/RBT
3.8	Fan in, Fan out, Choice of Layers	T1,T2	108,283	110,289	Black b	ooard	01	24-05-2021	CO4, L6
	Review			Signature o	f the HO	D/Coordinato	or		
			UNIT-IV						
IV	Data pat	th sub systen	ns				16		
4.1	Sub system design	R4	205	206	Black b	ooard	01	25-05-2021	CO5, L6
4.2	Shifters	R4,R3	229,349	231	Black b	oard	02	26-05-2021 27-05-2021	CO5, L6
4.3	Adders	R4,R3	207,352	219	Black b	oard	02	07-06-2021 08-06-2021	CO5, L6
4.4	ALUs	R4,R3	221,360	222	Black b	Black board		09-06-2021	CO5, L6
4.5	Multipliers	R4,R3	222,360	226	Power point Presentation		02	10-06-2021 11-06-2021	CO5, L6
4.7	Parity Generators, Comparators	T2	559		Black b	oard	01	14-06-2021	CO5, L6
4.8	Zero/One Detectors, Counters	T2	559		Black b	oard	01	15-06-2021	CO5, L6
4.9	SRAM	R4	232	238	Black b	oard	02	16-06-2021 17-06-2021	CO5, L6
4.10	DRAM	R4	239	244	Black b	oard	02	18-06-2021 21-06-2021	CO5, L6
4.11	ROM	T2	607	610	Black b	oard	01	22-06-2021	CO5, L6
4.12	Serial access memories	T2	586	610	Black b	oard	01	23-06-2021	CO5, L6
	Review	Signature of		ordinator	· I				
			UNIT-V				_		
V		nmable Logic D	Devices:	T		T	16		1
5.1	PLAs		R4	171	178	Black board	01	24-06-2021	CO6, L6
5.2	FPGAs		R4	190	201	Power point Presentation	01	25-06-2021	CO6, L6

Prepared on

Rev1:

Page: 4 of 7

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation B.NEERAJA/PRATHYUSHA V

	CDL D		I	1	In . I		ı	0017
5.3	CPLDs	R4	182	184	Power point Presentation	02	26-06-2021 28-06-2021	CO6, L6
5.4	Standard Cells	R4,T2	185,439	189	Black board	01	29-06-2021	CO6, L6
5.5	Programmable Array Logic	R4	178	179	Black board	01	30-06-2021	CO6, L6
5.6	Design Approach	R4	201	202	Black board	01	01-07-2021	CO6, L6
5.7	Parameters Influencing Low power Design	R4	333	340	Black board	02	02-07-2021 05-07-2021	CO6, L6
5.8	CMOS Testing	R4,T2	285,487	490	Black board	01	06-07-2021	CO6, L6
5.9	Need for Testing	R4	285	286	Black board	01	07-07-2021	CO6, L6
	Test Principles				Black board			CO6, L6
5.10		R4,T3	290,253	291,258		01	08-07-2021	
5.11	Design Strategies for Test	R4,T3	295,211	296,213	Black board	01	09-07-2021	CO6, L6
5.12	Chip Level Test Techniques	R4,T3	295	300	Black board	01	12-07-2021	CO6, L6
5.13	System Level Test Techniques	T2	522	526	Black board	01	13-07-2021	CO6, L6
5.14	Contemporary Topis: Issues in chip Design	T2	307	327	Black board	01	14-07-2021	CO6, L6
	Review		Signature					

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Prepared on

Rev1:

Page: 5 of 7

Faculty Name & Designation | B.NEERAJA/PRATHYUSHA V

LIST OF TEXT BOOKS AND REFERENCES

TEXT BOOKS:

- T1. Essentials of VLSI circuits and systems Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition
- T2. CMOS VLSI Design A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3rd Ed, Pearson, 2009.
- T3. VLSI Design M. Michael Vai, 2001, CRC Press.

REFERENCE BOOKS:

- R1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011
- R2. CMOS logic circuit Design John .P. Uyemura, Springer, 2007.
- R3. Modern VLSI Design Wayne Wolf, Pearson Education, 3rd Edition, 1997.
- R4. VLSI Design- K. Lal Kishore, V. S. V. Prabhakar, I.K International, 2009.
- R5. Introduction to VLSI Mead & Convey, BS Publications, 2010.

WEB LINKS

- W1. https://nptel.ac.in/courses/117103066/
- W2. https://unacademy.com/lesson/electrical-properties-of-mos-circuits-1/A581F0R7
- W3. www.egr.msu.edu/~mason/iucee/bog4/4-SNBhat Stickdiagrams IUCEEE.ppt
- W4. https://www.mmumullana.org/downloads/files/n54744b57519b3.pdf
- W5. https://www.elprocus.com/cmos-working-principle-and-applications/
- W6. https://nptel.ac.in/courses/117101058/downloads/Lec-22.pdf
- W7. https://www.d.umn.edu/~gshute/logic/barrel-shifter.xhtml
- W8. https://www.slideshare.net/sabihasulthana9279/multipliers-in-vlsi
- W9. https://pdfs.semanticscholar.org/.../0fd8b92dab2f6e08ed8210b05d43f94a5bb2.pdf
- W10. https://sites.google.com/site/mazadzaveri/home/teaching/el512-vlsi-subsystem-design
- W11. https://www.wikinote.org/Main/Savitribai-Phule-Pune-University/.../VLSI.../SPLDs/
- W12. https://ece.duke.edu/~krish/teaching/Lectures/Testing.1.pdf
- W13. https://www.svce.ac.in/departments/...VLSI%20DESIGN/EC2354%20Unit%204.pdf

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN Prepared on

Rev1:

Page: 6 of 7

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

B.NEERAJA/PRATHYUSHA V Faculty Name & Designation

CONTENT BEYOND THE SYLLABUS

S.No	Topics	Proposed Actions	Date	Resource Person/Mode	POs	PSOs
1.	Recent topics from SIA Roadmap	To get knowledge	19-05- 2021	Dr. N.C. Senthil	PO5, PO6	PSO1,PSO2
	Nano Technology	To get	23-04-	Rumar P. Prashanth	PO6,PO10	PSO1,PSO2
2.	Traine Teemierogy	knowledge	2021	1.11dshandi	100,1010	1501,1502

ASSIGNMENT

S.No.	Assignment Questions	Course Outcome	Books To be Referred	Date Of Announcement	Date Of Submission
I.	a) With neat sketches explain how NPN transistors are fabricated in bipolar process?b) Derive the expression for the threshold voltage of MOSFET?	CO1	T1,T3,R4	15-04-2021	20-04-2021
2.	a) Discuss in detail the NMOS design style?b) What are design rules? Why is metal-metal	CO1, CO4	T1,R4	15-04-2021	20-04-2021
3.	Describe three sources of wiring capacitors. Explain the effect of wiring capacitors on the performance of a VLSI circuit?	CO4	Т1	15-04-2021	20-04-2021
4.	Describe layout diagram	CO4	T1, R4	15-04-2021	20-04-2021
5.	Explain about the principle and operation of FPGA. What are its applications?	CO5	R4	15-04-2021	20-04-2021
6.	a) Draw the circuit of 4-bit comparator and give its truth table.b) Explain the working of 4-Transistor S-RAM cell and give applications of RAM.	CO4	T2, R4	5-05-2021	13-05-2021

PAL.

SRI INDU COLLEGE OF ENGG & TECH **LESSON PLAN**

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title

Faculty Name & Designation

R18ECE3203 VLSI DESIGN

Prepared on

Rev1:

Page: 7 of 7

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D B.NEERAJA/PRATHYUSHA V

7.	Write short notes on the following i) Manchestercarrychain ii) Ripple carry-adder iii) Full Adder	CO5	R3, R4	5-05-2021	13-05-2021
8.	a) Explain about parameters which influence low power design.b) Differentiate between FPGAs and CPLDs.	CO6	R4	5-05-2021	13-05-2021
9.	a) Explain about modified Booth's algorithm.b) What are the applications of counters?	CO5	R3, R4, T2	5-05-2021	13-05-2021
10.	a) Explain the structure of programmable array logic to implement four inputs.b) Differentiate between PLA and	CO6	R4	5-05-2021	13-05-2021

	SELF STUDY TOPICS								
S.No. Topics		Books & Journals	Course Outcomes						
1	VLSI Design and VHDL Programming	"Advanced Digital Design with the Verilog HDL" by D Ciletti Micahel	CO2						
2	System Design with FPGA	"FPGA-Based System Design" by Wolf	CO4						

(Regulation:R16)

Prepared on Rev1:

Page: 1 of 7

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3203 VLSI DESIGN

Academic Year: 2020-21 Year/Sem. III/II

Faculty Name & Designation | B. NEERAJA/PRATHYUSHA.V

QUESTION BANK WITH BLOOMS TAXONOMY LEVEL (BTL)

(1. Remembering 2. Understanding 3. Applying 4. Analyzing 5. Evaluating 6. Creating)

	UNIT-1 Introduction							
	1 MARK QUESTIONS	BT Level	Course Outcome					
1.	Define Moore's law and Integrated Circuit?	1	CO1					
2.	List out the types of oxidations & explain?	1	CO1					
3.	What are the advantages of IC technology?	1	CO1					
4.	What is Ion Implementation & metallization?	1	CO1					
5.	Define pass transistor?	1	CO1					
6.	List out the advantages of Bi-CMOS Inverter? (May 2018)	4	CO2					
7.	Define Figure of merit of MOS transistor (ω_0)?	1	CO2					
8	What is saturation region and write its expression for I_{DS} ?	1	CO2					
9	What is non-saturation region and write its expression for I_{DS} ?	1	CO2					
10	Explain about system design cycle?	2	CO3					
11	Define the terms: Lithography & Diffusion?	1	CO1					
12	Interpret Transconductance (g _m) & Output conductance (g _{ds}) with expressions.	2	CO2					
	10 MARKS QUESTIONS							
1.	Explain the NMOS fabrication process with neat sketch? (April/May 2019)	5	CO1					
2.	a) Interpret CMOS fabrication using N-well process with neat diagrams. (April/May 2018)	2,5						
	b) Determine the relationship between drain to source current versus drain to Source voltage ($I_{DS}Vs\ V_{DS}$) in non-saturated and saturated regions. (April/May 2018)		CO1,CO2					
3.	Explain the NMOS Enhancement & depletion mode fabrication process with neat sketch. (April/May 2017)	2	CO1					

(Regulation:R16)

Prepared on Rev1:

Page: 2 of 7

(Regulation :R18)
Department of Electronics and Communication Engineering

R18ECE3203 VLSI DESIGN Sub. Code & Title

Academic Year: 2020-21 Year/Sem. III/II

			I
4.	Illustrate the CMOS fabrication using P-well process with neat sketch. (April/May 2018)	2	CO1
5.	a) Compare CMOS, Bipolar and GaAs technology. (April/May 2017) (April/May 2018)	2,5	
	b)Determine the pull-up to pull-down ratio of an NMOS inverter, driven through one or more pass transistors.		CO1,CO2
6.	Sketch and explain CMOS fabrication using Twin-Tub process?	3	CO1
7.	Find g_m and r_{ds} for an n-channel transistor with v_{GS} =1.2V, v_{tn} =0.8v, W/L=10, $\mu_n c_{ox}$ =92 μ A/V ² and V_{DS} = V_{ef} + 0.5v. The output impedance constant (λ) =95.3*10 ⁻³ v ⁻¹ ?	1	CO2
8	a) Illustrate dry and wet oxidation with neat diagrams.	2,1	
	b) Explain the alternative forms of pull-ups.		CO1,CO2
9	Assume PMOS transistor is operated in the triode region with following parameters:	4	CO2
	v_{tp} = -1v and W/L=95, v_{GS} = -4.5V and V_{DS} =-2.2v, $\mu_p c_{ox}$ =95 μ A/V ² . Find I_{DS} & R_{DS} .		CO2
10	a) Interpret the operation of Bi-CMOS inverter and specify its characteristics.b) Illustrate the characteristics of NMOS inverter with neat diagram (April/May 2017)	2,2	CO1,CO2
11			CO1,CO2
	Unit -II: VLSI Circuit Design Processes		
	1 MARK QUESTIONS		
1	What are the steps to be followed in designing VLSI chip?	1	CO3
2	Sketch a stick diagram for 2 input NMOS NAND gate? (May 2019)	3	CO3
3	Define layout?	1	CO3
4	List out the MOS layers?	1	CO3
5	Sketch a stick diagram for 2 input NMOS EX-OR gate (May 2019)	3	CO3
6	Design a stick diagram for NMOS logic Y=(A+B+C) ¹ ?	6	CO3
7	Explain models of scaling?	2	CO3
8	What is stick diagram? (May 2019)	1	CO3
9	List out any six scaling parameters?	1	CO3

(Regulation:R16)

Prepared on Rev1:

Page: 3 of 7

(Regulation :R18)
Department of Electronics and Communication Engineering

R18ECE3203 VLSI DESIGN Sub. Code & Title

Academic Year: 2020-21 Year/Sem. III/II

10	Design a stick diagram for 2 input NMOS NOR gate?	6	CO3
	10 MARKS QUESTIONS		
1	Illustrate the VLSI Design flow &write clearly about design processes? (April/May 2018)	2	CO3
2.	Explain the guidelines & design rules for stick diagram and layout diagram? (April/May-2017)	2	CO3
3.	a)Design the stick diagram for two input NMOS NAND and NOR gates	6,2	CO3
	b)Compare the CMOS design style with NMOS design style?		
1.	Sketch the stick diagram& layout for two input NMOS Ex-OR gates?	3	CO3
5.	a)Design the stick diagram for two input PMOS NAND and NOR Gates?	6,4	CO3
	b)List out the limitations of scaling? (May 2018)		
5.	Outline the layout diagram for NMOS inverter?	2	CO3
7.	Interpret the merits & demerits of scaling? (May 2018)	2	CO3
3	Explain about design rules for wires in detail (orbit 2µm CMOS)? (April/May 2018)	5	CO3
)	Illustrate the scaling factors for different types of device parameters? (May 2019)	2	CO3
10	Design the circuit diagram, stick diagram & layout for given Boolean function using	6	CO3
	CMOS.F= $(A+B+C)^{1}$? (May 2019)		
	Unit -III : Gate Level Design		
	1 MARK QUESTIONS		
1.	Define switch logic? (April/May 2017)	1	CO4
2.	What is sheet resistance (R_S) ?	1	CO4
3	Define pass transistor? (May 2019)	1	CO4

(Regulation:R16)

Prepared on Rev1:

Page: 4 of 7

(Regulation :R18)
Department of Electronics and Communication Engineering

R18ECE3203 VLSI DESIGN Sub. Code & Title

Academic Year: 2020-21 Year/Sem. III/II

		T	
4	Explain transmission gates?	2	CO4
5	List out the types of alternative gate circuits. (April/May 2017)	1	CO4
6	What is propagation delay?	1	CO4
7	Illustrate wiring capacitance? (May 2018)	2	CO4
8	Define Fan-in and Fan-out? (April/May 2017) (May 2018)	1	CO4
9	Explain Rise time (t_r) & Fall time (t_f) ?	2	CO4
10	What is gate capacitance (C _g) ?	1	CO4
	10 MARKS QUESTIONS		
1.	Interpret the operation of a CMOS Inverter with sketches?	2	CO4
2	a)Explain the working of complex gates with neat diagrams?	5,5	CO4
	b)Determine the constructional features & performance characteristics of PSEUDO		
	NMOS logic? (May 2018)		
3.	Sketch the logic diagram of dynamic and domino CMOS logic and explain in detail?	3	CO4
	(May 2019)		
4	Illustrate the C ² MOS and n-p-MOS logic with neat diagrams?	2	CO4
5.	a) Explain about the propagation delay in a cascaded pass transistor?	2,6	CO4
	b) Discuss fan in & fan out characteristics of different CMOS design?		
6	Identify the problem of driving large capacitive loads? Explain a method to drive such	3	CO4
	load? (May 2019)		
7.	Outline the constraints of choice of layers? (May 2018)	2	CO4

(Regulation:R16)

Prepared on Rev1:

Page: 5 of 7

(Regulation :R18)
Department of Electronics and Communication Engineering

R18ECE3203 VLSI DESIGN Sub. Code & Title

Academic Year: 2020-21

B. NEERAJA/PRATHYUSHA.V Faculty Name & Designation

Year/Sem.

III/II

8.	Illustrate the sources of wiring capacitances& Tell about the performance of VLSI	2	CO4
	Circuits? (May 2018)		
9.	Categorize different series & parallel combinations of pull up &pull down networks?	4	CO4
10.	Interpret the features of wiring capacitance? Explain in detail about the Gate level design.? (May 2018)	2	CO4
11	Solve equation for propagation delay in pass transistor chain?	3	CO4
	Unit-IV: Data Path Subsystems		
	1 MARK QUESTIONS		
1.	What is a shifter & list out its types?	1	CO5
2.	Explain serial adder?	1	CO5
3.	What is one/zero detectors? (May 2018)	1	CO5
4.	Explain a counter? (May 2018)	1	CO5
5.	What is data path subsystem?	1	CO5
6.	What is memory array subsystem?	1	CO5
7.	Define DRAM? How it differs from SRAM?	1	CO5
8	Illustrate construction & various operation with DRAM?	2	CO5
9	Define FLASH EPROM?	1	CO5
10	Classify memories?	2	CO5
	10 MARKS QUESTIONS		
1.	Make use of the circuit diagram for 4x4 barrel shifter using complementary	3	CO5
	transmission gates & explain its shifting operation. (April/May 2017)		
2.	Outline & explicate the structure of carry look ahead adder.	2	CO5
3.	a)Explain n- bit parallel adder? (April/May 2017)	5,5	CO5
	b) Explain the principle of SRAM with neat sketch? (April/May 2017)		
4.	Discuss the following.	6	CO5
	a)Shifter (April/May 2017)b) Parity generator (April/May 2017) (May 2018)		

(Regulation:R16)

Prepared on Rev1:

Page: 6 of 7

(Regulation :R18)
Department of Electronics and Communication Engineering

R18ECE3203 VLSI DESIGN Sub. Code & Title

Academic Year: 2020-21 Year/Sem. III/II

5.	a) Design a magnitude comparator based on the data path operators and what is	6,2	CO5	
	magnitude comparator			
	b)Illustrate basic memory chip architecture?			
6.	a) Show the logic diagram of zero/one detector & explicate its operation with help of	2, 1	CO5	
	diagram. (May 2018)			
	b)What is the principle of DRAM using 1- transistor with neat diagram?			
7.	Discuss about data path organization & serial adder.	6	CO5	
8	a) Sketch & explain the asynchronous counter in detail.	3,2	CO5	
	b)Explain about CAM.			
9	a)Illustrate synchronous up/down counter using adder & register with neat diagram.	2,2	CO5	
	b) Interpret shift registers & their types. (May 2019)			
10	a) Classify multipliers in detail . (May 2018) (May 2019)	4,4	CO5	
	b)Categorize types of sequential memory access.			
	Unit-V: Programmable Logic Devices, CMOS Testing			
1.	1 MARK QUESTIONS What is semi-custom ASIC?	1	CO6	
		1		
2.	Define is full-custom ASIC?	1	CO6	
3.	What is Testing? (April/May 2017)	1	CO6	
4.	Explain an ASIC?	2	CO6	
5.	Contrast channeled & channel less gate arrays.	4	CO6	
6.	Compare types of PLD's.	5	CO6	
7.	Distinguish Open and Short circuit fault.	4	CO6	
8.	What is BIST& mention its advantages.	1	CO6	
9.	Define manufacturing testing?	1	CO6	
10.	Explain functionality testing?	2	CO6	
11.	What is JTAG?	1	CO6	
12.	Define Fault coverage?	1		
	10 MARKS QUESTIONS			
1.	Compare the following in detail with neat diagram	4	CO6	

(Regulation:R16)

Prepared on Rev1:

Page: 7 of 7

(Regulation :R18)
Department of Electronics and Communication Engineering

R18ECE3203 VLSI DESIGN Sub. Code & Title

Academic Year: 2020-21 Year/Sem. III/II

	i. Channeled Gate array		
	ii. Channel less Gate array		
	iii. Structured Gate array		
2.	a) Make use of schematic structure of PLA & explain its principle.	3,6	CO6
	b)DesignJK flip flop circuitUsing PLA. (May 2019)		
3.	Sketch a diagram for two input XOR gate using PLA & explain its operation with the	3	CO6
	help of truth tables (May 2019)		
4	Build the structure of PAL& explain its principle. (May 2019)	6	CO6
5.	Design JK flip flop using PROM.	6	CO6
6.	a) Elaborate the principle & operation of FPGA (May 2018)	6,1	CO6
	b) List out the applications of FPGA. (May 2018)		
7.	a) Outline the basic structure of Complex Programmable Logic Device and Explain?	2,1	CO6
	b) List out the applications and advantages of CPLD. (May 2018)		
8	a)Compare PLA's, PAL's, CPLD's, FPGA's, & standard cells. (May 2019)	4,2	CO6
	b)Illustrate the following		
	i. Observability		
	ii. Fault Coverage		
	iii. Fault Simulation		
	iv. Controllability		
9	Categorize various system level test techniques & Explain the layout design for	4	CO6
	improved testability. (May 2018)		
10	a) Model high level design flow of an ASIC.	3,2	CO6
	b) Illustrate the following		
	i. Stuck- at faults		
	ii. Stuck- open & stuck- short faults		
	iii. Stuck- open fault.		
	iii. Stuck open ruuit.		
11	a)Identify the design strategies for test(DST). (May 2018)	3,2	CO6
	b) Explain the scan-based test techniques.		
12.	a)Outline and explain about the internal structure of BIST (May 2018)	2,6	CO6
	b)Construct the architecture and the state diagram of TAP controller.		

Subject Code: R16ECE1115

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12(B) of UGC Act 1956

III B.Tech - II Semester – End Examinations (Regular) May - 2019

VLSI DESIGN - (Electronics & Communication Engineering)

Duration: 3 Hrs 09.05.2019 Max Marks: 70M

Section - A

Answer <u>All</u> the following questions

- 1. Compare CMOS and Bipolar technologies.
- 2. Design the stick diagram for two input CMOS NOR gate.
- 3. What are the effects which can result in incorrect functioning of a Gate?
- 4. What are the applications of ROM?
- 5. Draw the basic structure of CPLD.

Section - B

Answer any <u>FIVE</u> questions choosing at least one from each Unit

Marks: 5Qx10M = 50M

Marks: 5Qx4M = 20M

UNIT - I

- 6. a) Draw NMOS transistor characteristics in enhancement mode.
 - b) Derive the expression for MOS transistor trans conductance ($g_{\rm m}$) and output conductance (g_{ds})

(OR)

- 7. a) Explain the process of fabrication of NMOS Transistor in NMOS Technology.
 - b) What is pass transistor and give its symbol.

UNIT - II

- 8. a) Draw the Layout diagram of CMOS three input NAND gate.
 - b) Explain briefly about scaling of MOS circuits.

(OR)

- 9. a) Draw the Layout diagram of CMOS three input NOR gate.
 - b) Draw the stick diagram of NMOS inverter.

UNIT - III

- 10. a) Give the circuit and operation of Domino logic OR gate.
 - b) Draw the structure and give principle of DCVSL gate.

(OR)

- 11. a) Explain how to drive large capacitive loads.
 - b) What is cross talk?

UNIT-IV

- 12. a) Explain 4-bit barrel shift register.
 - b) Explain Booth multiplier.

(OR)

- 13. a) Draw the circuit of 4-bit comparator and give its truth table.
 - b) Explain the working of 4-Transistor S-RAM cell and give applications of RAM.

UNIT - V

- 14. a) Explain about parameters which influence low power design.
 - b) Differentiate between FPGAs and CPLDs.

(OR

- 15. a) Explain the structure of programmable array logic to implement four inputs. .
 - b) Differentiate between PLA and PAL.

BR-14 D4

Subject Code: R14ECE1115

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12(B) of UGC Act 1956

III B.Tech - II Semester –End Examinations (Regular/Suppl.) May - 2018 VLSI DESIGN

(Electronics & Communication Engineering)

Duration: 3 Hrs Max Marks: 70M

Section - A

Answer <u>All</u> the following questions

- 1. Draw the circuit of BiCmos inverter.
- 2. Draw the stick diagram of CMOS inverter.
- 3. Define Fan in and Fanout and mention the effect of capacitance on Fanout.
- 4. Draw the circuit and give working of DRAM cell.
- 5. Draw the basic structure of FPGA.

Section - B

Answer any <u>FIVE</u> questions choosing at least one from each Unit

Marks: 5Qx10M = 50M

Marks: 5Qx4M = 20M

UNIT - I

- 6. a) Derive the expression for drain current of MOS transistor in linear region.
 - b) Give the expression used for evaluating the threshold voltage of MOS transistor.

(OR)

- 7. a) Explain CMOS P-Well process steps.
 - b) What are the main differences between CMOS and BiCMOS technologies?

UNIT - II

- 8. a) Explain various steps in VLSI design flow with the help of flow chart.
 - b) What are the various MOS layers used in Layouts?

(OR)

- 9. a) Draw the Layout diagram of NMOS inverter.
 - b) Explain about design rules for wires and contacts of NMOS and CMOS.

UNIT - III

- 10. a) Give the circuit and operation of pseudo NMOS NOR gate.
 - b) Draw the circuit of DCVSL gate to implement the output $(A+BC)^1$ and (A', B') + (A', C').

(OR)

- 11. a) What are the constraints which can be considered in choice of Layers.
 - b) Explain about wiring capacitance and time delays.

UNIT - IV

- 12. a) Explain about modified Booth's algorithm.
 - b) What are the applications of counters?

(OR)

- 13. a) Draw the circuit of 8-bit parity generator using Logic gates and give its principle.
 - b) Design zero/one detector.

UNIT-V

- 14. a) Mention the need for testing and discuss about design strategies for test.
 - b) What are the applications of FPGAs?

(OR)

- 15. a) Explain about chip level test techniques.
 - b) What are the applications of CPLDs?

BR-14 D4

Subject Code: R14ECE1115

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12(B) of UGC Act 1956

III B.Tech - II Semester – End Examinations (Regular) April/May - 2017 VLSI DESIGN

(Electronics & Communication Engineering)

Duration: 3 Hrs Max Marks: 70M

Section - A

Marks: 5x4 = 20M

Marks: 5x10 = 50M

Answer *All* the following questions

- 1. Compare CMOS and Bipolar technologies.
- 2. Draw the circuit diagram for two-input NAND.
- 3. Define Fan-in and Fan-out.
- 4. What is testing? Explain.
- 5. Explain charge storage.

Section - B

Answer any *FIVE* of the following questions

UNIT - I

- 6. a) Derive the expression for the threshold voltage of MOSFET.
 - b) Explain the MOS transistor operation with the help of neat sketches in the Depletion mode.

(OR)

- 7. a) Explain different steps involved in IC fabrication.
 - b) Draw the circuit for nMOS inverter and explain its operation and characteristics.

UNIT - II

- 8. a) What are the different types of design rules? Explain.
 - b) What is stick diagram? Draw the stick diagram and layout for a CMOS inverter.

(OR)

- 9. a) Explain briefly about sheet resistance.
 - b) Discuss the limits due to subthreshold current.

UNIT - III

- 10. a) Explain the design of a 4-bit shifter.
 - b) Discuss the general arrangement of a 4-bit arithmetic process.

(OR)

- 11. a) Explain two phase clocking.
 - b) Discuss some design considerations.

UNIT - IV

- 12. a) Explain the structured design approach of parity generator.
 - b) Explain switch logic.

(OR)

- 13. a) Explicate n- bit parallel adder.
 - b) Explicate the principle of SRAM with neat sketch.

UNIT-V

- 14. a) Give the overflow of system on chip designs.
 - b) Explain the FPGA design flow.

(OR)

15. Explain stack implementation using VHDL.

BR-16 SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

III B.Tech - II Semester - I Mid Term Examinations, February - 2020

(R16ECE1115) VLSI DESIGN (Electronics and Communication Engineering)

Duration: 90Mins Dt: 04.02.2020 AN Max Marks: 25M

Section - A

Answer <u>All</u> the questions

- 1. List out the advantages of Bi-CMOS Inverter.
- 2. Define Figure of merit of MOS transistor (ω_0).
- 3. Sketch a stick diagram for 2 input NMOS EX-OR gate.
- 4. List out any six scaling parameters.
- 5. Define pass transistor.

Section - B

Answer any FOUR questions

- a) Interpret CMOS fabrication using N-well process with neat diagrams.
 b) Determine the relationship between drain to source current versus drain to Source voltage (I_{DS}Vs V_{DS}) in non-saturated and saturated regions.
- 7. a) Compare CMOS, Bipolar and GaAs technology.
 - b) Determine the pull-up to pull-down ratio of an NMOS inverter, driven through one or more pass transistors.
- 8. Sketch the stick diagram & layout for two input NMOS Ex-OR gates.
- 9. Design the circuit diagram, stick diagram & lay out for given Boolean function using CMOS. $F=(A+B+C)^1$.
- 10. Interpret the operation of a CMOS Inverter with sketches.
- 11. Illustrate the C²MOS and n-p-MOS logic with neat diagrams.

BR-16 SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

D4

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - II Semester - I Mid Term Examinations

(R16ECE1115) VLSI DESIGN - (Electronics & Communication Engineering)

Duration: 90Mins Date: 15.02.2019 AN Max Marks: 25M

Section - A

Answer <u>All</u> the questions

- 1. What is pass transistor?
- 2. List out the advantages of Bi-CMOS Inverter.
- 3. List out the MOS layers.
- 4. Design a stick diagram for 2 input NMOS EX-OR gate.
- 5. What are transmission gates?

Section - B

Answer any *FOUR* questions

- 6. Describe the CMOS fabrication using P-well process with neat sketch.
- 7. a) Write the comparision between CMOS, Bipolar and GaAs technology.
 - b) Determine the pull-up to pull-down ratio of an NMOS inverter, driven through one or more Pass transistors.
- 8. a) Design the stick diagram for two input NMOS NAND and NOR gates.
 - b) Compare the CMOS design style with NMOS design style.
- 9. Design the circuit diagram, stick diagram and lay out for given Boolean function using CMOS. F=(A+B+C)¹
- 10. Draw the logic diagram of dynamic and domino CMOS logic and explain in detail.
- 11. Elucidate briefly C²MOS and n-p-MOS logic with neat diagrams.

D4

Marks: 50x1M = 5M

Marks: 4Qx5M = 20M

Marks: 5Qx1M = 5M

Marks: 4Qx5M = 20M

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

D4

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - II Semester - II Mid Term Examinations

(R16ECE1115) VLSI DESIGN - (Electronics & Communication Engineering)

Duration: 90Mins Date: 16.04.2019 AN Max Marks: 25M

Section - A

Answer \underline{All} the questions

- 1. What is gate capacitance (C_g) ?
- 2. Define FLASH EPROM.
- 3. Classify memories.
- 4. What is programmable ASIC?
- 5. Explain an ASIC.

Section - B

Answer any <u>FOUR</u> questions

Marks: 4Qx5M = 20M

Marks: 50x1M = 5M

- 6. Identify the problem of driving large capacitive loads? Explain a method to drive such load.
- 7. Interpret the features of wiring capacitance? Explain in detail about the Gate level design.
- 8. a) Show the logic diagram of zero/one detector and explicate its operation with help of diagram.
 - b) What is the principle of DRAM using 1- transistor with neat diagram?
- 9. a) Classify multipliers in detail.
 - b) Categorize types of sequential memory access.
- 10. a) Make use of schematic structure of PLA and explain its principle.
 - b) Design JK flip flop circuit Using PLA.
- 11. a) Outline the basic structure of Complex Programmable Logic Device and explain.
 - b) List out the applications and advantages of CPLD.

BR-14

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

D4

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - II Semester - I Mid Term Examinations (R14ECE1115) VLSI DESIGN

(Electronics & Communication Engineering)

Duration: 90Mins Date: 24.01.2017 AN

Max Marks: 25M

Marks: 5x1 = 5M

Section - A

Answer All the questions

1. List out the types of oxidations and explain.

- 2. Define Figure of merit of MOS transistor (ω_0).
- 3. Mention any few λ based design rules for transistors.
- 4. List out any six scaling parameters.
- 5. List out the types of alternative gate circuits.

Section - B

Answer any FOUR questions

- Marks: 4x5 = 20M
- 6. Explicate the NMOS Enhancement and depletion mode fabrication process with neat sketch.
- 7. a) Elucidate the operation of Bi-CMOS inverter and specify its characteristics.
 - b) Write the characteristics of NMOS inverter with neat diagram.
- 8. Elucidate the VLSI Design flow and write clearly about design processes.
- 9. Draw the layout diagram for NMOS inverter.
- 10. Write the operation of a CMOS Inverter with sketches.
- 11. a) Explicate the working of complex gates with neat diagrams.
 - b) Describe the constructional features and performance characteristics of PSEUDO NMOS logic.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

D4

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - II Semester - II Mid Term Examinations (R14ECE1115) VLSI DESIGN

(Electronics & Communication Engineering)

Duration: 90Mins Date: 31.03.2017 AN Max Marks: 25M

Section – A

Answer All the questions

- 1. What is gate capacitance (C_g) ?
- 2. What is a shifter and list out its types?
- 3. What is FLASH EPROM?
- 4. What is BISTand mention its advantages?
- 5. What is manufacturing testing?

Section – B

Answer any FOUR questions

Marks: 4x5 = 20M

Marks: 5x1 = 5M

- 6. What are the features of wiring capacitance? Write in detail about the Gate level design.
- 7. Derive an equation for propagation delay in pass transistor chain.
- 8. a) Draw and explicate the asynchronous counter in detail.
 - b) Write in detail about CAM.
- 9. a) Give the classifications of multipliers and write in detail.
 - b) Write the different types of sequential memory access.
- 10. a)Write about Complex Programmable Logic Device. And draw its basic structure.
 - b) Give the applications and advantages of CPLD.
- 11. a) Compare PLA's, PAL's, CPLD's, FPGA's, and standard cells.
 - b) Illustrate the following i) Observability ii) Fault Coverage iii) Fault Simulation iv) Controllability.

ANTENNAS AND WAVE PROPAGATION

ELECTRONICS & COMMUNICATION ENGINEERING

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 1 0 3

(R18ECE3201) Antennas and Wave Propagation

Course Objectives:

The main objectives are:

- · Understand basic terminology and concepts of Antennas.
- To attain knowledge on the basic parameters those are considered in the antenna design process and the analysis while designing that.
- Analyze the electric and magnetic field emission from various basic antennas and mathematical formulation of the analysis.
- To have knowledge on antenna operation and types as well as their usage in real time filed.
- Aware of the wave spectrum and respective band based antenna usage and also to know the
 propagation of the waves at different frequencies through different layers in the existing
 layered free space environment structure.

UNIT -I:

Antenna Basics: Introduction, Basic Antenna Parameters – Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective Height, Illustrative Problems.

Fields from Oscillating Dipole, Field Zones, Front-to-back Ratio, Antenna Theorems, Radiation, Retarded Potentials - Helmholtz Theorem

Thin Linear Wire Antennas – Radiation from Small Electric Dipole, Quarter Wave Monopole and Half Wave Dipole – Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height, Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths, Illustrative Problems. Loop Antennas - Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small and Large Loops (Qualitative Treatment).

UNIT -II:

VHF, UHF and Microwave Antennas - I: Arrays with Parasitic Elements, Yagi-Uda Array, Folded Dipoles and their Characteristics, Helical Antennas – Helical Geometry, Helix Modes, Practical Design Considerations for Monofilar Helical Antenna in Axial and Normal Modes, Horn Antennas – Types, Fermat's Principle, Optimum Horns, Design Considerations of Pyramidal Horns, Illustrative Problems.

UNIT -III:

VHF, UHF and Microwave Antennas - II: Microstrip Antennas - Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas - Geometry and Parameters, Characteristics of Microstrip Antennas. Impact of Different Parameters on Characteristics, Reflector Antennas - Introduction, Flar Sheet and Corner Reflectors, Paraboloidal Reflectors - Geometry, Pattern Characteristics, Feed Methods, Reflector Types-Related Features, Illustrative Problems.

Lens Antennas: Introduction, Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications.

UNIT -IV:

Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources - Different Cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with increased Directivity, Derivation of their Characteristics and Comparison, BSAs with Non-uniform Amplitude Distributions – General Considerations and Binomial Arrays, Illustrative Problems.

Antenna Measurements: Introduction, Concepts – Reciprocity, Near and Far Fields, Coordinate Systems, Sources of Errors. Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods)

UNIT -V:

Wave Propagation – I: Introduction, Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts, Ground Wave Propagation (Qualitative Treatment) – Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections. Space Wave Propagation – Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Tropospheric propagation.

Wave Propagation – **II:** Sky Wave Propagation – Introduction, Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation.

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 1 of 6

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation SANDHYA BOLLA/P.MAMATHA

Unit/	T : ()	Book	Page	e (s)	Teaching	Proposed No.	Proposed	COADDA		
Item No.	Topic (s)	Reference	From	То	Methodology	of Periods	Date of Handled	CO/RBT		
	τ	JNIT-1					·			
I	Ante	nna Basics:				15				
1.1	Introduction,	T1, R2	8,529	9,530	Black board	01	22-03-2021	CO-1, L2		
1.2	Basic Antenna Parameters	T1, R2	9,530	31,596	Black board	01	23-03-2021	CO-2, L2		
1.3	Fields from Oscillating Dipole,	T1	31	33	Black board	01	24-03-2021	CO-3, L3		
1.5	Field Zones, Front-to-back Ratio,	T1, R2	45,556	47,572	Black board	01	25-03-2021	CO-3, L3		
1.6	Antenna Theorems, Radiation,	T1, R2	70,298	73,302	Black board	01	26-03-2021 30-03-2021	CO-2, L2		
1.7	Thin Linear Wire Antennas	T1, R1	157,133	169,134	Black board	01	31-03-2021	CO-2, L2		
1.8	- Radiation from Small Electric Dipole,	T1, R1	171,143	173,150	White board	01	01-04-2021 02-04-2021 05-04-2021	CO-3, L3		
1.9	Quarter Wave Monopole and HalfWaveDipole—CurrentDistributions,	T1, R1	173,163	176,164	Presentation	01	06-04-2021 07-04-2021 08-04-2021	CO-3, L3		
1.10	FieldComponents,RadiatedPower,RadiationResistance,	T1, R1	169,113	171,140	Presentation	01	15-04-2021	CO-3, L3		
1.11	Beam Width, Directivity,	T1, R1	18,62	19,39	Presentation	01	16-04-2021	CO-2, L2		
1.12	Effective Area and Effective Height,	T2, R1	377,879	378,884	Presentation	01	08-04-2021	CO-2, L2		
1.13	Natural Current Distributions,	R1	151	152	Black board	01	15-04-2021	CO-3, L3		
1.14	Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths,	R1	152	170	Presentation	01	19-04-2021 20-04-2021	CO-3, L4		
1.15	Illustrative Problems.	R1	196	197	Presentation	01	22-04-2021	CO-3, L3		
1.16	Loop Antennas - Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole,	R1	206	239	Presentation	01	23-04-2021 24-04-2021	CO-3, L4		
	Review	S	signature o	of the HO	D/Coordina	tor				
			UNIT –II							
II	VHF, UHF and I	Microwave A	ntennas-I:			8				
2.1	ArrayswithParasiticElements,Yagi-UdaArray,	T1, R2	320,777	321,781	Demonstration	02	29-04-2021	CO-4, L2		
2.2	Folded Dipoles and their Characteristics,	R1, R2	458,773	462,777	Charts	01	30-04-2021	CO-4, L2		
2.3	Helical Antennas – Helical Geometry,	T1, R2	297,791	298,792	Charts	01	03-05-2021 04-05-2021	CO-4, L2		
2.4	Helix Modes, Practical DesignConsiderationsforMonofilarHelicalAnte nnainAxialandNormalModes,	T1, R2	303,792	317,796	Demonstration	01	05-05-2021 06-05-2021	CO-4, L2		
2.5	HornAntennas- Types, Fermat's Principle, Optimum Horns, Design Considerations of Pyramidal Horns,	T1, R2	55,797	56,799	Black board	02	08-05-2021 10-05-2021	CO-4, L4		

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 2 of 6

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation | SANDHYA BOLLA/P.MAMATHA

Unit/		Book	Page	e (s)	Teaching	Proposed No.	Proposed	
Item No.	Topic (s)	Reference	From	То	Methodology	of Periods	Date of Handled	CO/RBT
2.6	Illustrative Problems.	R2	800	803	Black board	01	11-05-2021 12-05-2021	CO-4, L4
	Review		Signatur	e of the HOl	D/Coordinator			
			UNIT- III					
III	VHF, UHF and M					10		
3.1	Micro strip Antennas – Introduction, Features,	T1, R2	500,809	510,810	Black board	01	17-05-2021	CO-4, L2
3.2	AdvantagesandLimitations,	R1	722	726	Black board	01	18-05-2021 19-05-2021	CO-4, L2
3.3	RectangularPatchAntennas— GeometryandParameters,Characteristics of Micro strip Antennas.	T1, R1	503,727	517,730	Black board	01	20-05-2021 21-05-2021	CO-4, L4
3.4	Impact of Different Parameters on Characteristics, Reflector Antennas – Introduction, Flar Sheet and Corner Reflectors,	T1, R1	369,785	382,794	Black board	01	24-05-2021 25-5-2021	CO-4, L4
3.5	Paraboloidal Reflectors – Geometry, Pattern Characteristics, FeedMethods, Reflector Types- Related Features,	T1, R1	383,794	396,806	Black board	01	26-05-2021	CO-4, L4
3.6	IllustrativeProblems.	T1, R1	377,835	378,838	Black board	01	27-05-2021	CO-4, L3
3.7	Lens Antennas:							
3.8	Introduction,	T1, R2	399,839	400,840	Black board	01	07-06- 2021	CO-4, L2
3.9	Geometry of Non-metallic Dielectric Lenses,	T1, R2	400,840	412,842	Black board	01	08-06- 2021 09-06- 2021	CO-4, L3
3.10	Zoning, Tolerances,	T1	412	415	Black board	01	10-06- 2021	CO-4, L4
3.11	Applications.	R2	842	843	Black board	01	11-06- 2021	CO-4, L4
	Review		Signatur	e of the HOI	D/Coordinator			
			UNIT-IV					
IV	Antenna	Arrays				15		
4.1	Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources - Different Cases,	T1, R3	100,294	107,297	Presentation	01	14-06-2021	CO-4, L3
4.2	Principle of Pattern Multiplication,	T2, R2	365,611	369,614	Presentation	02	15,16 JUNE 2021	CO-4, L2
4.3	Uniform Linear Arrays – Broadside Arrays,	T2, R3	125,298	127,302	Black board	02	17 JUNE 2021	CO-4, L4

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 3 of 6

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation SANDHYA BOLLA/P.MAMATHA

	Endfire Arrays, EFA with increased Directivity,				Black board			CO-4, L4
4.4	Derivation of their Characteristics and	R2, R3	620,312	632,314		02	18,19 TH	
	Comparison,					02	JUNE 2021	
	BSAs with Non-uniform Amplitude				Presentation			CO-4, L4
4.5	Distributions – General Considerations and	T2, R2	372,635	378,637		02	21,22 ND	
	Binomial Arrays,						JUNE 2021	
4.7	Illustrative Problems.	T2, R2	394,654	396,678	Presentation	02	23,24 TH JUNE 2021	CO-4, L3
4.8	Antenna Measurements:	T1, R1	715,839	717,740	Black board	01	25 TH UNE 2021	
4.0	Introduction, Concepts – Reciprocity, Near and	T1 D1	717.952	720.065	Black board		26 TH ,28 TH	CO-4, L2
4.9	Far Fields, Coordinate Systems,	T1, R1	717,852	738,865		02	JUNE 2021	
	Directivity				Back board			CO-6, L6
4.10	Measurement, Gain Measurements (by Compariso	T1, R1	738,865	741,872		01	29 TH ,30 TH JUNE 2021	
	n,Absoluteand3-AntennaMethods)						JOINE 2021	
	Review	Signature o	f the HOD/Co	ordinator				
			UNIT-V					
V	Wave P	ropagation –	I:			12		
5.1	Introduction, Definitions,	T1, R2	771,1102	775,1104	Presentation	01	01 JULY2021	CO-5, L2,
5.2	Categorizations and General Classifications,	T1, R2	725,1107	779,1110	Presentation	0.1	02 JULY	CO-5, L2
3.2	DifferentModesofWavePropagation,	11,102	723,1107	777,1110		01	2021	
5.3	Ray/ModeConcepts,GroundWavePropagation(T1, R2	780,110	786,114	Black board	02	5 ^{th,} 6th july	CO-5, L2
	Qualitative Treatment) – Introduction,	11, K2	700,110	700,114		02	2021	
5.4	Plane Earth Reflections, Space and Surface	T1, R3	783,436	790,438	Black board	01	7 th ,8 th ,9 th	CO-5, L3
	Waves, Wave Tilt,	11,10	703,130	770,130			july 2021	
5.5	Curved Earth Reflections. Space Wave	T1, R3	794,438	797,442	Black board	01	12 th	CO-5, L4
	Propagation –	, -	, , , ,	,		-	july2021	G0 5 1 0
5.6	Introduction, Field Strength Variation				Presentation		13,14 th july	CO-5, L3
5.6	with Distance and Height, Effect of Earth's Curvature,	T1, R3	800,442	804,445		01	2021	
	Absorption, Super Refraction, M-Curves and				Black board			CO-6, L2
5.7	Duct Propagation, Scattering Phenomena,	T1 D2	904 462	912.476	Diack board	0.1	15,16 th july	CO-0, L2
3.7	Tropospherepropagation.	T1, R3	804,463	813,476		01	2021	
5.8	Wave Propagation – II:				Presentation	01	17 th	
	Sky Wave Propagation – Introduction, Structure				Presentation	01	july2021	CO-6, L2
5.9	of Ionosphere,	T1, R3	815,446	817,448	rieschtation	01	19 th july2021	CO-0, L2
	Refraction and Reflection of Sky Waves by				Presentation			CO-5, L2
5.10	Ionosphere, Ray Path,	T1, R3	817,448	822,450	1 resemanon	01	20 th july2021	CO-3, L2
	ionosphere, Kay Faui,	1		1			Ju1y2021	

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:

Page: 4 of 6

	Sub. Code & Title	R18ECI	E3201 ANTENNAS AN	ID WAVE PROPAGATION
	Academic Year: 2020	-21	Year/Sem./Section	III-II A,B,C,D
Faculty Name & Designation		SANDHYA BOLLA/	P.MAMATHA	

5.11	Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance,	Т1	824	832	Presentation	01	22 nd july 2021	CO-6, L3
5.12	Relation between MUF and Skip Distance, Multi-hop Propagation.	R2	1136	1155	Presentation	01	23 rd july 2021	CO-6, L3
	Review	Signature of the HOD/Coordinator						

LIST OF TEXT BOOKS AND REFERENCES

Text Books:

- T1. Antennas and Wave Propagation-J.D.Kraus, R.J.Marhefka and Ahmad S.Khan, TMH, New Delhi,4thed.,(Special Indian Edition), 2010
- Electromagnetic Waves and Radiating Systems .C. Jordan and K.G.Balmain, PHI, 2nd T2 ed., 2000

Reference Books:

- Antenna Theory C.A. Balanis, John Wiley & Sons, 3rdEd., 2005. R1.
- R2. Antennas and Wave Propagation – K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.
- Transmission and Propagation-ER-5.V.D.Glazier and H.R.L. Lamont, The R3. Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi.
- Electronic and Radio Engineering-F.E.Terman, McGraw-Hill,4thEdition,1955. R4.
- Antennas John D. Kraus, McGraw-Hill (International Edition), 2 Ed. 1988. R5.

Web References

- W1. www.msk1986.files.wordpress.com/2013/09/7ec1_antenna
- W2. www.books.google.com/books
- W3. www.ccs.neu.edu/.../S10/Lectures/AntennasPropagation.pdf
- W4 .www.ieeexplore.ieee.org
- W5. www.darshan.ac.in/DIETDS/EC/276/antenna-wave-propagation
- W6 www.smartzworld.com/.../antenna-wave-propagation-awp
- W7. www.nptel.ac.in/syllabus
- W8. www.ieeeaps.org/publications/ieee-transactions
- W9. www.researchgate.net/publication/284284255_Near
- W10. www.radio-electronics.com/info/antennas

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 5 of 6

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation | SANDHYA BOLLA/P.MAMATHA

CONTENT BEYOND THE SYLLABUS

S.No	Topics	Proposed Actions	Date	Resource Person/Mode	POs	PSOs
1.	Slot antennas	PPTS	19-05-2021	Dr. P.Mukunthan	10	3
2.	Non-Resonant antenna	PPTS	23-04-2021	Dr. Suresh	10	1

ASSIGNMENT

S.No.	Assignment Questions	Course Outcome	Books To be Referred	Date Of Announcement	Date Of Submission
1.	(1) Define the following terms: (i) Radiation Intensity (ii) Antenna Temperature (iii) Effective aperture (iv) Antenna field zones (v) Effective height (vi) Gain, Directivity (vii) FNBW,HPBW (viii)Derive the expressions for electric and magnetic field radiated by the half wave dipole antenna and short electric dipole?	1 and 3	T1,R2	24-05-2021	28-05-2021
2.	1. (a)Draw the neat diagram of 2-wire and 3-wire folded dipole? (b) What are the modes of helical antenna? Write in detail with neat sketches and equations?	1 and 4	T1,R2	24-05-2021	28-05-2021
3	What are the characteristics of MSA? (a) What are the different types of Reflector antennas with neat diagrams? (b) Explain about Dielectric lenses?	2 and 4	T1,R2	22-07-2021	27-07-2021
4	Derive maxima ,minima and half power point directions for EFA? (b).A uniform	3 and 5	T1,R2	22-07-2021	27-07-2021

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 6 of 6

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation SANDHYA BOLLA/P.MAMATHA

	linear array consists of 16 isotropic point sources with a spacing of □/4.Draw the field pattern using pattern multiplication?				
5	Write in detail (a) effects of Earth curvature (b) Absorption (c) Scattering (d) Tropospheric propagation (e) Multi-hop propagation (f) M-curves and its characteristics (g)Duct propagation, skip distance, wave tilt (h) MUF, virtual height, critical frequency	2	T1,R1	22-07-2021	27-07-2021

SELF STUDY TOPICS							
S.No.	Topics	Books & Journals	Course Outcomes				
1	MIMO	MIMO WIRELESS COMMUNICATION BY BIGLIERI	CO2				
2	ULTRA WIDEBAND ANTENNAS (UWB)	Multifunctional Ultrawideband Antennas: Trends, Techniques and Applications BY CHINMOY SAHA	CO4				

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 1 of 9

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation | SANDHYA BOLLA/P.MAMATHA

QUESTION BANK WITH BLOOMS TAXONOMY LEVEL (BTL)

(1. Remembering 2. Understanding 3. Applying 4. Analyzing 5. Evaluating 5. Creating)

	UNIT-1 Antenna Basics:		
	1 MARK QUESTIONS	BT Level	Course Outcome
1.	If the diameter of the antenna is 2λ , estimate far field distance? (R18 May -2019)	2	CO1
2.	If beam solid angle is π ste radians, Calculate directivity in dB? (R16 NOV/DEC- 2018)	2	CO1
3.	Explain the different types of patterns in antennas? (R16 March 2021	2	CO1
4	Compare Beam Width & Beam Efficiency?	4	CO1
5.	Determine the Rr for half wave dipole?	5	CO1
6.	Explain the Maxwell's equations?	2	CO1
7.	List out the applications of loop antenna?	4	CO1
8	Explain dual characteristics of an antenna? (R16Ocober/Nov 2020)	2	CO1
9	Show the expression floor front to back ratio?	2	CO1
10	Classify the antenna field zones	2	CO1
	10 MARKS QUESTIONS		
1.	 a) Draw the equivalent circuit of an antenna and explain about Antenna impedance. b) Define directivity and gain. (R18 May – 2019) 	2	CO1
2.	Derive the EM fields at observation point due to half-wave antenna? (R18 May – 2019)	3	CO1
3.	 a) Find the Rrad of Infinitesimal dipole whose overall length is l=λ/50. b) Find the radiation resistance of a loop antenna of diameter 0.5m operating at 1MHz? (R16 NOV/DEC- 2018) 	2	CO1

(Regulation: R18)

Department of Electronics and Communication Engineering

Sub. Code & Title

Academic Year: 2020-21

Faculty Name & Designation

R18ECE3201 ANTENNAS AND WAVE PROPAGATION

SANDHYA BOLLA/P.MAMATHA

Year/Sem./Section

III-II A,B,C,D

Prepared on Rev1: Page: 2 of 9

4.	a) The radiation intensity is represented by	3	
	$U = U_0 \sin(\pi \sin \theta), \ 0 \le \theta \le \pi/2$ and		
	O Produce Field and discolining		
	0 elsewhere Find exact directivity.		CO1
	b)The maximum gain of a horn antenna is +20 dB, While the gain of its first side lobe		
	is -15dB. What is the difference in gain between the maximum and first sidelobe in dB.		
	(R16 NOV/DEC- 2018)		
5.	Explain the following: (i) Radiation Intensity (ii) Antenna Temperature (iii) Effective	2	
	aperture, Effective length, Directivity, Beam width, Beam Area?	_	CO1
	Evaluate the expression for radiation resistance of half wave dipole?		
	R16 October/Nov 2020 , R16 March2021		
6.	Explain about the radiation from small electric dipole? (R16March2021)	2	CO1
7.	Evaluate the expression for radiation resistance of short electric dipole (R16March2021)	5	CO1
8	Write the equations for electric and magnetic field components of short electric dipole in	1	
	Quasi stationary case?		CO1
	(b)Discuss Helmholtz theorem		
9	Define effective height and directivity-gain resolution.	4	
	(b) Compare small loop antenna with short dipole.		CO1
10	Solve the expression for electric and magnetic field radiated by the half wave dipole	3	CO1
	antenna		COI
11	Explain about Retarded Potentials?	2	CO1
		2	
	Explain Antenna theorems (Reciprocity & Maximum power transfer theorem?	2	CO1
12	R16Ocober/Nov 2020		
	Unit -II: VHF, UHF and Microwave Antennas-I:		
	1 MARKS QUESTIONS		
1.	The aperture dimensions of a pyramid horn are 12X6 cm. It is operating at a	2	CO2
	Frequency of 6GHz. Find the beam width? (R18 May – 2019)		

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 3 of 9

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

2.	Yagi-Uda Antenna is working at 100MHz, Calculate the length of reflector?	2	CO2
	(R16 NOV/DEC- 2018)		
3.	List and briefly explain three sources of instability of collector current. (R16- Nov/Dec - 2018)	1	CO2
4.	Explain the folded dipole diagram	2	CO2
5.	What is Yogi uda array? (R16March2021)	1	CO2
6.	List out the modes of helical antenna	4	CO2
7.	Construct the helical antenna	3	CO2
8	What are the types of horns?	1	CO2
9	What is significance of Pitch angle in Helical antenna? (R16March2021)	1	CO2
10	Design equation for pyramidal horn antenna?	6	CO2
11	Differentiate Optimal horns from pyramidal horn in terms of design construction? (R16Ocober/Nov 2020)	5	CO2
	10 MARKS QUESTIONS		
1	a) Design a three, five element Yagi-Uda antenna to operate at a frequency of 200MHz. b)Calculate Zin of a 3-folded dipole.(R18 May – 2019) ,(R16Ocober/Nov 2020), (R16March2021)	5	CO2
2.	Draw and explain the working principle of Helical antenna. Classify the polarization based on axial ratio. (R16 NOV/DEC-2018), (R16March2021)	1	CO2
3.	Prove that folded dipoles act as step –up impedance transformers. (R16 NOV/DEC– 2018)	2	CO2
4.	Explain about folded dipole and their characteristics? and radiation resistance? (R16Ocober/Nov 2020)	2	CO2
5.	Construction and design considerations for pyramidal horns?	5	CO2
6.	Discuss about the helical antenna and write practical consideration for monofilar helical in different modes? (R16Ocober/Nov 2020)	6	CO2

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 4 of 9

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

Academic Year: 2020-21 Year/Sem./Section III-II A,B,C,D

Faculty Name & Designation | SANDHYA BOLLA/P.MAMATHA

			T = 0.5
7.	Compare the different types of horn antennas and their performance with sketches?	5	CO2
8	Explain about Fermat's principle?	2	CO2
9	Explain about arrays with parasitic elements?	2	CO2
10	What are the types of horn antennas?	1	CO2
	Unit – III : VHF, UHF and Microwave Antennas - II:		
	1 MARKS QUESTIONS		
1.	Find the null-to-null main beam width of 2 m parabolic reflector used at 5 GHz. Also find the half power beam width? (R18 May – 2019)	1	CO3
2.	List out the types of feeds used in micro strip antennas? (R16 NOV/DEC-2018)	4	CO3
3	What is MSA?	1	CO3
4.	Explain the features of MSA?	2	CO3
5	Compare flat sheet with respect to corner reflector and their practical use? R16Ocober/Nov 2020	6	CO3
6.	Compare the merits & demerits of MSA? (R16March2021)	6	CO3
7	What is corner sheet reflector antenna? (R16March2021)	1	CO3
8.	Define Zoning?	1	CO3
9.	What are the characteristics of Micro strip antennas?	1	CO3
10.	Classify the feed methods of Reflector antennas?	4	CO3
11	List out the applications of lens antennas?	4	CO3
	10 MARK QUESTIONS		l
1.	a) Explain the optimum F/D ratio condition ii parabolic antenna.	3	CO3
	b) Calculate the number of images and their signs of 60° corner reflector?		
	(R18 May – 2019)		

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1: Page: 5 of 9

Sub. Code & Title **R18ECE3201 ANTENNAS AND WAVE PROPAGATION**

III-II A,B,C,D Academic Year: 2020-21 Year/Sem./Section Faculty Name & Designation SANDHYA BOLLA/P.MAMATHA

2	For a parabolic reflector of diameter 6 m, illumination efficiency, b=0.65. The Frequency	2	CO3
	of operation is 10GHz. Find its beam width, directivity and capture area. (R18 May – 2019)	3	
3.	a) Derive the array factor of a corner reflector 90°.	4	CO3
	b) List out the types of lens antennas. Explain it. (R16 NOV/DEC-2018)		
4	Design a rectangular micro strip antenna using a substrate (RT/duroid 5880) with dielectric	5	CO3
	constant of 2.2, h =0.1588 cm as to resonate at 10GHz.		
	(R16 NOV/DEC- 2018)		
5.	List out the characteristics of Micro strip antennas?	4	CO3
	Classify the feed methods of MSA?		
6	Explain about the rectangular patch antenna geometry and their parameters?	2	CO3
7.	Compare the merits and demerits of MSA?	5	CO3
	Write about geometry of non metallic dielectric lenses? (R16March2021)		
8.	What are the different types of patch antennas with neat sketches?	1	CO3
9.	What are the different types of Reflector antennas with neat diagrams? &Parabolic antenna? And its feed methods?	2	CO3
	Explain about Dielectric lenses? (R16Ocober/Nov 2020)		
10.	Discuss the design of MSA? (R16March2021)	6	CO3
11	Explain in detail about the features of MSA's?	2	CO3
12	Compare the merits and demerits of MSA?	5	CO3
	Write about geometry of non metallic dielectric lenses? (R16Ocober/Nov 2020)		
13	Discuss the feed methods of Reflector antennas and MSA's? (R16Ocober/Nov 2020)	6	CO3
		Î	

1MARKS QUESTIONS

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 6 of 9

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

	<u> </u>		
1	Define op-amp parameter input bias current I_{io} (R16-Nov/Dec-2018)	1	CO4
2	What is parasitic array, Define Broad side array	1	CO4
3	Distinguish the BSA and EFA? (R16Ocober/Nov 2020)	4	CO4
4	Explain about pattern multiplication?	2	CO4
5	Determine the method for Gain measurement?	5	CO4
6	What is pattern measurement arrangement?	1	CO4
7	Apply the concept of pattern multiplication &draw the radiation pattern for 4-element array?	1	CO4
8	Explain the advantages of binomial arrays	2	CO4
9	Compare the different cases for arrays of two isotropic point sources?	2	CO4
	10 MARK QUESTIONS		
1.	Design and draw the radiation pattern on polar graph sheet of 2-element Broad side array antenna at 10 MHz (R18 May – 2019)	2	CO4
2.	Define i) BSA ii) EFA iii) EFA with increased Bandwidth iv) Binomial array? (R18 May – 2019)	3	CO4
3.	Design and draw the radiation pattern on polar plot of broad side array antenna working at 5 MHz? (R16 NOV/DEC-2018)	5	CO4
4.	Draw the bench setup for gain measurement with 3-Antenna Method? (R16 NOV/DEC- 2018), (R16March2021)	1	CO6
5.	Explain array of two point sources. What is an antenna array? Explain different antenna arrays.	2	CO4
6.	Discuss about principle of pattern multiplication.	6	CO4
	Discuss the features of binomial arrays? (R16Ocober/Nov 2020) , (R16March2021)		
7.	Explain about short notes on End fire array and Broad side arrays?	2	CO4
	Explain about pattern multiplication?		
		·	·

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 7 of 9

Sub. Code & Title	R18ECE3201 ANTENNAS AND WAVE PROPAGATION
-------------------	--

8	Determine the expression for the far field pattern of an array of two isotropic point sources at equal amplitude and phase?	3	CO4
9	Explain about the Directivity measurement using any method? (R16Ocober/Nov 2020)	1	CO4
10	Explain the principle beam width for BSA and EFA's?	2	CO4
11	Construct &derive Maxima, minima & half power point directions?	3	CO4
12	Compare different antenna methods?	2	CO6
13	Construct &derive maxima, minima and half power point directions for BSA?	3	CO4
14	Describe the mathematical relations for a N element half-wave length spaced binomial array and find the directivity HPBW for N=20 case and derive the expression for its beam		CO4
	shaping considerations? (R16Ocober/Nov 2020)	3	
15	List out the sources of errors?	4	CO4
	Unit-V: Wave Propagation – I and II		
	1 MARKS QUESTIONS		
1.	Find the frequency of the propagating wave for D-Layer to have refractive index of 0.5?	1	
	(R18 May – 2019)		CO5
2.	(R18 May – 2019) Find the critical frequency if the maximum electron density is 1.3X106 electrons/cm ³ ? (R16 NOV/DEC– 2018)	1	CO5
	Find the critical frequency if the maximum electron density is 1.3X106 electrons/cm ³ ?	1	
3.	Find the critical frequency if the maximum electron density is 1.3X106 electrons/cm ³ ? (R16 NOV/DEC- 2018) Define duct Propagation & What is multi-hop propagation?	1 1	CO5
2.3.4.5.	Find the critical frequency if the maximum electron density is 1.3X106 electrons/cm ³ ? (R16 NOV/DEC- 2018) Define duct Propagation & What is multi-hop propagation? (R16Ocober/Nov 2020)		CO5

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 8 of 9

Sub. Code & Title R18ECE3201 ANTENNAS AND WAVE PROPAGATION

7.	Compare the relation between MUF and skip distance	2	CO5
8	Select the frequency range in sky wave Propagation?	1	CO5
9	Explain about the MUF?&M-Curves	2	CO5
10	Determine the expression for field strength variation with height?	3	CO5
	10 MARK QUESTIONS		
1.	Derive critical frequency of a layer in Sky wave propagation? (R18 May – 2019)	3	CO5
2.	Explain i) M-curves ii) Wave Tilt? (R18 May – 2019), (R16March2021)	2	CO5
3.	A broadcast transmitter supplies 100 kW to an antenna that radiates 50% of this Power. The antenna has directional Characteristic such that the field strength without ground losses is given by Eo=300 X $1.28\sqrt{P_{kW}}$ mV/m at 1 km. Find the field strength of the ground wave at 100km for the following types of Earth conditions at f=500KHz Medium hills, forestation: $\epsilon r = 13$, $\sigma = 50 \times 10^{-5} (mho)/cm$ (R16 NOV/DEC-2018)	3	CO5
4	Classify the modes of propagation based on frequency. Explain any one of the propagation method? (R16 NOV/DEC- 2018)	2	CO5
5.	Discuss about the troposphere and explain how tropospheric ducts can be used for microwave propagation?	6	CO5
6.	Explain and specify the frequency ranges of Ground wave, Space wave and Sky wave propagation? & Explain about the modes of Propagation?	2	CO5
7.	Define the terms (i) MUF (ii) Skip distance (iii) OF (iv) Critical frequency (v) Ray path& LUF (R16Ocober/Nov 2020), (R16March2021)	1	CO5
8	Compare ground wave propagation, sky wave propagation, space wave propagation?	2	CO5
	Explain the relation between MUF and skip distance?	2	CO5
9	Explain about virtual height?		

(Regulation: R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 9 of 9

Sub. Code & Title	R18ECE3201 ANTENNAS AND WAVE PROPAGATION
-------------------	--

10	Distinguish between the Refraction and reflection of sky waves by ionosphere? (R16Ocober/Nov 2020)	4	CO5
11	Construct the field strength variation with distance and height? (R16March2021)	3	CO5
12	Explain about (a) effects of Earth curvature (b) Absorption (c) Scattering?	2	CO5
13	Discuss a) Tropospheric Propagation b) Multi-hop Propagation c)M-curves?	6	CO5
14	Write a short notes on (a) Plane earth reflections (b) Space and surface waves?	1	CO5

Subject Code: R16ECE1108

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12(B) of UGC Act 1956

III B.Tech - I Semester –End Examinations (Suppl.) May - 2019 ANTENNAS AND WAVE PROPAGATION

(Electronics & Communication Engineering)

Duration: 3 Hrs 20.05.2019 Max Marks: 70M

Section - A

Answer All the following questions

- 1. If the diameter of the antenna is 2λ , estimate far field distance.
- 2. The aperture dimensions of a pyramid horn are 12X6 cm. It is operating at a Frequency of 6GHz. Find the beam width?
- 3. Find the null-to-null main beam width of 2 m paraboloid reflector used at 5 GHz. Also find the half power beam width.
- 4. List out the differences between indoor and outdoor range Measurement.
- 5. Find the frequency of the propagating wave for D-Layer to have refractive index of 0.5.

Section - B

Answer any FIVE questions choosing at least one from each Unit

Marks: 5Qx10M = 50M

Marks: 5Qx4M = 20M

UNIT – I

6. a) Draw the equivalent circuit of an antenna and explain about Antenna impedance. b) Define directivity and gain.

(

(OR)

7. Derive the EM fields at observation point due to half-wave antenna.

UNIT - II

- 8. Design a 10-turn helix to operate in the axial mode. For optimum design. Determine the:
 - a) Circumference (in λ o), pitch angle (in degrees) and separation between turns(in λ o)
 - b) Relative (to free space) wave velocity along the wire of the helix for:
 - i) Ordinary end-fire design
 - ii) Hansen-woodyard end-fire design

(OR)

- 9. a) Design a three element Yagi-Uda antenna to operate at a frequency of 200MHz.
- b) Calculate Zin of a 3-folded dipole.

UNIT - III

- 10. a) Explain the optimum F/D ratio condition ii parabolic antenna.
 - b) Calculate the number of images and their signs of 60° corner reflector.

(OR)

11. For a paraboloid reflector of diameter 6 m ,illumination efficiency , b=0.65. The Frequency of operation is $10 \, \mathrm{GHz}$. Find its beam width, directivity and capture area.

UNIT - IV

- 12. Design and draw the radiation pattern on polar graph sheet of 2-element Broad side array antenna at 10 MHz. **(OR)**
- 13. Define i)BSA ii) EFA iii)EFA with increased Bandwidth iv) Bionomial array.

UNIT - V

14. Derive critical frequency of a layer in Sky wave propagation.

(OR)

15. Explain i) M-curves ii) Wave Tilt

Subject Code: R16ECE1108

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12(B) of UGC Act 1956

III B.Tech - I Semester - End Examinations (Regular) Nov/Dec - 2018

ANTENNAS AND WAVE PROPAGATION

(Electronics & Communication Engineering)

Duration: 3 Hrs Max Marks: 70M

Section - A

Answer <u>All</u> the following questions

- 1. If beam solid angle is π steradians, Calculate directivity in dB?
- 2. Yagi-Uda Antenna is working at 100MHz, Calculate the length of reflector?
- 3. List out the types of feeds used in microstrip antennas. Define.
- 4. Calculate the excitation Phase, if scanned array direction is 60°.
- 5. Find the critical frequency if the maximum electron density is 1.3X10⁶ electrons/cm³.

Section - B

Answer any FIVE questions choosing at least one from each Unit

Marks: 5Qx10M = 50M

Marks: 5Qx4M = 20M

UNIT - I

- 6. a) Find the Rrad of Infinitesimal dipole whose overall length is $1=\lambda/50$.
 - b) Find the radiation resistance of a loop antenna of diameter 0.5m operating at 1MHz

(OR)

7. a) The radiation intensity is represented by

 $U = U_0 \sin(\pi \sin \theta), 0 \le \theta \le \pi/2$ and

0 else where

Find exact directivity.

b)The maximum gain of a horn antenna is +20 dB, While the gain of its first sidelobe is -15dB. What is the difference in gain between the maximum and first sidelobe in dB.

UNIT - II

8. Draw and explain the working principle of Helical antenna. Classify the polarization based on axial ratio.

(OR)

9. Prove that folded dipoles act as step –up impedance transformers.

UNIT - III

- 10. a) Derive the array factor of a corner reflector 90°.
 - b) List out the types of lens antennas. Explain it.

(OR)

11. Design a rectangular microstrip antenna using a substrate (RT/duroid 5880) with dielectric constant of 2.2, h =0.1588 cm as to resonate at 10GHz.

UNIT - IV

12. Design and draw the radiation pattern on polar plot of broad side array antenna working at 5 MHz?

(OR)

13. Draw the bench setup for gain measurement with 3-Antenna Method.

UNIT - V

14. A broadcast transmitter supplies 100 kW to an antenna that radiates 50% of this power. The antenna has directional Characteristic such that the field strength without ground losses is given by Eo=300 X 1.28 $\sqrt{P_{kW}}$ mV/m at 1 km. Find the field strength of the ground wave at 100km for the following types of Earth conditions at f=500KHz Medium hills, forestation: $\varepsilon r = 13$, $\sigma = 50 \times 10^{-5} \text{(mho)/cm}$

(OR)

15. Classify the modes of propagation based on frequency. Explain any one of the propagation method.

D4

Marks: 50x1M = 5M

Marks: 4Qx5M = 20M

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - I Semester - II Mid Term Examinations

(R16ECE1108) ANTENNAS AND WAVE PROPAGATION - (Electronics & Communication Engineering)

Duration: 90Mins Date: 31.10.2019 FN Max Marks: 25M

Section – A

Answer \underline{All} the questions

- 1. Define zoning.
- 2. List out the types of arrays.
- 3. Explain about the pattern multiplication.
- 4. Define duct propagation.
- 5. Select the frequency range in sky wave propagation.

Section – B

Answer any <u>FOUR</u> questions

- 6. Explain about paraboloidal reflector antenna with neat diagram.
- 7. Explain about the directivity measurement using any method.
- 8. Construct and derive maxima, minima and half power point directions for EFA.
- 9. a) Compare the types of arrays?
 - b) A uniform linear array consists of 16 isotropic point sources with a spacing of \Box /4. Draw the field pattern using pattern multiplication?
- 10. Explain about the modes of propagation.
- 11. Discuss a) Topospheric propagation b) Multi-hop propagation c) M-curves.

BR-16

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

D4

Marks: 50x1M = 5M

Marks: 4Qx5M = 20M

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B. Tech - I Semester - I Mid Term Examinations

(R16ECE1108) ANTENNAS AND WAVE PROPAGATION - (Electronics & Communication Engineering)

Duration: 90Mins Date: 27.08.2019 FN Max Marks: 25M

Section – A

Answer All the questions

- 1. Explain the different types of patterns in antennas.
- 2. Classify the antenna field zones.
- 3. Construct the helical antenna.
- 4. What are the types of horns?
- 5. Compare the merits and demerits of MSA.

Section - B

Answer any FOUR questions

- 6. Explain the following: i) Radiation Intensity ii) Antenna Temperature iii) Effective aperture.
- 7. Solve the expression for electric and magnetic field radiated by the half wave dipole antenna.
- 8. Explain about Retarded Potentials.
- 9. Classify the modes of helical antenna.
- 10. Compare the different types of horn antennas and their performance with sketches.
- 11. What are the characteristics of MSA? Explain in detail.

Marks: 50x1M = 5M

Marks: 40x5M = 20M

D4

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - I Semester - I Mid Term Examinations

(R16ECE1108) ANTENNAS AND WAVE PROPAGATION - (Electronics & Communication Engineering)

Duration: 90Mins Date: 28.08.2018 FN Max Marks: 25M

Section - A

Answer All the questions

- 1. Write the Maxwells equations?
- 2. What is Rr for half wave dipole?
- 3. Draw the neat diagram of pyramidal horn?
- 4. What are the types of horns?
- 5. What are the merits of MSA?

Section - B

Answer any <u>FOUR</u> questions

6. a) Write in detail i) Antenna radiation pattern ii) Resolution iii) Effective aperture.

- b) The radiation resistance of an antenna is 72Ω and loss resistance is 8Ω . What is its directivity and if the power gain is 16?
- 7. a) What is loop antenna? What are the applications of loop antenna?
 - b) Derive the equations for Directivities of small and large loops.
- 8. Draw the diagram of 3 –element Yagi-Uda Array and working principle of Yagi Uda antenna with equations.
- 9. a) With neat sketch, explain the construction and design considerations for pyramidal horns.
 - b) What are the types of horn antennas?
- 10. Draw and explain about the Folded dipole and their characteristics.
- 11. a) Write in detail the features of MSA's.
 - b) What are the demerits of MSA?

BR-16

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

D4

Marks: 5Qx1M = 5M

Marks: 40x5M = 20M

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

III B.Tech - I Semester - II Mid Term Examinations

(R16ECE1108) ANTENNAS AND WAVE PROPAGATION - (Electronics & Communication Engineering)

Duration: 90Mins Date: 02.11.2018 FN Max Marks: 25M

Section – A

Answer *All* the questions

- 1. What is applications of lens antennas?
- 2. Write the difference between BSA and EFA.
- 3. Draw the radiation pattern for 4-element array using pattern multiplication.
- 4. Define MUF.
- 5. Write the relation between MUF and skip distance.

Section - B

Answer any FOUR questions

- 6. Draw the neat diagram of non metallic dielectric lenses and write in detail.
- 7. a) What is principle of pattern multiplication?
 - b) What are the features of binomial arrays?
- 8. Derive the expression for the far field pattern of an array of two isotropic point sources at equal amplitude and phase.
- 9. Write in detail about the pattern measurement using any method with neat diagrams.
- 10. a) Define and specify the frequency ranges of Ground wave, Space wave and Sky wave propagation.
 - b) What are the modes of wave propagation?
- 11. Define the terms i) MUF ii) Skip distance iii) OF iv) Critical frequency v) Ray path.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 12(f)) of UGC Act 1950)

III B. Tech

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 12(f)) of UGC Act 1950)

III B. Tech

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 12(f)) of UGC Act 1950)

III B. Tech

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 12(f)) of UGC Act 1950)

III B. Tech

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 1950)

III B. Tech

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 1950)

III B. Tech

(An Autonomous institution under UGC, New Delhi)(Recognized under 2(f) and 1950)

(Electronics of Supplied Supplied Under UGC)

(Electronics of UGC)

(Interpolation of

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) - Recognized under 2(f) and 12(B) of UGC Act 1956

B. Tech I Semester (SUPPL.) End Examinations March - 2021 ANTENNAS AND WAVE PROPAGATION

15/03/2021

(Electronics and Communication Engineering)

Day- 3 (FN)

Duration: 3 Hrs

Marks: 50x14M = 70M

Answer FIVE questions (Treat Q.No.11 as a single question).

1. a) Define directivity and explain the different techniques to estimate directivity.

b) Derive the various field components radiated from circular aperture and also find beamwidth and effective area?

(OR)

a) Calculate the radiation efficiency of a short dipole which is 245 m long and it has 2. . $R_{loss}=1.5\Omega$.

Explain the radiation mechanism from dipoles.

UNIT-II

 a) Explain in detail the working principle of Helical antenna in 3.

i) Normal mode.

ii) Axial mode.

b) Find the directivity of 10 turn helix antenna having pitch angle 100, circumference C equal to λ.

a) Explain the designing of 5-element yagi-uda antenna?

b) Design a five turn helical antenna which at 400MHz operates in the normal mode. The spacing between turns is \$\lambda 50\$. It is desired that the antenna possesses circular polarization. Determine the circumference of the helix and the overall length of the entire helix.

a) Discuss the design of a microstrip enterna. 5.

b) Derive the field gain of a flat sheet corner reflector.

a) Describe the cassegrain method of feeding a parabolic reflector antenna

b) Discuss the geometry of Non-metallic Dielectric lenses. /

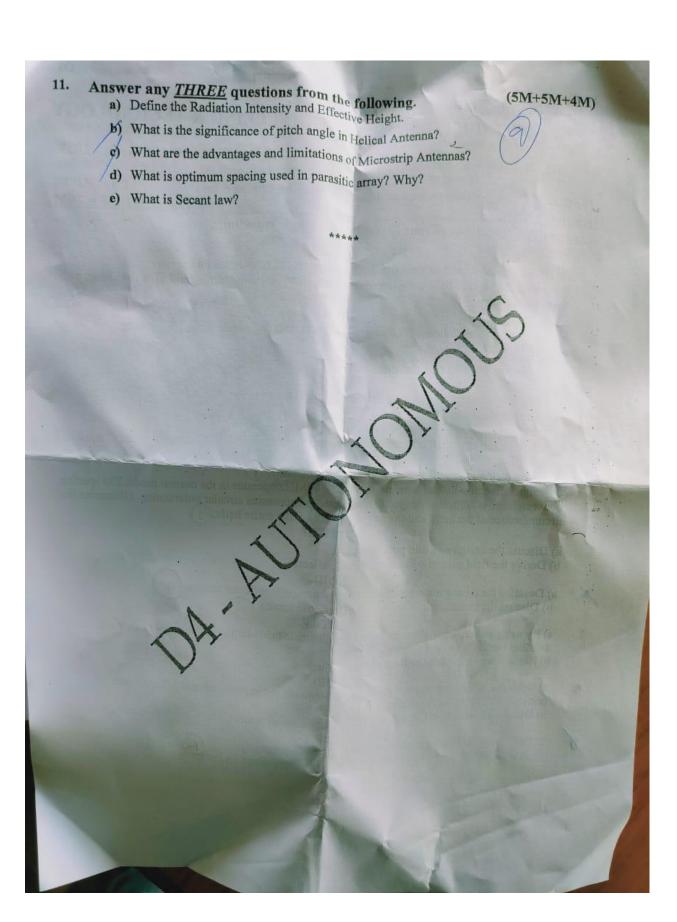
UNIT-IV

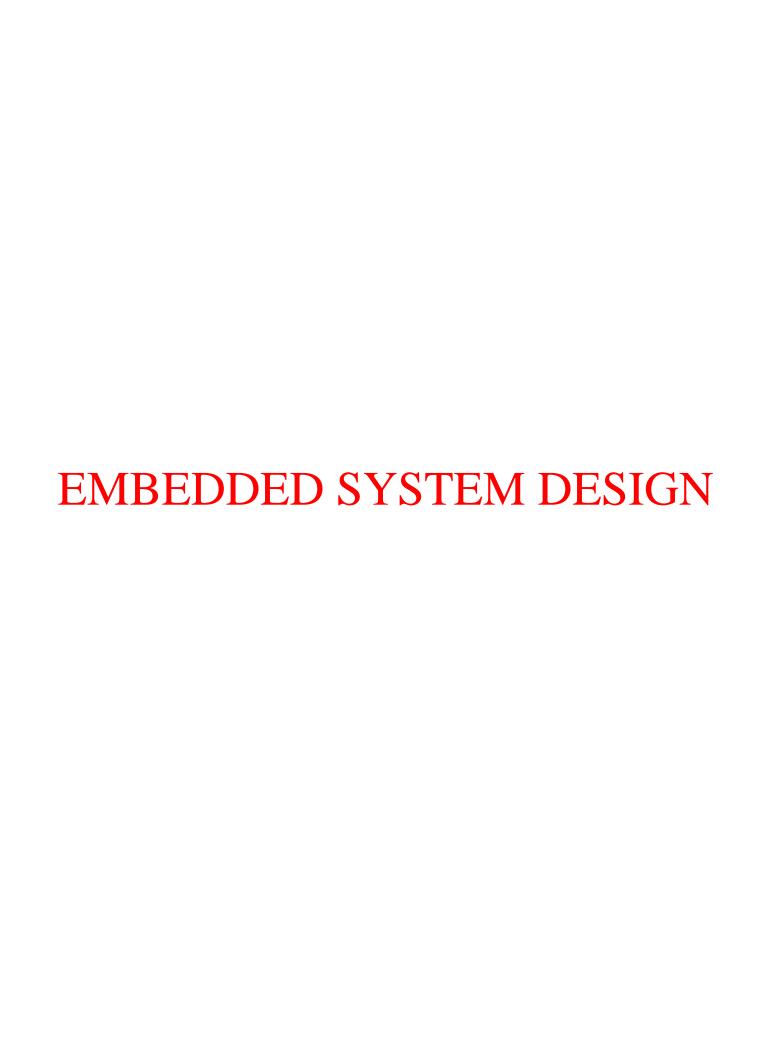
a) By using pattern multiplication technique, Estimate the radiation pattern of N=3 element, d=1/2 of bipomial array Antenna.

b) Explain the Gam Measurement 3-antenna method.

Draw the radiation pattern of 8 - isotropic elements fed in phase, spaced 1/2 apart with the principle of pattern multiplication. (4

b) Discuss in detail about arrangements for Pattern Measurement.


UNIT-V


a) Derive the field strength equation in a space wave propagation.

b) Define MUF and Critical frequency. Derive the expressions for the same.

a) Describe the troposphere and explain how tropospheric ducts can be used for microwave propagation.

b) Explain wave tilt effect in ground wave propagation.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 1 0 3

Professional Elective - II (R18ECE3221) Embedded System Design

Course Objectives:

For embedded systems, the course will enable the students to:

- Understand the basics of an embedded system
- Program an embedded system
- To learn the method of designing an Embedded System for any type of applications.
- To understand operating systems concepts, types and choosing RTOS.
- Design, implement and test an embedded system.

UNIT -I:

Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT-II:

Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT -III:

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT-IV:

RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

UNIT-V:

Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3221& Embedded system Design

Prepared on

Rev1:

Page: 1 of 8

Academic Year: 2020-21 Year/Sem./Section III/II/A&B&C&D

Faculty Name & Designation D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

Unit/		Book Reference		ge (s)	Teaching	Proposed No.	Actual Date of	
Item No.	Topic (s)	Book Reference	From	То	Methodology	of Periods	Handled	CO/RBT
110.			UNI	T – I		l		
I	INTRODUCTION	N TO Embedded S	ystems			12		
			4		Black board			CO-1, L1
1.1	Definition of Embedded Systems	T1,R1,R2	3			02	22/3/21,23/3/21	
			1	4				
1.2	Embedded Systems /General computing systems	T1	4	5	Black board	01	24/3/21	CO-1,L2
					Black board			CO-1,L2
1.3	History of Embedded systems	T1,R3	5	6		01	25/3/21	
1.5	Thistory of Embedded Systems	11,10	42	43			23/3/21	
			7		Black board			CO-1,L4
1.5	Classification	T1,R1	52	53		02	26/3/21,30/3/21	
		T1	7	8	Presentation			CO-1,L3
1.6	Major applications areas	R1	27	28		02	31/3/21,1/4/21	
		R3	44	69				
1.7	Purpose of Embedded systems	T1	8	11	Black board	01	6/4/21	CO-1,K5
1.0	Characteristics and quality attributes of	T1	72	79	Black board	02	5/4/01 0/4/01 0/4/01	CO-1,K6
1.8	embedded systems	R2	19	24		03	7/4/21,8/4/21,9/4/21	
	Review	Sig	gnature (•		

Unit/ Item No.	Topic (s)	Book Reference	Page (s)		Teaching Methodology	Proposed No. of Periods	Actual Date of Handled	CO/RBT
			UNIT	Γ –II				
П	Typical Ember	16						
2.1	Core of the Embedded Systems	T1	17		Black board	01	12/4/21	CO-2,K2
2.2	General purpose and Domain specific processors	T1 R1 R2	18 5 9	25 10 12	Black board	02	15/4/21,20/4/21	CO-2,K2
2.3	ASIC'S	T1 R2	26 276	277	Presentation	01	22/4/21	CO-2,K3
2.4	PLD'S	T1 R1	26 277	28 280	Presentation	01	23/4/21	CO-2,K2
2.5	Commercial Off the shelf components(COTS)	T1	28		Black board	01	27/4/21	CO-2,K2

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title

R18ECE3221& Embedded system Design

Prepared on

Rev1:

Page: 2 of 8

Academic Year: 2020-21 Year/Sem./Section III/II/A&B&C&D

Faculty Name & Designation D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

2.6	Memory:ROM ,RAM	T1 R1 R2	28 106 112	32 109 125	Black board	02	29/4/21,3/5/21	CO-2,K4
2.7	Memory according to the type of interface	T1	32	33	Black board	01	5/5/21	CO-2,K2
2.8	Memory shadowing	T1	33		Black board	01	6/5/21	CO-2,K2
2.9	Memory selection for Embedded systems	T1 R1	33 118	35 121	Black board	01	12/5/21	CO-2,K3
2.10	Sensors and Actuators	T1 R2	35 90	44 101	Black board	02	17/5/21,18/5/21	CO-2,K5
2.11	Communication Interface :On board and External communication interface	T1 R1 R2	45 160 166	59 170 175	Black board	03	20/5/21,24/5/21	CO-2,K6
	Review		Signa					

				UNIT- III			
Embedde	d Firmware				08		
Reset Circuit	T1 R1	60	61	Black board	01	25/5/21	CO-3,K2
Brown out protection circuit	T1	61		Black board	01	26/5/21	CO-3,K2
Oscillator circuit	T1	62		Black board	01	27/5/21	CO-3,K2
Real Time clock	T1 R1	62 158	159	Black board	01	10/6/21	CO-3,K2
Watch dog Timer	T1 R1 R2	63 157 88	158 90	Black board	01	11/6/21	CO-3,K3
Embedded Firmware design approaches T1 and Development Languages R1		302 235	318 28	Black board	03	15/6/21,16/6/21,18/6/2	CO-3,K4
Review Signature					f the HOD/Coord	linator	·
				UNIT-IV			
IV RTOS bas	ed Embedde	d syster	n Desig	n		10	

(Regulation :R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 3 of 8

Sub. Code & Title	R18ECE3221& Embedded system Design							
Academic Year: 2020	-21	Year/Sem./Section	III/II/A&B&C&D					
Faculty Name & Design	gnation	D.SANDHYA RANI, AP/ECE ,Dr.P.RAMESH , P/ECE						

		T1	382	386	Presentation			CO-4,K2
4.1	Operating System Basics	R1	351	370	Tresentation	0.2	21/5/21 22/5/21 22/5/21	CO 4,112
4.1	Operating System Basics					03	21/6/21,22/6/21,23/6/21	
		R3	202	222				GG 4 ***
		T1	386	390	Presentation			CO-4,K2
4.2	Types of operating Systems	R1	370	384		01	28/6/21	
		R3	211	222				
		T1	390	402	Black board			CO-4,K4
4.3	Tasks,Process, and Threads	R1	305	314		02	20/6/21 20/6/21	
1.5	Tuskis, 17000ss, und Timeuds	R3	222	228		02	29/6/21,30/6/21	
		R4	137	153				
1.1	Multipuration and Multipuline	T1	402	404	Black board			CO-4,K5
4.4	Multiprocessing and Multitasking	R3	224	404		01	1/7/21	
		T1	404	422	Black board			CO-4,K6
4.5	Task scheduling	R1	385	401				
		R3	226	241		03	2/7/21,5/7/21,7/7/21	
		R4	253	259				
	Review	Signature o	f the H(DD/Coo	rdinator			
	<u> </u>			NIT-V				
V	Task Comm	unication				14		
	2401 001111	T1	426	433	Black board	14		CO-5,K2
		R1	339	341	Diack board			CO 3,112
5.1	Shared Memory	R3	241	246		02	8/7/21,9/7/21	
				240				
		R4	181					
			100	400	D1 1 1 1			CO 5 170
		T1	433	439	Black board			CO-5,K2
5.2	Message passing	R1	335	339	Black board	02	12/7/21.13/7/21	CO-5,K2
5.2	Message passing	R1 R3	335 241	339 246	Black board	02	12/7/21,13/7/21	CO-5,K2
5.2	Message passing	R1 R3 R4	335 241 176	339 246 180		02	12/7/21,13/7/21	
5.2	Message passing Remote procedure call and Sockets	R1 R3 R4	335 241 176 439	339 246 180 442	Black board Black board	02	12/7/21,13/7/21 14/7/21	CO-5,K2
		R1 R3 R4 T1 R1	335 241 176 439 341	339 246 180		01	14/7/21	
5.3 5.4	Remote procedure call and Sockets Task synchronization	R1 R3 R4 T1 R1	335 241 176 439 341 442	339 246 180 442	Black board			CO-5,K2
5.3	Remote procedure call and Sockets	R1 R3 R4 T1 R1 T1	335 241 176 439 341 442 443	339 246 180 442 345	Black board	01	14/7/21	CO-5,K2
5.3 5.4	Remote procedure call and Sockets Task synchronization	R1 R3 R4 T1 R1 T1 R1 R3	335 241 176 439 341 442 443 255	339 246 180 442 345 456 263	Black board Black board Black board	01	14/7/21 15/7/21	CO-5,K2 CO-6,K1 CO-6,K4
5.3 5.4	Remote procedure call and Sockets Task synchronization	R1 R3 R4 T1 R1 T1	335 241 176 439 341 442 443	339 246 180 442 345	Black board	01	14/7/21 15/7/21	CO-5,K2

(Regulation:R18)

Department of Electronics and Communication Engineering

Prepared on Rev1:
Page: 4 of 8

Sub. Code & Title	R18ECE3221& Embedded system Design				
Academic Year: 2020-	Year/Sem./Section III/II/A&B&C&D				
Faculty Name & Desig	gnation	D.SANDHYA RANI, P/ECE	AP/ECE ,Dr.P.RAMESH ,		

	Review	Signature of the HOD/Coordinator						
5.8	How to choose an RTOS	R1	478 408	480 473	Black board	02	27/7/21,29/7/21	CO-6,K5
5.7	Device drivers	T1 R3	476 246	478 250	Black board	01	26/7/21	CO-5,K2

(Regulation :R16)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3221& Embedded system Design

Academic Year: 2020-21 Year/Sem./Section III/II/A&B&C&D

Faculty Name & Designation | D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH,

Prepared on

Rev1:

Page: 5 of 8

P/ECE

LIST OF TEXT BOOKS AND REFERENCES

Text Books:

T1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

Reference Books:

- R1. Embedded Systems Raj Kamal, TMH.
- R2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- R3. Embedded Systems Lyla, Pearson, 2013
- R4. An Embedded Software Primer David E. Simon, Pearson Education.

Web links

- w-1. https://www.elprocus.com/real-time-applications-of-embedded-systems/
- w-2. https://www.javatpoint.com/peripheral-devices#
- w-3. https://www.embien.com/blog/embedded-system-design-memory-selection/
- w-4. https://techdifferences.com/difference-between-sensors-and-actuators.html
- w-5. https://www.embedded.com/introduction-to-watchdog-timers/
- w-6. https://www.embeddedtutor.com/2019/02/watchdog-timer-in-embedded-system.html
- w-7. https://www.cis.upenn.edu/~lee/06cse480/lec-into_to_prog_embedded_systems.pdf
- w-8. https://igramali.medium.com/role-of-rtc-real-time-clock-in-embedded-devices-35dbd2e8f9e7
- w-9. https://www.tutorialspoint.com/operating_system/index.htm
- w-10. https://www.guru99.com/real-time-operating-system.html

(Regulation:R18)

Department of Electronics and Communication Engineering

Rev1: Page: 6 of 8

Prepared on

age. o o

Sub. Code & Title R18ECE3221& Embedded system Design

Academic Year: 2020-21 Year/Sem./Section III/II/A&B&C&D

Faculty Name & Designation D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

S.No	Topics	Proposed Actions	Date	Resource Person/Mode	POs	PSOs
1.	Designing of embedded system using any microcontroller	PPT Presentation		N.C Sendhilkumar	PO1,PO2,PO3,PO5	PSO1,PSO2,PSO3
2.	Integration and Testing of Embedded Hardware and firmware	PPT Presentation		N.C Sendhilkumar	PO1,PO2,PO4,PO5	PSO1,PSO2,PSO3
3.	Introduction to Embedded system Design with VxWorks and MicroC/OS-II RTOS	PPT Presentation		N.C Sendhilkumar	PO1,PO2,PO3,PO5	PSO1,PSO2,PSO3

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3221& Embedded system Design

Academic Year: 2020-21 Year/Sem./Section III/II/A&B&C&D

Faculty Name & Designation D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

Prepared on

Rev1:

Page: 7 of 8

Assignment

S.No.	Assignment Questions	Course Outcome	Books To be Referred	Date Of Announcement	Date Of Submission
1	Compare the General purpose computing system and Embedded system? (K2-Understanding)	CO-1	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
2	Identify the operational quality attributes of Embedded systems? (K3-Apply)	CO-1	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
3	Explain the structural units in a General purpose processors? K2- Understanding)	CO-2	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
4	Explain external communication Interfaces?(K5-Evalauting)	CO-2	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
5	Extend the Watchdog Timer in embedded systems?(K2-Understanding)	CO-3	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3221& Embedded system Design Sub. Code & Title

Year/Sem./Section III/II/A&B&C&D Academic Year: 2020-21

D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE Faculty Name & Designation

Prepared on

Rev1:

Page: 8 of 8

6	Compare the embedded firmware development languages?(K4-Anzalying)	CO-3	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
7	Illustrate the Memory management and time management of operating systems? ?(K2-Understand)	CO-4	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
8	Contrast the types of Non Preemptive scheduling algorithms? K4-Analyzing)	CO-4	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
9	What is Socket & Explain about Sockets? K2-Understand)	CO-5	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21
10	Explain the RTOS for the embedded systems?(K5-Evaluating)	CO-6	Introduction to Embedded Systems by SHIBU	17/5/21	24/5/21

SELF STUDY TOPICS						
S.No.	Topics	Books & Journals	Course Outcomes			
1.	Analog Electronic components and Digital Electronic components	Introduction to Embedded Systems by SHIBU	CO-2,CO-3			
2.	PCB Layout Design & Fabrication	Introduction to Embedded Systems by SHIBU	CO-2			

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3221& Embedded system Design

(Regulation:R18)

Prepared on Rev1:

Page: 1 of 5

Academic Year: 2020-21 Year/Sem III/II

Sub. Code & Title

Faculty Name & Designation D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

OUESTION BANK WITH BLOOMS TAXONOMY LEVEL (BTL)

(1. Remembering 2. Understanding 3. Applying 4. Analyzing 5. Evaluating 5. Creating)

UNIT-1 Introduction to Embedded Systems					
	AMA DIZO OLICOTIONO	D/D I	Course		
-	2MARKS QUESTIONS	BT Level	Outcome		
1.	What is embedded system? (R14-Nov/Dec-2017) (R16-December-2019)	1	CO1		
2.	List out any four difference of Microprocessor and Microcontroller?	1	CO1		
3.	What is microprocessor?	1	CO1		
4	What is microcontroller?	1	CO1		
5.	Define AGC?	1	CO1		
6.	Classify the embedded Systems?	2	CO1		
7.	Identify the purpose of embedded systems?	3	CO1		
8	Categorize the applications of embedded systems? (R16-March-2021) (R16-December-2019)	4	CO1		
9	List out the quality attributes of embedded systems?	4	CO1		
10	Discuss the characteristics of embedded systems?	2	CO1		
	10 MARKS QUESTIONS				
1.	What is embedded system & Classify of embedded system based on generation? (R14-Nov/Dec-2017) (R16-December-2019)	2	CO1		
2.	Explain about the AGC (Apollo Guidance Computer)	2	CO1		
3.	Compare the General purpose computing system and Embedded system? (R14-Nov/Dec-2017)	2	CO1		
4.	Interpret the characteristics of Embedded System?	2	CO1		
5.	Classify of embedded system based on Performance And Complexity?	2	CO1		
6.	Explain the purpose of embedded systems? (R16-December-2019)	2	CO1		
7.	Categorize the major Application Area of Embedded System?	4	CO1		
8	Classify the embedded systems based on deterministic behavior and triggering?	4	CO1		
9	Identify the operational quality attributes of Embedded systems? (R13-Mar-2017) (R14-Nov/Dec-2017) (R16-March-2021)	3	CO1		
10	Explain the non operational quality attributes of embedded systems? (R16-March-2021)	5	CO1		

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3221& Embedded system Design

(Regulation:R18)

Prepared on Rev1:

Page: 2 of 5

Academic Year: 2020-21 Year/Sem. III/II

Sub. Code & Title

Faculty Name & Designation | D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

	Unit -II : Typical Embedded System						
	2 MARKS QUESTIONS						
1.	What is PLD	1	CO2				
2.	What is ROM memory	1	CO2				
3.	What is RAM memory	1	CO2				
4.	Classify the ROM	2	CO2				
5.	What is ASIC?	1	CO2				
6.	Demonstrate the components of embedded systems?	2	CO2				
7.	Identify the sensors and actuators of embedded systems?	3	CO2				
8	Make use of LED,LCD	3	CO2				
9	Make use of stepper motor	3	CO2				
10	Explain the communication interfaces	5	CO2				
	10 MARKS QUESTIONS						
1	Explain the structural units in a general purpose processors?	2	CO2				
2.	Compare the RISC and CISC processors?	2	CO2				
3.	Explain about Memory devices in a system (R16-March-2021) a) ROM b) RAM	2	CO2				
4.	Interpret the Memory selection for an Embedded system? (R16-March-2021)	2	CO2				
5.	Contrast the microprocessor and microcontroller?	2	CO2				
6.	Illustrate the concept of Memory shadowing? (R14-Nov/Dec-2017) (R16-December-2019)	2	CO2				
7.	Examine the different Sensors and actuators? (R16-December-2019)	4	CO2				
8	Survey the PLD and ASIC? (R16-December-2019)	4	CO2				
9	Examine the internal communication interfaces? (R16-March-2021)	4	CO2				
10	Explain external communication Interfaces? (R14-Nov/Dec-2017)	5	CO2				
	Unit – III : Embedded Firmware						
	2 MARKS QUESTIONS						
1.	What is Reset circuit?	2	CO3				
2.	Demonstrate the oscillator circuit for embedded systems?	2	CO3				

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3221& Embedded system Design

(Regulation:R18)

Prepared on Rev1:

Page: 3 of 5

Academic Year: 2020-21 Year/Sem. III/II

Sub. Code & Title

Faculty Name & Designation | D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

3	What is Brown out protection circuit?	2	CO3
4.	What is Real time clock?	2	CO3
5	Demonstrate the Watchdog timer (R16-December-2019)	2	CO3
6.	Compare the embedded firmware design approaches?	2	CO3
7	Choose the development languages in embedded firmware?	3	CO3
8.	List out any five differences of low level language and High level language?	4	CO3
9.	Examine the embedded firmware design approaches?	4	CO3
10.	Build the reset circuit?	6	CO3
	10 MARK QUESTIONS		
1.	Explain reset circuit with circuit diagram? (R14-Nov/Dec-2017) (R16-December-2019)	2	CO3
2	Demonstrate Brown-out protection circuit with circuit diagram? (R14-Nov/Dec-2017) (R16-March-2021) (R16-December-2019)	2	CO3
3.	What is oscillator? Interpret the oscillator unit? (R14-Nov/Dec-2017) (R16-March-2021)	2	CO3
4	Illustrate the Real Time Clock in embedded systems?	2	CO3
5.	Extend the Watchdog Timer in embedded systems?	2	CO3
6	Explain about Embedded firmware design approaches? (R14-Nov/Dec-2017) (R16-March-2021)	2	CO3
7.	Compare the embedded firmware development languages? (R16-March-2021) (R16-December-2019)	4	CO3
8.	Distinguish between embedded firmware design approaches?	4	CO3
9.	Examine the conventional approach (super loop approach) for firmware design?	4	CO3
10.	Compare the high level and Low level language?	5	CO3
	Unit-IV: RTOS Based Embedded system design		
	2 MARKS QUESTIONS		
1.	Define operating system? (R14-Nov/Dec-2017)	2	CO4
2.	Define real time operating system? (R14-Nov/Dec-2017)	2	CO4
3.	What is Kernel?	2	CO4
4.	List out types of Operating Systems? (R16-December-2019)	2	CO4
5.	Name then basic functions of real time Kernel?	2	CO4
6.	Define process, task, thread?	2	CO4

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3221& Embedded system Design

(Regulation:R18)

Prepared on Rev1:

Page: 4 of 5

Academic Year: 2020-21 Year/Sem. III/II

Sub. Code & Title

Faculty Name & Designation D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

	,							
8	Identify the Throughput and CPU utilization?	3	CO4					
9	Contrast the turn -around time, Waiting Time, Response Time?	4	CO4					
10	Explain Task Scheduling?	5	CO4					
	10 MARK QUESTIONS							
1.	Explain Operating system architecture? 2 CO4							
2.	Compare the Kernel space and user space?	2	CO4					
3.	Extend the types of operating systems?	2	CO4					
4.	Illustrate the Memory management and time management of operating systems?	2	CO4					
5.	Summarize the Process, task and Thread? (R16-December-2019)	2	CO4					
6.	Interpret the structure of Process in operating systems?	2	CO4					
7.	Identify the Multiprocessing and multitasking? (R14-Nov/Dec-2017) (R16-December-2019)	3	CO4					
8	Compare the types of multitasking?	4	CO4					
9	Contrast the types of Non Preemptive scheduling algorithms? (R14-Nov/Dec-2017) (R16-March-2021)	4	CO4					
10	Discuss the Preemptive scheduling algorithms? (R14-Nov/Dec-2017) (R16-March-2021)	6	CO4					

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3221& Embedded system Design

(Regulation:R18)

Prepared on Rev1:

Page: 5 of 5

Academic Year: 2020-21 Year/Sem. III/II

Sub. Code & Title

Faculty Name & Designation | D.SANDHYA RANI, AP/ECE, Dr.P.RAMESH, P/ECE

	Unit-V: Task communication		
	2 MARKS QUESTIONS		
1.	Define Cooperating Processes and Competing Processes?	1	CO5
2.	What is task communication?	1	CO5
3.	What is shared memory?	1	CO5
4.	Define message passing?	1	CO5
5.	List out task synchronization techniques?	1	CO5
6.	Illustrate the task synchronization Issues?	2	CO5
7.	Examine the starvation, Deadlock, Live lock?	4	CO5
8	Interpret the sockets?	4	CO5
9	Survey the device drivers?	4	CO5
10	Choose an RTOS for an embedded system? (R14-Nov/Dec-2017) (R16-December-2019)	6	CO5
	10 MARK QUESTIONS		
1.	Explain about sharing of memory? (R14-Nov/Dec-2017) (R16-March-2021)	2	CO5
2.	Interpret the Message passing? (R14-Nov/Dec-2017)	2	CO5
3.	Discuss about Remote procedure call and sockets? (R16-December-2019)	2	CO5
4	What is Socket & Explain about Sockets?	2	CO5
5.	Illustrate the Priority inversion?	2	CO6
6.	Discuss about Task Communication issues? (R14-Nov/Dec-2017)	2	CO6
7	Survey the Dining Philosophers problem and Producer	4	CO6
8	Examine Task synchronization techniques? (R14-Nov/Dec-2017) (R16-December-2019)	4	CO6
9	Analyze the device drivers? (R16-March-2021)	4	CO5
10	Explain the RTOS for the embedded systems? (R14-Nov/Dec-2017)	5	CO6

D4

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)(Recognized under 2(f) and 12(B) of UGC Act 1956)

IV B. Tech - I Semester - End Examinations (Regular) December-2019 R16ECE1121 - EMBEDDED SYSTEMS DESIGN

(Electronics and Communication Engineering)

Duration: 3 Hrs

09.12.2019

Max Marks: 70M

Section - A

Answer All the following questions

Marks: 5Qx4M = 20M

- 1. Define Embedded System and write its applications.
- 2. What is meant by Memory Shadowing?
- 3. Discuss the importance of watchdog timer.
- 4. Write the names of the operating systems.
- 5. How to choose the RTOS?

Section - B

Answer any FIVE questions choosing at least one from each Unit

Marks: 5Qx10M = 50M

UNIT-I

6. Explain the purpose of Embedded System in detail with examples.

(OR) '

7. Explain the classification of Embedded system based on generations.

INT IL

8. Explain in detail about the ASIC and Philes

OR

9. Discuss in detail about Sensors Actuators and I/O Subsystem.

JUNIT - III

10. Illustrate about (i) Reset circuit (ii) Brown and Protection Circuit

(QR)

11. Explain the importance about development languages for Embedded system.

UNIT-IV

12. Discuss in detail about the Task, Process and Threads.

(OR)

13. Summarize briefly about Multiprocessing and Multitasking.

UNIT-V

14. Explain briefly about the Remote Procedure Call and Sockets.

(OR)

15. Demonstrate about Task Synchronization Techniques.

Scanned with CamScanner

P.T.O.

11. Answer any THREE questions from the following.

(5M+5M+4M

- (A) State the advantages and disadvantages of embedded system.
- (b) Define actuator. Explain its role in embedded system design
- e) What is pseudo-ops.? What is the use of it in assembly language programming?
- dy Discuss the following : task control block and process control block,
- e) How to handle deadlocks?

DA. AUTONOMOUS

Subject Code: R14ECE1121

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12(B) of UGC Act 1956

IV B.Tech - I Semester -End Examinations (Regular) Nov/Dec - 2017 EMBEDDED SYSTEMS DESIGN

(Electronics & Communication Engineering)

Duration: 3 Hrs

Max Marks: 70M

Section - A

Answer All the following questions

Marks: 5x4 = 20M

- Define Embedded system with some applications.
- 2. Discuss about Memory Shadowing.
- 3. What are fundamental steps to HEX File creation?
- 4. Differentiate Operating system and Real Time Operating System.
- 5. Discuss about how to choose an RTOS.

Section - B

Answer any FIVE questions choosing at least one from each Unit

Marks: 5x10 = 50M

UNIT-I

Explain in detail about Classification of embedded systems.

(OR)

Explain about Quality Attributes of embedded system.

UNIT - II

Explain about following concept in External Communication interface
 USB ii) IrDA iii) ZigBec

(OF

Explain in detail about General Purpose and Domain specific processors.

UNIT - III

10. Explain about following below terms

i)Reset Circuit ii) Brown-o

ii) Brown-out circuit iii) Oscillator Unit

OR

11. Explain in detail about embedded firmware design approaches.

UNIT - IV

12. Define task scheduling. Explain about task scheduling.

(OR)

13. Differentiate Multiprocessing and Multitasking.

UNIT-V

Explain below terms in Task Communication
 Shared Memory
 Message passing.

(OR)

15. Explain Issues Task communication/Synchronization.

Marks: 5x1 = 5M

Marks: 4x5 = 20M

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

IV B.Tech - I Semester - I Mid Term Examinations

(R14ECE1121) EMBEDDED SYSTEMS DESIGN

(Electronics & Communication Engineering)

Duration: 90Mins Date: 30.08.2017 Max Marks: 25M

Section - A

Answer All the questions

- 1. What is microcontroller?
- 2. List out memories of embedded systems.
- 3. What is memory shadowing?
- 4. Write a short notes on Actuators.
- 5. What is Real time clock?

Section - B

Answer any FOUR questions

- 6. Describe the Purpose of Embedded System.
- 7. Explain about quality attributes of Embedded systems.
- 8. Discuss about Sensors.
- 9. Explain about PLDS.
- 10. Explain about communication Interfaces.
- 11. Explain Brown-out protection circuit with circuit diagram.

BR-14 SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution Under 2(f) and 12(B) of UGC Act 1956, New Delhi)

Marks: 4x5 = 20M

D4

IV B.Tech - I Semester - II Mid Term Examinations

(R14ECE1121) EMBEDDED SYSTEMS DESIGN

(Electronics & Communication Engineering)

Duration: 90Mins Date: 08.11.2017 Max Marks: 25M

Section - A

Answer All the questions Marks: 5x1 = 5M

1. Discuss about Watchdog timer.

- 2. What is process?
- 3. Discuss about Threads.
- 4. Write about task synchronization.
- 5. Write about device drivers.

Section - B

Answer any FOUR quest

- 6. Explain about embedded firmware development languages.
- 7. Explain about multiprocessing.
- 8. Explain about multitasking.
- 9. Explain task scheduling.
- 10. Discuss about Task Communication issues.
- 11. What is an RTOS and How to choose an RTOS?

Consumer Electronics

ELECTRONICS & COMMUNICATION ENGINEERING

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R18ECE3273) Consumer Electronics

Course Objectives:

- Students are able to understand consumer electronics fundamentals, microprocessors and microcontrollers, energy management and intelligent building perspective. Audio systems, Display systems, video systems and recording systems
- Student is able to demonstrate smart Home, Home Virtual Assistants, Home security systems and types of sensors RFID Home, kitchen electronics and smart alarms, smart toilet, smart floor and smart locks
- Students are able to discuss cordless telephones, Fax machines PDA's TABLETs Smart phones and Smart watches. Video conferencing systems, Internet enabled systems, Wi-Fi, Li-Fi, GPS and Tracking systems

UNIT I:Consumer Electronics Fundamentals - History of Electronic Devices- Vacuum Tubes, Transistors, Integrated Circuits- Moorse Law, Semiconductor Devices, Diodes, Rectifiers, Transistors, Logic Gates, Combinational Circuits, ADC, DAC and Microprocessors, Microprocessor Vs Microcontrollers, Microcontrollers in consumer electronics, Energy management, Intelligent Building Perspective.

UNIT II: Entertainment Electronics - Audio systems: Construction and working principle of : Microphone, Loud speaker, AM and FM receiver, stereo, 2.1 home theatre, 5.1 home theatre . Display systems: CRT, LCD, LED and Graphics displays Video Players : DVD and Blue RAY. Recording Systems: Digital Cameras and Camcorders.

UNIT III: Smart Home - Technology involved in Smart home, Home Virtual Assistants- Alexa and Google Home. Home Security Systems - Intruder Detection, Automated blinds, Motion Sensors, Thermal Sensors and Image Sensors, PIR, IR and Water Level Sensors.

UNIT IV: **Home Appliances** - Home Enablement Systems: RFID Home, Lighting control, Automatic Cleaning Robots, Washing Machines, Kitchen Electronics- Microwave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart alarms, Smart toilet, Smart floor, Smart locks.

UNIT V: **Communication Systems** - Cordless Telephones, Fax Machines, PDAs- Tablets, Smart Phones and Smart Watches. Introduction to Smart OS- Android and iOS. Video Conferencing Systems- Web/IP Camera, Video security, Internet Enabled Systems, Wi-Fi, IoT, Li-Fi, GPS and Tracking Systems, Contemporary Topics.

TEXT BOOKS:

- 1. Thomas L Floyd "Electronic Devices" 10th Edition Pearson Education Asia 2018.
- 2. Philp Hoff "Consumer Electronics for Engineers" Cambridge University Press.1998.
- 3. Jordan Frith, "Smartphones as Locative Media", Wiley. 2014.
- 4. Dennis C Brewer, "Home Automation", Que Publishing 2013.
- 5. Thomas M. Coughlin, "Digital Storage in Consumer Electronics", Elsevier and Newness 2012.

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 Consumer Electronics

Prepared on

Rev1:

Page: 1 of 6

Academic Year: 2020-21 Year/Sem./Section III/II

Faculty Name & Designation | N.Tamilarasan Professor

		T	T		T	1 _	1	
Unit/ Item No.	Topic (s)	Book Reference	From	ge (s) To	Teaching Methodology	No. of Periods	Actual Date of Handled	CO/RBT
		UNIT – I		1	1	T	I	
I	Consumer Electronic	s Fundament	als	T	T	10		
1.1	History of Electronic Devices- Vacuum Tubes,	W1			Presentation	01	23/03/21	CO1, L2
1.2	Moors'e law Semiconductor Devices, Diodes	T1	43	48	Presentation	01	24/03/21	CO1,L2
1.3	Rectifiers	T1	56	68	Presentation	01	25/03/21	CO1,L2
1.4	Transistors	T1	383 8	82,382, & 411- 15	Presentation	01	26/03/21	CO1,L2
1.5	Logic Gates	W2,			Presentation	01	30/03/21	CO1,L2
1.6	Combinational Circuits	W3			Presentation	01	31/03/21	CO1,L2
1.7	ADC and DAC	W4			Presentation	01	01/04/21	CO1,L2
1.8	Microprocessors, Microprocessor Vs Microcontrollers	T2	635	639	Presentation	01	03/04/21	CO1,L2
1.9	Microcontrollers in consumer electronics	T2	646	654	Presentation	01	06/04/21	CO1,L2
1.10	Energy management, Intelligent Building Perspective.	W5			Presentation	01	07/04/21	CO1,L2
	Review	Signatu	ire of t	he HO	D/Coordinat	or		
Unit/ Item No.	Topic (s)	Book Reference	Paş	ge (s)	Teaching Methodology	Proposed No. of Periods	Actual Date of Handled	CO/RBT
		UNIT –II				ī	1	
II	Entertainment 1	Electronics				13		
2.1	Construction and working principle of Microphone	T2	21	38	video	02	08/04/21 09/04/21	CO2,L3
2.2	Construction and working principle of Loud speaker,	T2	66	84	video	02	12/04/21 15/04/21	CO2,L3
2.3	AM and FM receiver and stereo	T2	367	375	Black board	02	16/04/21 19/04/21	CO2,L3
2.4	2.1 home theatre, 5.1 home theatre	W7			Black board and Video	01	20/04/21	CO2,L3

Prepared on

Rev1:

Page: 2 of 6

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 Consumer Electronics

Academic Year: 2020-21 Year/Sem./Section III/II

Faculty Name & Designation | N.Tamilarasan Professor

None 10 Nethocology Periods of Handled									
2.5 Display systems: CRT and LCD	Item	Topic (s)	Book Reference	,			No. of		CO/RBT
2.5 Display systems: CR1 and LCD			UNIT – I		I	l			
2.6 LED and Graphies displays W6	2.5	Display systems: CRT and LCD	T2,	413	417		02		CO2,L3
2.7 Video Players : DVD and Blue RAY	2.6	LED and Graphics displays	W6				02		CO2,L3
Review Signature of the HOD/Coordinator UNIT- III	2.7	Video Players : DVD and Blue RAY	T3, W8	28	32		01	28/04/21	CO2,L3
Notion Sensors	2.8	Digital Cameras and Camcorders	T3,W9	133	136		02		CO2,L3
No.		Review	Signatu	re of	the HO	D/Coordinat	or		
3.1 Technology involved in Smart home			UNIT- III						
3.1 Technology involved in Smart home W10 Black board 01 3/05/21 CO3.	III	Smart Ho	ome				09		
3.2 Home Virtual Assistants- Alexa W11 Black board 01 CO3.						Black board		3/05/21	CO3,L2
3.3 Google Home W12 Black board 01 CO3.	3.2	Home Virtual Assistants- Alexa	W11			Black board	01	4/05/21	CO3,L2
3.4 Home Security Systems - Intruder Detection, Automated blinds W13 Black board 02 7/05/21 CO3, 3.5 Motion Sensors, Thermal Sensors W14 presentation 02 7/06/21 R06/21 CO3, 3.6 Image Sensors W15 presentation 01 9/06/21 CO3, 3.7 IR and Water Level Sensors W16 presentation 01 10/06/21 CO3, Review Signature of the HOD/Coordinator	3.3	Google Home	W12			Black board	01	5/05/21	CO3,L2
3.5 Motion Sensors, Thermal Sensors W14 presentation 02 8/06/21 CO3, 3.6 Image Sensors W15 presentation 01 9/06/21 CO3, 3.7 IR and Water Level Sensors W16 presentation 01 10/06/21 CO3, Review Signature of the HOD/Coordinator	3.4		W13			Black board	02		CO3,L2
3.6 Image Sensors	3.5	Motion Sensors, Thermal Sensors	W14			presentation	02		CO3,L2
Review Signature of the HOD/Coordinator UNIT-IV	3.6	Image Sensors	W15			presentation	01	9/06/21	CO3,L2
UNIT-IV IV Home Appliances 8 4.1 Home Enablement Systems: RFID Home W29 Presentation 01 11/06/21 CO4, 4.2 Home Enablement Systems: Lighting control W30 6.11 6.14 Presentation 01 14/06/21 CO4, 4.3 Automatic Cleaning Robots W31 6.30 6.58 Presentation 01 15/06/21 CO4,	3.7	IR and Water Level Sensors	W16			presentation	01	10/06/21	CO3,L2
IVHome Appliances84.1Home Enablement Systems: RFID HomeW29Presentation0111/06/21 CO4, CO4, CO4, CO4, CO4, CO4, CO4, CO4,		Review	Sign	nature of	f the HOD)/Coordinator			
4.1 Home Enablement Systems: RFID Home W29 Presentation 01 11/06/21 CO4, 4.2 Home Enablement Systems: Lighting control W30 6.11 6.14 Presentation 01 14/06/21 CO4, 4.3 Automatic Cleaning Robots W31 6.30 6.58 Presentation 01 15/06/21 CO4,			UNIT-IV					l	
4.1 Home Enablement Systems: RFID Home W29 Presentation 01 CO4, 4.2 Home Enablement Systems: Lighting control W30 6.11 6.14 Presentation 01 14/06/21 CO4, 4.3 Automatic Cleaning Robots W31 6.30 6.58 Presentation 01 15/06/21 CO4,	IV	Home Appliances 8							
4.2 Home Enablement Systems: Lighting control W30 6.11 6.14 Presentation 01 CO4. 4.3 Automatic Cleaning Robots W31 6.30 6.58 Presentation 01 15/06/21 CO4.	4.1	Home Enablement Systems: RFID Home	W29			Presentation	01	11/06/21	CO4,L4
<u> </u>	4.2	Home Enablement Systems: Lighting control	W30	6.11	6.14	Presentation	01	14/06/21	CO4,L4
4.4 Washing Machines T2. 670 676 Black board 01 16/06/21 CO4	4.3	Automatic Cleaning Robots	W31	6.30	6.58	Presentation	01	15/06/21	CO4,L4
1 12, 070 070 Diagration 01 10/00/21 CO 1	4.4	Washing Machines	T2,	670	676	Black board	01	16/06/21	CO4,L4

Prepared on

Rev1:

Page: 3 of 6

III/II

(Regulation:R18)

Department of Electronics and Communication Engineering

Year/Sem./Section

Sub. Code & Title R18ECE3273 Consumer Electronics

Faculty Name & Designation N.Tamilarasan Professor

Academic Year: 2020-21

Unit/	m • ()		Pag	ge (s)	Teaching	Proposed	Actual Date	
Item No.	Topic (s)	Book Reference	From	То	Methodology	No. of Periods	of Handled	CO/RBT
		UNIT – I				,		
4.5	Kitchen Electronics- Microwave	Т2	657	668	Presentation	01	17/06/21	CO4,L4
4.7	Dishwasher and Induction Stoves	T2,W18,W19	778	779	Presentation	01	18/06/21	CO4,L4
4.8	Smart Refrigerators and Smart alarms,	Т3,	129	131	Presentation	01	21/06/21	CO4,L4
4.9	Smart toilet, Smart floor and Smart locks	W20,W21			Presentation	01	22/06/21	CO4,L4
	Review	Signature of t	he HO	D/Coor	dinator			
***		UNIT-V						
V	Communication	n Systems		1	1	14	22/27/24	
5.1	Cordless Telephones	T2	602	604	Presentation	01	23/06/21	CO5,L6
5.2	Fax Machines	T2	612	615	Presentation	01	24/06/21	CO5,L6
5.3	PDAs- Tablets	Т3	125	127	Black board	01	25/06/21	CO5,L6
5.4	Smart Phones	Т3	124	125	Black board	01	28/06/21	CO5,L6
5.5	Smart Watches	Т3	129	131	Black board	01	29/06/21	CO5,L6
5.6	Introduction to Smart OS.	W22			Presentation	01	30/06/21	CO6,L5
5.7	Android and iOS	W23			Black board	01	01/07/21	CO6,L5
5.8	Video Conferencing Systems- Web/IP Camera	W24			Presentation	01	02/07/21	CO6,L5
5.9	Video security	W25			Presentation	01	05/07/21	CO6,L5
5.10	Internet Enabled Systems Wi-Fi	W26			Presentation	01	06/07/21	CO6,L5
5.12	ІоТ	W27			Presentation	01	07/07/21	CO6,L5
5.13	Li-Fi	W28			Presentation	01	08/07/21	CO6,L5
5.14	GPS and Tracking Systems,	Т3	162	164	Presentation	01	09/07/21	CO6,L5
5.15	Contemporary Topics				Presentation	01	12/07/21	CO6,L5

(Regulation :R18)

Department of Electronics and Communication Engineering

R18ECE3273 Consumer Electronics

Academic Year: 2020-21 Year/Sem./Section III/II

Faculty Name & Designation | N.Tamilarasan Professor

Unit/			Pag	ge (s)	Teaching	Proposed	Actual Date	
Item No.	Topic (s)	Book Reference	From	То	Methodology	No. of Periods	of Handled	CO/RBT
		UNIT – I						
	Review	Sign	ature of	the HOD	/Coordinator			

LIST OF TEXT BOOKS AND REFERENCES

Text Books:

- T1. Thomas L Floyd "Electronic Devices" 10th Edition Pearson Education Asia 2018...
- T2. Consumer Electronics -S. P. Bali/Pearson

Sub. Code & Title

T3. Thomas M. Coughlin, "Digital Storage in Consumer Electronics", Elsevier and Newness 2012

Weblinks

- w-1. https://www.electronics-notes.com/articles/electronic_components/valves-_tubes/what-is-a-tube-basics-tutorial.php
- w-2. https://www.electronics-tutorials.ws/logic/
- w-3. https://www.electronics-tutorials.ws/combination/comb_1.html/
- w-4. https://www.elprocus.com/analog-to-digital-converter/
- w-5. <a href="https://www.intechopen.com/books/energy-management-systems/energy-management-syste
- w-6. https://www.elprocus.com/ever-wondered-lcd-works/
- w-7. https://en.wikipedia.org/wiki/File:Block Diagram Vitasound.JPG
- w-8. https://www.circuitstoday.com/working-of-dvd-player
- w-9. https://www.circuitstoday.com/working-of-digital-cameras
- w-10. https://home.howstuffworks.com/smart-home.htm
- w-11. and https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html
- w-12. https://www.dailydot.com/debug/what-is-google-home-price-setup
- w-13. https://www.security.org/home-automation/
- w-14. https://robu.in/what-is-temperature-sensor-and-how-does-it-work/
- w-15. https://www.elprocus.com/image-sensor-working-applications
- w-16. https://robu.in/ir-sensor-working/

Prepared on Rev1:

Page: 4 of 6

(Regulation:R18)

Department of Electronics and Communication Engineering

R18ECE3273 Consumer Electronics

Prepared on

Rev1:

Page: 5 of 6

Academic Year: 2020-21 Year/Sem./Section III/II

Sub. Code & Title

Faculty Name & Designation | N.Tamilarasan Professor

https://www.control4.com/blog/345/78-home-automation-ideas w-17. w-18. https://www.baikalservices.com/how-dishwashers-work/ https://www.scienceabc.com/innovation/how-does-an-induction-cooktop-work.html w-19. https://bigthink.com/surprising-science/smart-toilet?rebelltitem=2#rebelltitem2 w-20. w-21. https://www.polymath.com.cn/news/Smart-lock-working-principle-analysis-and-basicworkflow-analysis.html w-22. https://wiki.smartos.org/smartos-virtualization/ w-23. https://www.tutorialspoint.com/android/android_overview.htm https://www.voipsupply.com/how-video-conferencing w-24. w-25. https://www.elprocus.com/electronic-security-system/ https://www.elprocus.com/how-does-wifi-technology-work/ w-26. w-27. https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT https://purelifi.com/lifi-technology/ and https://lifi.co/ and https://www.lifitn.com/imw-28. new https://www.electronicsforu.com/electronics-projects/hardware-diy/rfid-based-securityw-29. system w-30. https://embedur.com/blogsandnews/What-is-inside-Smart-Lighting.html

https://iopscience.iop.org/article/10.1088/1757-899X/577/1/012126/pdf

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 Consumer Electronics

Prepared on

Rev1:

Page: 6 of 6

Academic Year: 2020-21 Year/Sem./Section III/II

Faculty Name & Designation | N.Tamilarasan Professor

CONTENT BEYOND THE SYLLABUS

S.No	Topics	Proposed Actions	Date	Resource Person/Mode	POs	PSOs
1	USB Drive	To get Knowledge	13/07/21	Dr. N.C. Sendhil kumar	PO1, PO2	PSO1, PSO3
2	ATM	To get Knowledge	14/07/21	Dr. N.C. Sendhil kumar	PO1, PO2	PSO1, PSO3
3	Set-upbox	To get Knowledge	15/07/21	Dr. P. Mugunthan	PO1, PO2	PSO1, PSO3
4	Calculator	To get Knowledge	16/07/21	Dr. P. Mugunthan	PO1, PO2	PSO1, PSO3

ASSIGNMENT

S. No.	Assignment Questions	Course Outcome	Books To be Referred	Date Of Announcement	Date Of Submission
1	Explain the Working principle and Block diagram of Smart TV.	CO2	Т3	03/05/21	13/05/21
2	How audio and video information are stored and retrieved from the DVD player?	CO2	Т3	03/05/21	13/05/21
3	How does an image sensor detect and convey information used to make an image	C03	Т3	03/05/21	13/05/21
4	Explain the working model of washing machine and also discuss the speed control and measurement.	C04	Т2	12/07/21	22/07/21
5	Discuss the importance of GPS and tracking system.	C06	T2	12/07/21	22/07/21

	SELF STUDY TOPICS										
S.No.	Topics	Books & Journals	Course Outcomes								
1	DTH	Т3	C03								
2	The Home internet of things	T3	C06								

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 and Consumer Electronics

Academic Year: 2020-21 Year/Sem. III/II

Faculty Name & Designation Dr. N. Tamilarasan, professor / P PRASHANT

(Regulation:R18)

Prepared on Rev1:

Page: 1 of 6

Assoc Prof

QUESTION BANK WITH BLOOMS TAXONOMY LEVEL (BTL)

(1. Remembering 2. Understanding 3. Applying 4. Analyzing 5. Evaluating 5. Creating)

	UNIT-1 Consumer Electronics Fundamentals							
			Course					
	2MARKS QUESTIONS	BT Level	Outcome					
1.	What are the applications of diode?	1	CO1					
2.	Classify the different types of rectifier	2,4	CO1					
3.	Define Moore's law	1	CO1					
4	Define combinational circuits	1	CO1					
5.	What are the applications of combinational circuits?	1	CO1					
6.	How does a transistor act as an amplifier?	1	CO1					
7.	Compare transistor and vacuum tubes	2,4	CO5					
8	Define integrated circuits	1	CO1					
9	Define Microprocessor.	1	CO1					
10	Define microcontroller	1	CO1					
11	What are the applications of Microprocessor and Microcontroller?	1	CO1					
12	What are the advantages of Microcontroller?	1	CO1					
13	Distinguish between Microprocessor and Microcontroller	4	CO5					
14	List the types of ADC.	1	CO1					
15	List the types of DAC	1	CO1					
16	List the types of logic circuit	1	CO1					
	5 MARKS QUESTIONS							
1.	Explain in detail about the Vacuum tubes and mention its advantages and disadvantages	2	CO6					
2.	Discuss the working principles of PN junction diode and mention its applications	6	CO1					
3.	How PN junction diode act as a rectifier? Explain the working principles of bridge rectifier	1	CO1					
4.	Compare Half wave, full wave and bridge rectifier	2,4	CO6					

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title **R18ECE3273** and Consumer Electronics

Academic Year: 2020-21 Year/Sem. III/II

Dr. N. Tamilarasan, professor / P PRASHANT Faculty Name & Designation

(Regulation:R18)

Prepared on Rev1:

Page: 2 of 6

Assoc Prof

5.	Classify the types of transistor and Discuss the working principles of BJT	2,4	CO1
6.	Discover the structure and working principles of JFET	4	CO1
7.	Discover the structure and working principle of MOSFET	4	CO1
8	What is the need for Microprocessor? Draw and explain the block diagram of Microprocessor	1	CO1
9	Define Microcontroller and explain the block diagram of Microcontroller	1	CO1
10	Distinguish Microprocessor and Micro controller.	4	CO6
11	Explain any one of the Micro-controlled based system	2	CO6
12	Explain the standard logic gates and universal logic gates with a diagram and its truth table	2	CO6
13	Classify the combinational circuits and discuss any two combinational logic circuits	2	CO1
14	How digital input is converted into analog? Discuss with a relevant diagram	2	CO1
15	How analog input is converted into digital? Discuss with a relevant diagram	2	CO1
16	Explain the energy management in consumer electronics	2	CO6
	Unit -II : Entertainment Electronics		
	2 MARKS QUESTIONS		
1.	List the types of Microphone.	1	CO2
2.	Compare microphone and loudspeaker.	2,4	CO6
3.	Compare LCD and LED display	2,4	CO6
4.	Define super heterodyne principle	1	CO2
5.	Compare CD, DVD and Blu-ray	2,4,5	CO6
6.	Compare AM and FM receiver	2,4,5	CO6
7.	Compare 2.1 and 5.1 home theatre	2,4,5	CO6
8.	What are the advantages of LED display?	2	CO2
9.	What are the advantages of LCD display?	2	CO2
10.	List the advantages of Blu-ray disc	1	CO2
	5 MARKS QUESTIONS		ı
1	Discover the construction and working principle of LCD.	4	CO2
2.	Discover the construction and working principle of LED Display.	4	CO2

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 and Consumer Electronics

Academic Year: 2020-21 Year/Sem. III/II

Faculty Name & Designation Dr. N. Tamilarasan, professor / P PRASHANT

(Regulation:R18)

Prepared on Rev1:

Page: 3 of 6

Assoc Prof

3.	Discover the internal structure and working principles of CRT	4	CO2
4.	How does a LCD Display produce Colour picture? and explain with an appropriate diagram	1	CO2
5.	How the audio and video information are retrieved from DVD?. Discuss it with a neat diagram?	1	CO2
6.	How the images are captured and stored in digital camera?. Discuss with a neat diagram?	1	CO2
7.	Discover the construction and working principles of a loud speaker	4	CO2
8	How does the Microphone convert the acoustic signal to an electrical signal? Explain any two Microphones?	1	CO2
9	How does the loudspeaker convert the electrical signal into sound signal? Discuss with a neat diagram?	1	CO2
10	List the types of Microphone, and explain working principle of the wireless Microphone	1	CO2
11	Explain the characteristics of Mirco phone with relevant diagram	2	CO6
12	Explain the block diagram of super heterodyne receiver.	2	CO6
13	Explain the block diagram of FM receiver	2	CO6
14	Discuss with diagram the need for LPF and HPF in 2.1 home theatre	6	CO2
15	Explain the working principles of 5.1 home theatre with a neat diagram	2	CO6
16	Discuss the principles of Blu-ray disc	6	CO2
17	What is the need for camcorder? Discuss with the diagram	1	CO2
	Unit – III : Smart Home		
	2 MARKS QUESTIONS		
1.	What are the advantages of home security system	1	CO3
2.	What are the advantages of smart technology	1	CO3
3	What is the role of intruder detection?	1	CO3
4.	Define sensor.	2	CO3
5	List the types of sensor	4	CO3

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 and Consumer Electronics

Academic Year: 2020-21 Year/Sem. III/II

Faculty Name & Designation Assoc Prof

(Regulation:R18)

Prepared on Rev1:

Page: 4 of 6

6.	List the applications of IR sensor	4	CO3					
7	List the applications of PIR sensor.	4	CO3					
8.	What are the components of image sensor?	1	CO3					
9.	Classify the thermal sensor	2,4	CO3					
10.	What is the switching level of level indicator?	1	CO3					
	5 MARK QUESTIONS							
1.	What is a smart home technology? And discuss its security concern	1	CO3					
2	How to work from home as virtual assistant and what are the common service virtual assistants?	1	CO3					
3.	How does an Alexa interface the human with machine?	1	CO3					
4	Discover the function of home security system? Discuss any two home security systems	4	CO3					
5.	Discuss the intruder detection and its importance.	6	CO3					
6	How motion sensor detects the moving object? Discuss with a necessary diagram.	1	CO3					
7.	List the application of the motion sensor and explain any one application.	4	CO3					
8.	List the application of IR sensor also explain the working principle of IR sensor with a relevant diagram.	4	CO3					
9.	Discuss any one application of level sensor.	6	CO3					
10.	How temperature is measured using thermal sensor? Explain any two thermal sensor.	1	CO3					
11	Classify the sensor and explain the working principle of any two sensor	2,4	CO3					
12	How does an image sensor detect and convey information used to make an image?	1	CO3					
	Unit-IV: Home Appliances							
	2 MARKS QUESTIONS							
1.	What is RFID?How does it work?	1	CO4					
2.	What are the basic components of Air conditioning system?	1 CO4						
3.	Outline the applications of automatic cleaning robots.	2	CO4					

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title R18ECE3273 and Consumer Electronics

Academic Year: 2020-21 Year/Sem. III/II

Faculty Name & Designation Dr. N. Tamilarasan, professor / P PRASHANT

(Regulation:R18)

Prepared on Rev1:

Page: 5 of 6

Assoc Prof

1	004			
1	CO4			
2	CO4			
2	CO4			
1	CO4			
1	CO4			
5 MARK QUESTIONS				
2	CO4			
3	CO4			
2	CO4			
1	CO4			
1	CO4			
2	CO4			
3	CO4			
3	CO4			
1	CO4			
Unit-V: Communication Systems				
2 MARKS QUESTIONS				
2	CO5			
1	CO5			
1	CO5			
1	CO5			
2	CO5			
2	CO5			
2	CO5			
5 MARK QUESTIONS				
4	CO5			
	2 1 1 1 2 3 2 1 1 1 1 2 3 3 1 1 1 1 2 1 1 2 2 2 2			

(Regulation:R18)

Department of Electronics and Communication Engineering

Sub. Code & Title **R18ECE3273** and Consumer Electronics

Academic Year: 2020-21 Year/Sem. III/II

Dr. N. Tamilarasan, professor / P PRASHANT Faculty Name & Designation

(Regulation:R18)

Prepared on Rev1:

Page: 6 of 6

Assoc Prof

2.	Explain the DECT technology used in cordless phones	2	CO5
3.	Organise the different components of a fax machine	3	CO5
4	Classify the range of cordless telephones	2	CO5
5.	Compare wifi and lifi	2,3	CO5
6.	Categorize different types of smart watches according to its functions	4	CO5
7.	Explain Lifi technology	2	CO5
8	Explain GPS technology	2	CO5