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UNIT 1 

INTRODUCTION 

1.1INTRODUCTION TO DIGITAL SIGNAL PROCESSING: 

SIGNAL: A signal is defined as any physical quantity that varies with time, space or another 

independent variable. 

SYSTEM: A system is defined as a physical device that performs an operation on a signal. 
 
SIGNAL PROCESSING:  System is characterized by the type of operation that performs on 

the signal. Such operations are referred to as signal processing. This type of processing by 

Digital systems is called DIGITAL SIGNAL PROCESSING. 

 

 

Fig: Block Diagram of DSP 

Advantages of DSP 

1. A digital programmable system allows flexibility in reconfiguring the digital signal 

processing operations by changing the program. In analog redesign of hardware is required. 

2. In digital accuracy depends on word length, floating Vs fixed point arithmetic etc. In 

analog depends on components. 

3. Can be stored on disk. 

4. It is very difficult to perform precise mathematical operations on signals in analog form 

but these operations can be routinely implemented on a digital computer using software. 
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5. Cheaper to implement. 

6. Small size. 

7. Several filters need several boards in analog, whereas in digital same DSP processor is 

used for many filters. 

Disadvantages of DSP 

1. When analog signal is changing very fast, it is difficult to convert digital form 

           (beyond 100KHz range) 

2. w=1/2 Sampling rate. 

3. Finite word length problems. 

4. When the signal is weak, within a few tenths of mill volts, we cannot amplify the signal    

       after it is digitized. 

5. DSP hardware is more expensive than general purpose microprocessors & micro  

      controllers. 

6.  Dedicated DSP can do better than general purpose DSP. 

Applications of DSP 

1. Filtering. 

2. Speech synthesis in which white noise (all frequency components present to the same   

      level) is filtered on a selective frequency basis in order to get an audio signal. 

3. Speech compression and expansion for use in radio voice communication. 

4. Speech recognition. 

5. Signal analysis. 

6. Image processing: filtering, edge effects, enhancement. 

7. PCM used in telephone communication. 

8. High speed MODEM data communication using pulse modulation systems such as FSK,   

      QAM etc. MODEM transmits high speed (1200-19200 bits per second) over a band  

       limited (3-4 KHz) analog telephone wire line. 
  

  
1.2 DISCRETE TIME SIGNALS AND SEQUENCES: 
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DISCRETE TIME SIGNAL: A signal that has values at discrete instants of time which is 

obtained by sampling a continuous time signal. 

 

 

Representation of discrete time signals: 

There are 4 types: 

1. Graphical representation 

2. Functional representation 

3. Tabular representation  

4. Sequence representation  

Graphical representation 

Consider a discrete time signal x(n) with values x(-1)=1,x(0)=2,x(1)=3,x(2)=4…………..,this 

can be represented as shown in fig. 

 

Functional representation: the signal is represented as  

X(n)=

(

 
 

1 𝑓𝑜𝑟 𝑛 = −1
2 𝑓𝑜𝑟 𝑛 = 0,1
0.5 𝑓𝑜𝑟 𝑛 = 2
1.5 𝑓𝑜𝑟 𝑛 = 3
0     𝑒𝑙𝑠𝑒 )

 
 

 

Tabular representation: The signal is represented as  
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Sequence representation: The signal is represented as sequence with time origin indicated by 

symbol ↑. 

 

 Discrete Time signals and sequences: 

1.2.1 Discrete Time sequences 

Unit step sequence: 

It is defined as  

 

Unit impulse sequence : 

δ(n)=1 n=0 

         0 n≠0 
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Unit Ramp sequence: It is defined as 

 

Exponential sequence: it is a sequence of the form  

                             x(n)=an 

 

 

Sinusoidal signal: 

It is represented as x(n)=Acos(won+Φ)  
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Complex exponential signal: It is represented as x(n)= an e j(won+Φ) 

i.e x(n)= an cos(won+Φ) +jan sin(won+Φ) 

 

1.2.2 Classification of Discrete time signals: 

1. Energy and power signals. 

2. Periodic and aperiodic signals. 

3. Symmetric and asymmetric signals. 

4. Causal and non causal signals. 

5. Energy and power signals. 

Energy and power signal: For a discrete time signal x(n) the energy E is given by 

                       

 

The average power of a Discrete time signal x(n) is  



DIGITAL SIGNAL PROCESSING 

 

  Page 8 
 

 

A signal is energy signal iff the total energy is finite. 

Periodic and aperiodic signal: 

A discrete time signal x(n) is said to be periodic with period N iff  

x(N+n)= x(n) for all   n 

the smallest value of n for which the signal is periodic is called fundamental period. 

If the above condition is valid then the signal is a periodic. 

   

Fig: Periodic sequence                                                                  fig: aperiodic sequence 

 Example: Show that the exponential sequence x(n)=ejw0n is periodic if w0/2π is rational 

number. 

 

Symmetric (even) and asymmetric (odd) signals: 

A discrete time signal x(n) is said to be even it satisfies the condition  

                   x(-n)=x(n) for all n 
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A discrete time signal x(n) is said to be odd it satisfies the condition  

                   x(-n)=-x(n) for all n  

this signals are represented as shown in fig. 

 

Fig a.even signal  b.odd signal 

 

Causal and non causal signals: A signal x(n) is said to be causal if its value is zero for n<0, 

otherwise the signal is non causal. A signal that is zero for all n 0 is called anti causal signal. 

1.3 Linear Shift Invariant Systems: 

  A system is said to be linear shift(time) invariant if the characteristics of the 

system does not change with time. In other words if the input sequence is shifted by k samples, 

the generated output sequence is the original sequence shifted by k samples. 
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To test if any given system is time invariant first apply a sequence x(n) and find y(n). Now delay 

the input sequence by k samples and find the output sequence.  

Note: A linear time invariant system satisfies both linearity and time invariance property. 

If the input to the system is unit impulse i.e x(n)=δ(n)  then the output of the system is called 

impulse response denoted by h(n). 

h(n)=T[δ(n)] 

for an LTI system if the input and impulse response are known then output y(n) is given by  

y(n)=∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)∞
𝑘=−∞  

 the above equation represents output is the convolution sum of input sequence x(n) and impulse 

response h(n) represented as  

y(n)=x(n)*h(n) 

1.4 STABILITY AND CAUSALITY 

  1.4.1 Stable and unstable systems 

 An LTI system is said to be stable if it produces bounded output sequence for every 

bounded input sequence. If the input is bounded and output is unbounded then it is unstable 

system. The necessary and sufficient condition for stability is 

∑ ⃒ℎ(𝑛)

∞

𝑛=−∞

⃒ < ∞ 
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i.e., impulse response is stable if the impulse response is summable. 

1.4.2 Causal System 

  Generally a causal system is a system whose output depends on only past and present 

values of input. The output of an LTI system is given by  

y(n)=∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)∞
𝑘=−∞  

= y(n)=∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)−1
𝑘=−∞ + y(n)=∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)∞

𝑘=0  

=…………….h(-2)x(n+2)+h(-1)x(n+1)+h(0)x(n)+h(1)x(n-1)+………….. 

As the causal system output does not depends on future inputs so neglect the terms then y(n) 

reduces to  

 

y(n)= h(0)x(n)+h(1)x(n-1)+………….. 

=∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)∞
𝑘=0  

i.e. h(k)=0 for k<0. 

Therefore an LTI system is causal if and only if its impulse response is zero for negative values 

of n. 

1.5 LINEAR CONSTANT COEFFICIENT DIFFERENCE EQUATION. 

 There are different methods of analyzing the behavior or response of LTI system. 

1. Direct solution of difference equation. 

2. Discrete convolution. 

3. Z transform 

Direct Solution Of Difference Equation: the input and output relation of LTI system is 

governed by constant coefficient difference equation of form 

y(n)=  −∑ 𝑎𝑘𝑦(𝑛 − 𝑘)𝑁
𝑘=1 +∑ 𝑏𝑘𝑥(𝑛 − 𝑘)𝑀

𝑘=0  

Mathematically the direct solution of above equation can be obtained to determine the response 

of the system. 

Discrete convolution: The output is convolution of input and impulse response. 

y(n)=x(n)*h(n) 
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Z transform: The convolution property of z transform of the convolution of input and impulse 

response is equa to the product of their individual z transforms. 

i.e. Z[𝑥(n)*h(n)]=X(Z)H(Z) 

but y(n)=x(n)*h(n) 

so Z[y(n)]= X(Z)H(Z) 

therefore y(n)=Z-1(X(Z)H(Z)) 

i.e the response y(n) of an LTI system is obtained by taking inverse Z transform of X(Z) and 

H(Z). Conversely if the transfer function of the system is  known then we can determine the 

impulse response of system by taking inverse Z transform of transfer function. 

i.e. h(n)=Z-1[H(Z)]=Z-1{Y(Z)/X(Z)} 

1.6 FREQUENCY DOMAIN REPRESENTATION OF DISCRETE TIME SIGNALS and          

SEQUENCES. 

Fourier transform gives an effective representation of signals and systems in frequency domain. 

The Fourier transform of discrete time signal is given as  

X(ω)=∑ 𝑥(𝑛)∞
𝑛=−∞ e-jwn 

w is the frequency and it varies continuously from o to 2π. The magnitude of X(w) gives 

frequency spectrum of x(n). 

Y(w)=X(w)H(w) 

H(w)= Y(w) / X(w) 

H(w) is system function and h(n)=IFT[H(w)] 

Discrete Time Fourier series: 

Consider a periodic sequence x(n) with period N and this is expressed in discrete fourier series as  

x(n)= ∑ 𝐶𝑘𝑁−1
𝑘=0 ej2πnk/N 

the values of Ck k=0,1,2,3…………….N-1 are called discrete spectra of x(n). Each Ck appears at 

frequency wk=2πk/N. 

Discrete Time Fourier Transform: 

DFT is given by X (ejw) =∑ 𝑥(𝑛)∞
𝑛=−∞ e-jwn 
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Where X (ejw) is called DTFT of x(n) 

x(n) is called IDTFT of X (ejw) 

a sufficient condition for the existence of DTFT for a periodic sequence x(n) is   

 

i.e sequence is absolutely summable. 

1.7 Properties of DTFT 

 

1.8 APPLICATIONS OF Z-TRANSFORMS: 

 The z-transform is a  powerful mathematical tool used for the analysis of linear-time-

invariant discrete systems in frequency domain. 

 The z-transform has imaginary and real parts like fourier tansform .A plot of imaginary 

part Vs real part is called Z-plane .This is also called complex Z-plane. 

 The poles and zeros of discrete LTI systems are plotted in the complex Z-plane. The 

stability of LTI systems can also be determined from pole-zero plot.  

DEFINATION OF Z-TRANSFORM AND REGION OF CONVERGENCE: 

 The Z-transform of a discrete time signal x(n) is denoted by X(Z)  

     Z-transform: 
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‘Z’ is the complex variable 

X(Z)  =  Z[x(n)] 

x(n)      Z        X(Z) 

This Z-transform is also called as bilateral or two sided Z-transform 

 

1.9 REGION OF CONVERGENCE: 

Region of Convergence is the range of complex variable Z in the Z-plane. The Z-transformation 

of the signal is finite or convergent. So, ROC represents those set of values of Z, for which X(Z) 

has a finite value. 

Z-transform is an “infinite series” (infinite power series) is not convergent for all values of Z 

always. 

PROPERTIES OF ROC 

1.ROC does not include any pole. 

2.For right-sided signal,ROC will be outside the circle in Z-plane. 

3.For left sided signal,ROC will be inside the circle in Z-plane. 

4.For stability,ROC includes unit circle in Z-plane. 

5.For Both sided signal,ROC is a ring in Z-plane. 

6.For finite-duration signal,ROC is entire Z-plane. 

 

The Z-transform is uniquely characterized by: 

1.Expression of X(Z) 

2.ROC of X(Z) 
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Example: Determine Z-transform and ROC of the signal x(n)=anu(n)+bn(-n-1) 

Solution: 

  Given x(n)=anu(n)+bn(-n-1) 

X(Z ) = ∑ 𝑎𝑛 ∞
𝑛=0 z-n   + ∑ 𝑏𝑛−1

𝑛=−∞ z-n    

          = [1 +
𝑎

2
+ (

𝑎

2
)
2

+⋯]+∑ (𝑏−1∞
𝑛=1 z)n 

          =[1 +
𝑎

2
+ (

𝑎

2
)
2

+⋯]+[ ∑ (𝑏−1∞
𝑛=0 z)n  - 1] 

          =[1 +
𝑎

2
+ (

𝑎

2
)
2

+⋯]+[1 +
𝑧

𝑏
+ (

𝑧

𝑏
)
2

+⋯− 1] 

=  
1

1−
𝑎

𝑧

 +
1

   1−
𝑧

𝑏

  -1 

=   |
𝑎

 𝑧 
|<1 +  |

𝑧

 𝑏 
|<1  

a 

b 
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ROC: |𝑧|> |𝑎| & |𝑧| < |𝑏|   |𝑏| > |𝑧|>|𝑎| 

X(Z) =
𝑧

𝑧−𝑎
 + 

𝑏

𝑏−𝑧
 - 1 

         = 
𝑧

𝑧−𝑎
 + 

𝑧

𝑏−𝑧
  

Example: Determine Z-transform  of the signal   

 

 

 

     

 

 

 

 

 

1.10 SOLUTION OF DIFFERENCE EQUATIONS OF DIGITAL FILTERS 

 The  Nth  order system or digital filters are described by a general form of linear constant 

coefficient difference equation as  

                             ∑ 𝑎𝑘
𝑁
𝑘=0 y(n-k)  =  ∑ 𝑏𝑘

𝑁
𝑘=0 x(n-k)   

 Where    y(n) is  output ,x(n) is input and  

                 𝑎𝑘  , 𝑏𝑘  are linear constant coefficients 

Taking 𝑎0 = 1, y(n) = - ∑ 𝑎𝑘
𝑁
𝑘=0 y(n-k)  +  ∑ 𝑏𝑘

𝑁
𝑘=0 x(n-k)   

RESPONSE OF SYSTEM WITH ZERO INITIAL CONDITIONS: 

 System function H(Z) of system ,represent H(Z) as a ratio of two polynomials B(Z)/A(Z), 

Where B(Z) is the numerator that contains zeros of  H(Z) and  

A(Z) is the denominator polynomial that determines poles of H(Z) input signal x(n) has a 

rational z-transform X(Z). 
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ie,. X(Z) =  
N(Z)

Q(Z)
 

Z-transform of the output of system has the form  

   Y(Z)= H(Z) X(Z) = 
B(Z)N(Z)

A(Z)Q(Z)
  

Suppose that system contains simple poles P1, P2, P3,… PN  and  Z-transform of the input signal 

contains poles q1, q2, q3,… qL,  where Pk  ≠ qm  for all k = 1,2,…N and  m=1,2,…L. 

The partial fraction expansions of Y(Z) yields as, 

   Y(Z) = ∑
𝐴𝑘

1−𝑃𝑘𝑍
−1

𝑁
𝑘=1   + ∑

𝑄𝑘

1−𝑞𝑘𝑍
−1

𝐿
𝑘=1  

   Inverse transform as y(n) = ∑ 𝐴𝑘 
𝑁
𝑘=1 (𝑃𝑘 )

n u(n) + ∑ 𝑄𝑘 
𝑁
𝑘=1 (𝑞𝑘)n u(n) 

    Pk : Function of poles (Pk) of system is called natural response. 

    qk : of the input signal is called forced response of the system. 

At initial conditions are zero the response y(n) is called zero state response  

  yzs (n) = yn(n)  +  yf(n)                                 
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Example: Solve the following difference equation using Z-transform method 

 

 

 

1.11 STABILITY CRITERION: 

             A necessary and sufficient condition for linear time invariant system to be BIBO 

stable is ∑ |ℎ(𝑛)|∞
𝑛=−∞  ˂ ∞ 

In turn, this condition implies that H(Z) most contain the unit circle within its ROC 

Since  H(Z) = ∑ h(n)∞
n=−∞  z−n 

             Take modulus on both sides  |𝐻(𝑍) | ≤  ∑ |h(n)z−n|∞
𝑛=−∞   

                   =  ∑ |h(n)|∞
𝑛=−∞ z−n 

            When its evaluated on the unit circle |𝑧| = 1 
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  |𝐻(𝑍) | ≤  ∑ |h(n)|∞
𝑛=−∞   

               Hence if the system is BIBO stable, the unit circle is constrained in the ROC of H(Z). 

This can also be stated  like “A  linear  time-invariant system is BIBO stable if and only if the 

ROC of the system function includes the unit circle. 

   |𝑧|=𝑏𝑘 , k=1,2,…M 

                     Unit sample response h(n) = ∑ ℎ𝑘
𝑀
𝑘=1 (n) 

 Where ℎ𝑘(n) = 𝑎𝑘 (𝑏𝑘)n u(n) 

For the system to be stable,  

Each component of the sequence ℎ𝑘(n) must satisfy the condition ∑ |h(n)|∞
𝑛=0  ˂ ∞ 

  = ∑ |𝑎𝑘
∞
𝑛=0 (𝑏𝑘)

n | 

  = 𝑎𝑘 ∑ |(𝑏𝑘)
∞
𝑛=0

n | 

For the above system to be finite ,the magnitude of each term must be less than unity , ie,.. each  

|𝑏𝑘 | ˂ 1, where 𝑏𝑘is a pole ie,.. |Z| <1.So , all poles of the system must lie inside the unit circle, 

for the system to be stable. 

1.12 SCHUR-COHN STABILITY TEST: 

          When the denominator polynomial of a transfer function of the system is large and which 

cannot be factorized, it is not possible to find the poles of the system .Consequently we cannot 

decide whether the system is stable or not. In such cases stability can be decided by using Schur-

Cohn Stability Test. 

Let us consider transfer function of a system ,whose stability to be decided , 

 H(Z) =  
1

1− 
7

4
 𝑧−1− 

1

2
 𝑧−2

 consider only the denominator polynomial, here order of the 

denominator polynomial is 2 .So denote the polynomial as D2(Z) = 1 − 
7

4
 𝑧−1 − 

1

2
 𝑧−2. 

Let k2 = - 
1

2
  and k2 = |

1

2
|  ,If  k2 is greater than or equal to 1,system is unstable . 

 If  k2 is less than 1,then find k1 by forming reverse polynomial R2 (Z) from which D1(Z) . 

Can be found by using D1(Z)  =  D2(Z)- k2R 2(Z) 

   1- k2 
2 
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Here | k2 | < 1 So form the reverse polynomial R2(Z) = 
−1

 2
− 

7

4
 𝑧−1 − 𝑧−2   

                     Therefore, D1(Z)  =  D2(Z)- k2R 2(Z) 

   1- k2 
2 

On applying in the above formulae D1(Z)  = 1- 
7
2 𝑧

−1 ; k1= - 

7

2
 ;  |k1| |

7

2
| 

Here |k1| ˃ 1 ,so the system is unstable. If DN(Z)  is given from RN(Z)  use recursive equation  

DN-1(Z) =  DN(Z)- kN R N(Z) , to get  kN-1…,…. k1 

                                      1- kN 2 

If anyone of  kN-1,……. k1 is greater than 1,stop calculating remaining K values and decide system as 

unstable. 

Example: Find the  stability of the following transfer function H(Z) = 
𝑍2+ 𝑍+1

𝑍4+2 𝑍3+3 𝑍2+ 4𝑍+6
 

Solution: given H(Z) = 
𝑍2+ 𝑍+1

𝑍4+2 𝑍3+3 𝑍2+ 4𝑍+6
 

                = 
𝑍−2+ 𝑍−3+𝑍−4

1+2 𝑍−1+3 𝑍−2+ 4𝑍−3+6𝑍−4
 

Since k4 = 6 ; greater than 1 ; System unstable. 

1.13FREQUENCY RESPONSE OF STABLE SYSTEM: 

            Discrete time Fourier transform and Z-transform s are used to obtain frequency response  

of discrete time systems. If we set z = ejωt   ie,.. evaluate z-transform around unit circle ,we get 

the Fourier  transform of the system with sampling time period,T. 

 H(ejωt  ) =H(ω) =∑ ℎ(𝑛)𝑒−𝑗𝑛𝜔∞
𝑛= −∞  

H(ω) is the frequency response of the system ,Its modulus gives the magnitude response and its 

phase is the phase response  

Magnitude/Phase Transfer Function using Fourier Transform: 
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Example: Calculate the frequency response for the LTI system representation  

                   y(n) + 
1

4
y(n-1)=x(n)-x(n-1)  
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Solution:                   Given     y(n) + 
1

4
y(n-1)=x(n)-x(n-1)  

                             Taking Fourier transform on both sides 

               

                           Y(ejω ) + 
1

4
 e- jω Y(ejω) =X(ejω) -  e- jω X(ejω) 

                              Y(ejω ) [1+ 
1

4
 e- jω ] = X(ejω) (1-  e- jω ) 

                                 H(ejω ) = 
Y(ejω )

X(ejω) 
 = 

1−  e− jω 

1+ 
1

4
 e− jω

 

             

                        |H(𝑒𝑗𝜔)| = 
1−cos𝜔+jsin𝜔

1+ 
1

4
 cos𝜔−j/4sin𝜔

 =
2 𝑠𝑖𝑛

𝑤

2

(1.062+0.5𝑐𝑜𝑠𝜔)
1/2 

Phase Response :∠𝐻(𝑒𝑗𝜔) = tan−1 (
sin𝜔

1−cos𝜔
) - tan−1 (

−0.25sin𝜔

1+0.25cos𝜔
) 

 

Ω 0 ᴨ

6
 

ᴨ

4
 

ᴨ

3
 

|H(𝑒𝑗𝜔)| 0 0.4 0.6 0.8 

∠𝐻(𝑒𝑗𝜔) 0.5ᴨ 0.49ᴨ 0.42ᴨ 0.3ᴨ 

 

              |H(𝑒𝑗𝜔)|                                                           

                   ∠𝐻(𝑒𝑗𝜔) 

 

 

 

 

 

 

 

1.14 REALIZATION OF DIGITAL FILTERS : 

  

          A digital filter transfer function can be realized in a variety of ways .There are two types 0f 

realization 1. Recursive  2. Non Recursive 

 

          For recursive realization the current output y(n) is a function of past outputs ,past and 

present inputs. This form corresponds to an Infinite Impulse Response (IIR) digital filter. For  a 
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Non recursive realization current output sample y(n) is a function of only past and present inputs. 

This form corresponds to a Finite Impulse Response (FIR) digital filter. 

IIR filter can be realized in many forms. They are : 

  

1. Direct Form-I realization 

2. Direct Form-II (Canonic) realization 

3. Cascade Form 

4. Parallel Form. 

 

 

1.Direct Form-I realization : 
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1.14.1DIRECT FORM –II REALIZATION: 
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1.14.2 CASCADE FORM REALIZATION: 

 

 
1.14.3 PARALLEL FORM REALIZATION: 
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Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Obtain direct form I for the system described 
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EXAMPLE: 
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EXAMPLE: 
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UNIT 2 

DISCRETE FOURIER SERIES 

2.1 DFS REPRESENTATION OF PERIODIC SEQUENCE: 

    Consider a sequence xp(n) with a period of N samples so that xp(n)=xp(n+lN).since xp(n)  is a 

periodic ,it can be represented as a weighted sum of complex exponentials whose frequencies are 

integer multiples of fundamental frequency. 

   These periodic complex exponentials are of the form 

 

   Any periodic sequence x(n) can be written as 

                               

2.2 PROPERTIES OF DISCRETE FOURIER SERIES: 

1.LINEARITY OF DFS: 

 

2. SHIFT OF A SEQUENCE:  
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3.COMPLEX  CONJUGATION OF A PERIODIC SEQUENCE: 

 

 

 

4.TIME REVERSAL:  
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5.TIME SCALING: 

 

6.DIFFERENCE: 

 

7.ACCUMULATION: 
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        Example: Determine the spectra of the signals 

 

2.3 DISCRETE FOURIER TRANSFORM: 

   The DFT of a finite duration sequence x(n) is obtained by sampling the fourier transform 

X(ejw) at N equally spaced points over the interval 0≤w≤2π with a spacing of 2π/N.The DFT is 

denoted by X(K),and is given by 

 

For convenience 

 

With this notation DFT analysis and synthesis equation is given by 
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2.4 SAMPLING OF THE FOURIER TRANSFORM: 

      The DFT values X(K) can be considered as samples of X(ejw). 

 

 

2.5 PROPERTIES OF DFT: 

1.LINEARITY: 

 

2.CIRCULAR SHIFT OF A SEQUENCE: 
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3.SHIFT PROPERTY OF A DFT: 

 

 

 

4.DUALITY: 

 

5.SYMMETRY PROPERTIES: 

 

 

6.CIRCULAR CONVOLUTION: 
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2.6 LINEAR CONVOLUTION USING DFT: 

   If we have sequence x(n) of length L and a sequence y(n) of length M, the sequence z(n) 

obtained by linear convolution has length (L+M-1).This can be seen from the definition 
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       Example : Find the DFT of given sequence 
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Example : 
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2.7 RELATION BETWEEN Z-TRANSFORM AND DTFT: 

The Z-transform of a signal x(n) is given by 

 

The DTFT of a signal x(n) is given by 

 

Relation is given by 

Z=ejw 
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2.8 RELATION BETWEEN DTFT AND DFT: 

The DTFT of a signal x(n) is given by 

 

The DFT of a signal x(n) is given by 

 

 

2.9 FAST FOURIER TRANSFORM 

COMPUTATIONAL COMPLEXITY OF DFT AND FFT: 

DFT: 

No.of complex multiplications=N2 

No.of complex additions=N(N-1) 

FFT: 

No.of complex multiplications=Nlog2N 

No.of complex additions=N/2log2N 

INTRODUCTION: 

   In this section we present several methods for computing the DFT efficiently. In view of the 

importance of the DFT in various digital signal processing applications, such as linear filtering, 

correlation analysis, and spectrum analysis, its efficient computation is a topic that has received 

considerable attention by many mathematicians, engineers, and applied scientists. 

  From this point, we change the notation that X(k), instead of y(k) in previous sections, 

represents the Fourier coefficients of x(n). 
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   Basically, the computational problem for the DFT is to compute the sequence {X(k)} 

of N complex-valued numbers given another sequence of data {x(n)} of length N, according to 

the formula 

 

    In general, the data sequence x(n) is also assumed to be complex valued. Similarly, The IDFT 

becomes 

 

  Since DFT and IDFT involve basically the same type of computations, our discussion of 

efficient computational algorithms for the DFT applies as well to the efficient computation of the 

IDFT. 

  We observe that for each value of k, direct computation of X(k) involves N complex 

multiplications (4N real multiplications) and N-1 complex additions (4N-2 real additions). 

Consequently, to compute all N values of the DFT requires N 2 complex multiplications and N 2-

N complex additions. 

  Direct computation of the DFT is basically inefficient primarily because it does not exploit the 

symmetry and periodicity properties of the phase factor WN. In particular, these two properties 

are : 

 

  The computationally efficient algorithms described in this sectio, known collectively as fast 

Fourier transform (FFT) algorithms, exploit these two basic properties of the phase factor. 

2.10 RADIX-2 DIT-FFT ALGORITHM: 

   Let us consider the computation of the N = 2v point DFT by the divide-and conquer approach. 

We split the N-point data sequence into two N/2-point data sequences f1(n) and f2(n), 

corresponding to the even-numbered and odd-numbered samples of x(n), respectively, that is, 
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  Thus f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, and hence the resulting 

FFT algorithm is called a decimation-in-time algorithm. 

  Now the N-point DFT can be expressed in terms of the DFT's of the decimated sequences as 

follows: 

 

But WN
2 = WN/2. With this substitution, the equation can be expressed as 

 

 where F1(k) and F2(k) are the N/2-point DFTs of the sequences f1(m) and f2(m), respectively. 

 Since F1(k) and F2(k) are periodic, with period N/2, we have F1(k+N/2) = F1(k) and F2(k+N/2) 

= F2(k). In addition, the factor WN
k+N/2 = -WN

k. Hence the equation may be expressed as 

 

  We observe that the direct computation of F1(k) requires (N/2)2 complex multiplications. The 

same applies to the computation of F2(k). Furthermore, there are N/2 additional complex 

multiplications required to compute WN
kF2(k). Hence the computation of X(k) requires 

2(N/2)2 + N/2 = N 2/2 + N/2 complex multiplications. This first step results in a reduction of the 

number of multiplications from N 2 to N 2/2 + N/2, which is about a factor of 2 for N large. 



DIGITAL SIGNAL PROCESSING 

 

  Page 47 
 

 

 By computing N/4-point DFTs, we would obtain the N/2-point DFTs F1(k) and F2(k) from the 

relations 

 

  The decimation of the data sequence can be repeated again and again until the resulting 

sequences are reduced to one-point sequences. For N = 2v, this decimation can be performed v = 

log2N times. Thus the total number of complex multiplications is reduced to (N/2)log2N. The 

number of complex additions is Nlog2N. 



DIGITAL SIGNAL PROCESSING 

 

  Page 48 
 

 

FIG.8-point fft using four 2-point Dfts 
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Fig.Butterfly diagram for DIT-FFT Algorithm 

   An important observation is concerned with the order of the input data sequence after it is 

decimated (v-1) times. For example, if we consider the case where N = 8, we know that the first 

decimation yeilds the sequence x(0), x(2), x(4), x(6), x(1), x(3), x(5), x(7), and the second 

decimation results in the sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). This shuffling of the 

input data sequence has a well-defined order as can be ascertained from observing Figure 

TC.3.5, which illustrates the decimation of the eight-point sequence. 
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Example :Find the FFT of a given sequence x(n)={1,2,3,4}by using DIT-FFT Algorithm? 

 

 

Example : Find the IFFT of a given sequence x(k)={10,-2+2j,-2,-2-2j}by using DIT-IFFT 

Algorithm? 

 

 

 

 



DIGITAL SIGNAL PROCESSING 

 

  Page 51 
 

2.11 RADIX-2 DIF-FFT ALGORITHM: 

   Another important radix-2 FFT algorithm, called the decimation-in-frequency algorithm, is 

obtained by using the divide-and-conquer approach. To derive the algorithm, we begin by 

splitting the DFT formula into two summations, one of which involves the sum over the first N/2 

data points and the second sum involves the last N/2 data points. Thus we obtain 

 

Now, let us split (decimate) X(k) into the even- and odd-numbered samples. Thus we obtain 

 

where we have used the fact that WN
2 = WN/2 

The computational procedure above can be repeated through decimation of the N/2-point 

DFTs X(2k) and X(2k+1). The entire process involves v = log2N stages of decimation, where 

each stage involves N/2 butterflies of the type shown in Figure TC.3.7. Consequently, the 

computation of the N-point DFT via the decimation-in-frequency FFT requires (N/2)log2N 

complex multiplications and Nlog2N complex additions, just as in the decimation-in-time 

algorithm. For illustrative purposes, the eight-point decimation-in-frequency algorithm is given 

in Figure.  
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FIG.8-point FFT using two 4-point DFT 

 

 

Fig. Butterfly diagram for DIF-FFT Algorithm 
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Example :Find the FFT of a given sequence x(n)={1,2,3,4}by using DIF-FFT Algorithm? 

 

Example :Find the IFFT of a given sequence x(k)={10,-2+2j,-2,-2-2j}by using DIF-IFFT 

Algorithm? 

 



DIGITAL SIGNAL PROCESSING 

 

  Page 54 
 

Unit 3 

IIR FILTERS 

 
ANALOG FILTER APPROXIMATIONS: 

 

Basically a digital filter is a linear time invariant discrete time system. The terms infinite 

impulse response (IIR) and finite impulse response (FIR) are used to distinguish filter types. The 

FIR filters are of non-recursive type, where the present output sample depends on present and 

previous input samples. IIR are of non-recursive type where the present output depends on 

previous and past input samples and output samples.  

FREQUENCY SELECTIVE FILTERS: 

 A filter is one which rejects unwanted frequencies from the input and allows the desired 

frequencies to obtain the required shape of output signal. The range of frequencies that are 

passed through the filter is called pass band and those frequencies that are blocked are called stop 

band. The filters are of different types : 

1.Low Pass Filter 2.High Pass  Filter 3.Band Pass Filter 4.Band Reject Filter 

 

DESIGN OF DIGITAL FILTERS FROM ANALOG FILTERS: 

 For the given specifications of a digital filter the derivation of digital filter transfer 

function requires three steps: 

1. Map the desired digital filter specifications into equivalent analog filter. 

2. Obtain the analog transfer function. 

3. Transfer the analog transfer function to equivalent digital filter transfer function. 

   

                                                                     

Fig (a): Magnitude response of analog LPF              Fig (b): Magnitude response of digital LPF 
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Where, 

                        𝜔𝑝 = Pass band frequency in radians 

                        𝜔𝑠 = Stop band  frequency in radians 

                       𝜔𝑐 = 3dB cutoff frequency in radians 

                     ε   = Parameter specifying allowable Pass band  

                     λ   = Parameter specifying allowable Stop band 

 

Fig : Alternate specification of magnitude response of LPF               

 

                 𝛿𝑝 = Pass band error tolerance 

                 𝛿𝑠 = Stop band error tolerance 

     

The relation between parameters are  

  ε   = 2
√𝛿𝑝

1−𝛿𝑝
     and   λ   = 

√(1+𝛿𝑝)
2
−𝛿𝑠

2

            𝛿𝑠 
 

  

ANALOG LOW PASS FILTER DESIGN: 

 The general form of analog filter transfer function is  

H(s) = 
𝑁(𝑠)

𝐷(𝑠)
 = 

∑ 𝑎𝑖 𝑠
𝑖𝑀

𝑖=0

1+∑ 𝑏𝑖 𝑠𝑖
𝑁
𝑖=1

 

Where H(s) is the Laplace Transform of  impulse response of h(t) and N≥M must be satisfied. 

For a stable analog filter the poles of H(s) lies in the left half of the s-plane. 

The two types of analog filters we design are: 1.Butterworth Filter 2.Chebyshev Filter. 
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ANALOG LOW PASS BUTTERWORTH FILTER: 

The squared magnitude response of butterworth low pass filter is given by 

 

Where, N= Order of the filter  

 Ωc = Cutoff frequency 

The magnitude response decrease monotonically as shown in figure and the maximum response 

is unity at Ω=0 ie,.. as the N increases the response approaches ideal low pass characteristics.  

 

 

 

 

 

 

 

 

 

             Fig:  Low Pass butterworth magnitude response. 

 

We can get magnitude square function of normalized butterworth filter(1 rad/sec cut off 

frequency) as 

    |H(jΩ)|2=
1

1+Ω2𝑁
      N=1,2,3… 

 

For transfer function of stable filter substitute Ω=s/j in above eqn. 

    

|H(jΩ)|2=|H(Ω)|2=H(-s2)=H(jΩ)H(-jΩ)= 
1

1+(
𝑠

𝑗
)2𝑁
       

H(s)H(-s)= 
1

1+(−1)𝑁𝑠2𝑁
= 

1

1+(−𝑠2)𝑁
 

 

Equating denominator to zero, poles are obtained 

   i.e 1 + (−𝑠2)𝑁=0 

for N odd, the above equation reduces to s2N = 1=ej2πk 
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now the roots can be found as sk= ejπk/N      k=1,2,3,………2N 

  

for N even,  the above equation reduces to s2N = -1=ej(2k-1)π  

                                           which gives     sk= ej(2k-1)π/2N     k=1,2,3…. 

Note: The poles which lie in the left half of the s plane, the same can be found using the formula                         

           sk=ejφ
k where φk=

𝜋

2
+
(2𝐾−1)𝜋

2𝑁
                 k=1,2,3………..N 

 

LIST OF BUTTERWORTH POLYNOMIALS: 

 

 
 

The unnormalised poles are given by sk’=Ωcsk. 

The transfer function of butterworth filter can be obtained by substituting   s s/Ωc 

ORDER OF FILTER 

The magnitude function is given as 

                                |H(jΩ)|2=
1

1+ε2(
Ω

Ωp
)2N

 

Taking log on both sides 

                         20 log |H(jΩ)|=10log1-10log[1 + ε2(
Ω

Ωp
)2N] 

at pass band frequency the attenuation is equal to αp 
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                       20 log |H(jΩp)|=  - αp= -10log[1 + ε2] 

                                         αp=10log[1 + ε2] 

                                      0.1 αp=log[1 + ε2] 
By taking antilog on both sides  

                                                     ε=(100.1 α
p-1)1/2 

at stop band frequency  the minimum attenuation is equal to αs 

 

20 log |H(jΩ)|=10log1-10log[1 + ε2(
Ωs

Ωp
)2N] 

20 log |H(jΩp)|=  - αs= -10log[1 + ε2(
Ωs

Ωp
)2N] 

                                0.1αs=log[1 + ε2(
Ωs

Ωp
)2N] 

                                      (
Ωs

Ωp
)2N=

100.1 αs−1

100.1 αp−1
 

Taking log on both sides 

                                        N    =     

𝑙𝑜𝑔√10
0.1 αs

−1

10
0.1 αp

−1

𝑙𝑜𝑔
Ωs
Ωp

 

Round off N to next higher integer.     

                                             N     ≥    

  𝑙𝑜𝑔√10
0.1 αs

−1

10
0.1 αp

−1

𝑙𝑜𝑔
Ωs
Ωp

 

                                           N     ≥    
  log (

𝜆

𝜀
)

𝑙𝑜𝑔
Ωs
Ωp

     where λ2=[100.1 αs − 1]𝑎𝑛𝑑 ε2=[100.1 αp − 1] 

For simplicity A=
𝜆

𝜀
    and k=

Ωp

Ωs
   the transition ratio 

 

Therefore, the order of the low pass butterworth analog filter    N=
  log A

log
1

𝑘
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ANALOG LOW PASS CHEBYSHEV FILTER 
 

The magnitude squared response of the analog lowpassType I Chebyshevfilter of Nth order is 

given by: 

|H(W)|2= 1/[1 + e2TN2(W/Wp)]. 

where TN(W) is the Chebyshev polynomial of order N: 

TN(W) = cos(Ncos-1W),|W| ≤1, 

                                    = cosh(Ncosh-1W),|W| > 1. 

The polynomial can be derived via a recurrence relation given by 

Tr(W) = 2WTr-1(W) –Tr-2(W),r ≥2, with T0(W) = 1 and T1(W) = W. 

The magnitude squared response of the analog lowpassType II or inverse Chebyshevfilter of Nth 

order is given by: 

|H(W)|2= 1/[1 + e2{TN(Ws/Wp)/ TN(Ws/W)}2].  

Equiripple in the passband and monotonic in the stopband. 

Or equiripple in the stopband and monotonic in the passband. 
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DESIGN OF IIR FILTER FROM ANALOG FILTERS 

 

1. IMPULSE INVARIANCE 

2. STEP INVARIANT 

3. BILINEAR TRANSFORMATION 

Impulse Invariance Method is simplest method used for designing IIR Filters. Important 

Features of this Method are 

1. In impulse variance method, Analog filters are converted into digital filter just by replacing 

unit sample response of the digital filter by the sampled version of impulse response of analog 

filter. Sampled signal is obtained by putting t=nT hence h(n) = ha(nT) n=0,1,2. …………. 

where h(n) is the unit sample response of digital filter and T is sampling interval. 

2. But the main disadvantage of this method is that it does not correspond to simple algebraic 

mapping of S plane to the Z plane. Thus the mapping from analog frequency to digital frequency 
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is many to one. The segments (2k-1)Π/T ≤ Ω ≤ (2k+1) Π/T of jΩ axis are all mapped on the unit 

circle Π≤ω≤Π. This takes place because of sampling. 

3. Frequency aliasing is second disadvantage in this method. Because of frequency aliasing, the 

frequency response of the resulting digital filter will not be identical to the original analog 

frequency response. 

4. Because of these factors, its application is limited to design low frequency filters like LPF or 

a limited class of band pass filters. 

RELATIONSHIP BETWEEN Z PLANE AND S PLANE 

 In impulse invariant method the IIR filter is designed such that unit impulse response h(n) 

of digital filter is the sampled version of the impulse response of analog filter. 

 The Z transform of IIR is given by  

H(Z)=∑ ℎ(𝑛)𝑧−𝑛∞
𝑛=0  

H(Z)/z=esT =∑ ℎ(𝑛)𝑒−𝑠𝑇𝑛∞
𝑛=0  

Z is represented as rejω in polar form and relationship between Z plane and S plane is given as 

Z=eST  where s= σ + j Ω. 

Z= eST (Relationship Between Z plane and S plane) 

Z= e (σ + j Ω) T 

= e σ T . e j Ω T 

Comparing Z value with the polar form we have. 

r= e σ T and ω = Ω T 

Here we have three condition 

1) If σ = 0 then r=1 

2) If σ < 0 then 0 < r < 1 

3) If σ > 0 then r> 1 

Thus 

1) Left side of s-plane is mapped inside the unit circle. 

2) Right side of s-plane is mapped outside the unit circle. 

3) jΩ axis is in s-plane is mapped on the unit circle. 

 
Im(z)

) 
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Fig: Impulse invariant pole mapping 

  

 

=∑
𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑍−1
𝑁
𝑘=1  

Using the standard relation and comparing equ 1 and 4  

If  Ha(s)=∑
𝑐𝑘

𝑠−𝑝𝑘

𝑁
𝑘=1  then H(z)= ∑

𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑍−1
𝑁
𝑘=1  

S plane 
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Steps to design Digital IIR Filter using impulse invariant technique: 

1. For the given specifications, find Ha(s), transfer function of an analog filter. 

2. Select the sampling rate of the digital filter . 

3. Express the analog filter transfer function as the sum of single pole filters. 

Ha(s)= ∑
𝑐𝑘

𝑠−𝑝𝑘

𝑁
𝑘=1  

4. Compute the z transform of the digital filter by using the formula. 

H(z)= ∑
𝑐𝑘

1−𝑒𝑝𝑘𝑇𝑍−1
𝑁
𝑘=1  

Example: 

 

STEP INVARIANT METHOD: 

              The step response y(t) is defined as the output of a LTI system due to a unit step input 

signal x(t)=u(t).Then  

X(s)= 
1

𝑠
 and Y(s)= X(s)H(s)= 

1

𝑠
 H(s). 

We know that a digital filter is equivalent to an analog filter in the sense of time domain 

invariance, if equivalent input yield equivalent outputs. 

Therefore the sampled input to digital filter is x(nT)=x(n)=u(n)Then  

X(z)=   
1

1−z−1     
 and y(n)=y(nT). 

The transfer function of the digital filter is given by  

H(z)= Y(z)/X(z)=(1-z-1)Y(z). 
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BILINEAR TRANSFORMATION METHOD: 
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                                 Ω=
𝟐 

𝑻

𝒔𝒊𝒏𝝎

𝟏+𝒄𝒐𝒔𝝎
 

             Up on simplification, we get 

 

 

WARPING EFFECT 

 Let Ω and ω represents the frequency variables in the analog filter and the derived digital 

filter resp.  

Ω=
𝟐 

𝑻
 tan

𝝎

𝟐
 

For small value of ω 

Ω=
𝟐 

𝑻

𝝎

𝟐
=
𝝎

𝑻
 

ω=ΩT 

For low frequencies the relation between ω and Ω are linear, as a result the digital filter have the 

same amplitude response as analog filter. For high frequencies however the relation between      

ω and Ω becomes nonlinear and distortion is introduced in the frequency scale of digital filter to 

that of analog filter. This is known as warping effect. 

 

 

 

 

 

Fig:  Relationship between ω and Ω 
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The influence of the warping effect on amplitude response is shown in figure below. The analog 

filter with a number of pass bands centered at regular intervals. The derived digital filter will 

have same number of pass bands. But the centre frequencies and bandwidth of higher frequency 

pass band will tend to reduce disproportionately. 

 

 

 

 

 

 

 Fig : Effect on magnitude response due to warping effect 

 

The influence of warping effect on the phase response is as shown  below ,Considering an analog 

filter with linear phase response, the phase response of derived digital filter will be non linear. 

 

 

 

 

 

 

 

 

 

 

 

ω 

ΩT 

Ω 

             ∟H(jΩ) ∟H(ejω) 
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Prewarping  

       The prewarping effect can be eliminated by prewarping the analog filter. This can be done 

by finding prewarping analog frequencies using the formula 

 Ω=
𝟐 

𝑻
 tan

𝝎

𝟐
 

Therefore we have  Ωp=
𝟐 

𝑻
 tan

𝝎𝒑

𝟐
 

And   Ωs=
𝟐 

𝑻
 tan

𝝎𝒔

𝟐
 

STEPS TO DESIGN DIGITAL FILTER USING BILINEAR TRANSFORM 

TECHNIQUE: 

1. From the given specifications, find prewarping analog frequencies using formula         

Ω=
𝟐 

𝑻
 tan

𝝎

𝟐
. 

2. Using the analog frequencies find H(s) of the analog filter. 

3. Select the sampling rate of the digital filter, call it T sec/sample. 

4. Substitute z = 
2

 𝑇
 
1−𝑧−1

1+𝑧−1
  into the transfer function. 

 

SPECTRAL TRANSFORMATIONS: 

IN ANALOG DOMAIN : A analog low pass filter can be converted into a analog High Pass, 

Band Stop, Band Pass or another Low Pass digital filter as given below 

 

Low Pass to Low Pass: 

s 
𝒔

Ω𝒄
 

Low Pass to High Pass: 

s     
Ω𝒄

𝒔
 

 

Low Pass to Band Pass: 

s         
𝒔𝟐+Ω𝒍Ω𝒖

𝒔(Ω𝒖−Ω𝒍)
 

 

Low Pass to Band Stop: 

s    
𝒔(Ω𝒖−Ω𝒍)

𝒔𝟐+Ω𝒍Ω𝒖
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IN DIGITAL DOMAIN:  

A digital low pass filter can be converted into a digital High Pass, Band Stop, Band Pass 

or another Low Pass digital filter as given below 

Low Pass to Low Pass: 

Z-1                
𝒛−𝟏−𝛂

𝟏−𝛂𝒛−𝟏
    

Where α =
𝐬𝐢𝐧[(𝛚𝐩−𝛚𝐩’)/𝟐]

𝐬𝐢𝐧[(𝛚𝐩+𝛚𝐩’)/𝟐]
 

ω
p = Pass band frequency of low pass filter 

ω
p’ = Pass band frequency of new filter 

 

Low Pass to High Pass: 

Z-1              --- [
𝒛−𝟏+𝛂

𝟏+𝛂𝒛−𝟏
]         

Where α =    −
𝐜𝐨𝐬[(𝛚𝐩+𝛚𝐩’)/𝟐]

𝐜𝐨𝐬[(𝛚𝐩′−𝛚𝐩)/𝟐]
 

ω
p = Pass band frequency of low pass filter 

ω
p’ = Pass band frequency of high pass filter 

 

Low Pass to Band Pass: 

Z-1              --- [
𝒛−𝟐−

𝟐∝𝐤
𝟏+𝐤

𝐳−𝟏+
𝐤−𝟏
𝐤+𝟏

𝒌−𝟏
𝒌+𝟏

𝒛
−𝟐
−
𝟐∝𝒌
𝑲+𝟏

𝒛−𝟏+𝟏
]         

         Where α=
𝐜𝐨𝐬 (𝝎𝒖+𝝎𝒍)/𝟐

𝐜𝐨𝐬 (𝝎𝒖−𝝎𝒍)/𝟐
 and  k= [(𝐜𝐨𝐭 (𝝎𝒖 −𝝎𝒍))/𝟐][tan (𝝎𝒑/2)] 

                        𝜔𝑢  = Upper cutoff frequency 

                        𝜔𝑙 = Lower cutoff frequency 

Low Pass to Band Stop: 

Z-1              --- [
𝒛−𝟐−

𝟐∝𝐤
𝟏+𝐤

𝐳−𝟏+
𝟏−𝐤
𝐤+𝟏

𝟏−𝒌  
𝒌+𝟏

𝒛
−𝟐
−
𝟐∝𝒌
𝑲+𝟏

𝒛−𝟏+𝟏
] 

         Where α=
𝐜𝐨𝐬 (𝝎𝒖+𝝎𝒍)/𝟐

𝐜𝐨𝐬 (𝝎𝒖−𝝎𝒍)/𝟐
 and  k= [(𝐭𝐚𝐧(𝝎𝒖 −𝝎𝒍))/𝟐][tan (𝝎𝒑/2)] 

                        𝜔𝑢  = Upper cutoff frequency 

                        𝜔𝑙 = Lower cutoff frequency 
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PROBLEMS 

1. 
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2. 

 

Solution: 
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UNIT 4 

FIR FILTERS 

4.1 INTRODUCTION 

 

The FIR Filters can be easily designed to have perfectly linear Phase. These filters can be 

realized recursively and Non-recursively. There is greater flexibility to control the Shape of their 

Magnitude response. Errors due to round off noise are less severe in FIR Filters, mainly because 

Feedback is not used. 

 

4.2 FEATURES OF FIR FILTER: 

 

1. FIR filter always provides linear phase response. This specifies that the signals in the pass 

band will suffer no dispersion Hence when the user wants no phase distortion, then FIR 

filters are preferable over IIR. Phase distortion always degrades the system performance. In 

various applications like speech processing, data transmission over long distance FIR filters 

are more preferable due to this characteristic. 

 

2. FIR filters are most stable as compared with IIR filters due to its non feedback nature. 

 

3. Quantization Noise can be made negligible in FIR filters. Due to this sharp cutoff 

FIR filters can be easily designed. 

 

4. Disadvantage of FIR filters is that they need higher ordered for similar magnitude response of 

IIR filters. 

 

4.3 FIR SYSTEM ARE ALWAYS STABLE. Why? 

 

Proof: Difference equation of FIR filter of length M is given as 

                                 M-1 

                         y(n)=Σ bk x(n–k)  

                                  k=0 

 

And the coefficient bk are related to unit sample response as 

 

H(n) = bn for 0 ≤ n ≤ M-1 

       = 0 otherwise. 

 

We can expand this equation as 

 

Y(n)= b0 x(n) + b1 x(n-1) + …….. + bM-1 x(n-M+1)  

 

System is stable only if system produces bounded output for every bounded input. This is 

stability definition for any system. 

Here h(n)={b0, b1, b2, } of the FIR filter are stable. Thus y(n) is bounded if input x(n) is 
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bounded. This means FIR system produces bounded output for every bounded 

input. Hence FIR systems are always stable. 

 

4.4 SYMMETRIC AND ANTI-SYMMETRIC FIR FILTERS: 

 

1. Unit sample response of FIR filters is symmetric if it satisfies following condition. 

h(n)= h(M-1-n) n=0,1,2…………….M-1 

2. Unit sample response of FIR filters is Anti-symmetric if it satisfies following condition 

h(n)= -h(M-1-n) n=0,1,2…………….M-1 

 

4.5 FIR FILTER DESIGN METHODS: 

 

The various method used for FIR Filer design are as follows 

1. Fourier Series method 

2. Windowing Method 

3. DFT method 

4. Frequency sampling Method. (IFT Method) 

 

GIBBS PHENOMENON: 

 

Consider the ideal LPF frequency response as shown in Fig 1 with a 

normalizing angular cut off frequency Ωc. 

 

 

Impulse response of an ideal LPF is as shown in Fig 2. 

 

 
1. In Fourier series method, limits of summation index is -∞ to ∞. But filter must have finite 

terms.Hence limit of summation index change to -Q to Q where Q is some finite integer. But this 

type of truncation may result in poor convergence of the series. Abrupt truncation of infinite 
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series is equivalent to multiplying infinite series with rectangular sequence. i.e at the point of 

discontinuity some oscillation may be observed in resultant series. 

2. Consider the example of LPF having desired frequency response Hd (ω) as shown in figure. 

The oscillations or ringing takes place near band-edge of the filter. 

 

3. This oscillation or ringing is generated because of side lobes in the frequency response 

W(ω) of the window function. This oscillatory behavior is called "Gibbs Phenomenon”. 

 

Truncated response and ringing effect is as shown in fig 3. 

 

 
4.6 WINDOWING TECHNIQUE: 

 

   Windowing is the quickest method for designing an FIR filter. A windowing function simply 

truncates the ideal impulse response to obtain a causal FIR approximation that is non causal and 

infinitely long. Smoother window functions provide higher out-of band rejection in the filter 

response. 

   However this smoothness comes at the cost of wider stopband transitions.Various windowing 

method attempts to minimize the width of the main lobe (peak) of the frequency response. In 

addition, it attempts to minimize the side lobes (ripple) of the frequency response. 

 

 

 
Rectangular Window: Rectangular This is the most basic of windowing methods. It does not 

require any operations because its values are either 1 or 0. It creates an abrupt discontinuity that 

results in sharp roll-offs but large ripples. 
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Rectangular window is defined by the following equation. 

 

 
Triangular Window: The computational simplicity of this window, a simple convolution of two 

rectangle windows, and the lower sidelobes make it a viable alternative to the rectangular 
window. 

 
 

 
 

 

Kaiser Window: This windowing method is designed to generate a sharp central peak. It has 

reduced side lobes and transition band is also narrow. Thus commonly used in FIR filter design. 
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Hamming Window: This windowing method generates a moderately sharp central peak. Its 

ability to generate a maximally flat response makes it convenient for speech processing filtering. 

 
 

 

 
Hanning Window: This windowing method generates a maximum flat filter design. 
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WINDOWING  FUNCTIONS  FOR 

RECTANGULAR,HANNING,HAMMING,BLACKMAN WINDOWS 

 
 

 
 

 

4.7 DESIGNING FILTER FROM POLE ZERO PLACEMENT: 

 

Filters can be designed from its pole zero plot. Following two constraints should be 

imposed while designing the filters. 

 

1. All poles should be placed inside the unit circle on order for the filter to be stable. However 

zeros can be placed anywhere in the z plane. FIR filters are all zero filters hence they are always 

stable. IIR filters are stable only when all poles of the filter are inside unit circle. 

 

2. All complex poles and zeros occur in complex conjugate pairs in order for the filter 

coefficients to be real. 
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    In the design of low pass filters, the poles should be placed near the unit circle at points 

corresponding to low frequencies ( near ω=0)and zeros should be placed near or on unit circle at 

points corresponding to high frequencies (near ω=Π). The opposite is true for high pass filters. 

 

 

 

 

 

4.8 FREQUENCY SAMPLING METHOD FOR DESIGNING FIR DIGITAL FILTERS: 
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4.9 COMPARISON BETWEEN FIR AND IIR DIGITAL FILTERS: 
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PROBLEMS 

 

solution:  
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UNIT-5 

MULTIRATE SIGNAL PROCESSING 

                     INTRODUCTION: 

   Multirate means "multiple sampling rates". A   multirate DSP system uses multiple 

sampling rates within the system. Whenever a signal at one rate has to be used by a system that 

expects a different rate, the rate has to be increased or decreased, and some processing is required to 

do so. Therefore "Multirate DSP" really refers to the art or science of changing sampling  

          Need  of  Multirate DSP: 

The most immediate reason is when you need to pass data between two systems which 

use incompatible sampling rates. For example, professional audio systems use 48 kHz rate, but 

consumer CD players use 44.1 kHz; when audio professionals transfer their recorded music to 

CDs, they need to do a rate conversion.But the most common reason is that multirate DSP can 

greatly increase processing efficiency (even by orders of magnitude!), which reduces DSP 

system cost. This makes the subject of multirate DSP vital to all professional DSP practitioners 

          Categories of Multirate: Multirate consists of: 

1. Decimation: To decrease the sampling rate, 

2. Interpolation: To increase the sampling rate,  

3. Resampling:To combine decimation and interpolation in order to change the sampling 

rate by a fractional value that can be expressed as a ratio. For example, to resample by a 

factor of 1.5, you just interpolate by a factor of 3 then decimate by a factor of 2 (to 

change the sampling rate by a factor of 3/2=1.5.) 

APPLICATIONS: 

1. Used in A/D and D/A converters. 

2. Used to change the rate of a signal. When two devices that operate at different rates are to be 

interconnected, it is necessary to use a rate changer between them. 

3. In transmultiplexers 

4. In speech processing to reduce the storage space or the transmitting rate of speech data. 

5. Filter banks and wavelet transforms depend on multi rate methods. 
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DOWN SAMPLING: 

              The process of reducing a sampling rate by an integer factor is  referredto as down 

sampling of a data sequence. We also refer to down sampling as ''decimation''. To down 

sample a data sequence x(n) by an integer factor of M, we use the following notation: 

 

y(m) = x(mM) 

Where y(m) is the down sampled sequence, Obtained by taking a sample from the data 

sequence x(n) for every M samples (discarding M – 1 samples for every M samples). As an 

example, if the original sequence with a sampling period T = 0.1 second (sampling rate = 10 

samples per sec) is given by 

Consider  x(n):8 7 4 8 9 6 4 2 –2 –5 –7 –7 –6 –4 … 

and we down sample the data sequence by a factor of 3, we obtain the down sampled sequence 

as 

y(m):8   8   4   –5   –6 … , 

with the resultant sampling period T = 3 × 0.1 = 0.3 second (the sampling rate now is 3.33 

samples per second).  

From the Nyquist sampling theorem, it is known that aliasing can occur in the down sampled 

signal due to the reduced sampling rate. After down sampling by a factor of M, the new sampling 

period becomes MT, and therefore the new sampling frequency is 

fsM = 1/(MT) = fs /M, 

where fs is the original sampling rate. 

Hence, the folding frequency after down sampling becomes 

fsM/2 = fs/(2M). 
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This tells us that after down sampling by a factor of M, the new folding frequency will be 

decreased M times. If the signal to be down sampled has frequency components larger than the 

new folding frequency, f > fs/(2M), aliasing noise will be introduced into the down sampled data. 

To overcome this problem, it is required that the original signal x(n) be processed by a low pass 

filter H(z) before down sampling, which should have a stop frequency edge at fs/(2M) (Hz). The 

corresponding normalized stop frequency edge is then converted to be 

Ωstop = 2π (fs/(2M)) T = π/M radians. 

In this way, before down sampling, we can guarantee that the maximum frequency of the filtered 

signal satisfies                                      fmax < fs/(2M), 

such that no aliasing noise is introduced after down sampling. A general block diagram of 

decimation is given in Figure, where the filtered output in terms of the z-transform can be written 

as                                                           W(z) = H(z)X(z), 

where X(z) is the z-transform of the sequence to be decimated,x(n), and H(z) is the lowpass filter 

transfer function. After anti-aliasing filtering, the down sampled signal y(m) takes its value from 

the filter output as:                                 y(m) = w(mM). 

The process of reducing the sampling rate by a factor of 3 is shown in Figure The corresponding 

spectral plots for x(n),w(n), and y(m) in general are shown in Figure  

 

 

 

 

 

 

 

Figure. Block diagram of the downsampling process with M = 3 
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Example:1:  If x(n) = {1, -1, 2, 4, 0, 3, 2, 1, 5,….} 

Then y(m)= x(mM) for M = 2 is   

 Y (m) = {1, 2, 0, 2, 5,….} 

i.e if we left M-1 samples inbetween samples of x(n) to generate y(m). 

 

Figure  Spectrum after down sampling. 
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UP-SAMPLER : 

 

Increasing a sampling rate is a process of upsampling by an integer factor of L. This process is 

described as follows: 

 

y(m) =  x(m/L) 

where n = 0, 1, 2, … , x(n) is the sequence to be up sampled by a factor of L, and y(m) is the up 

sampled sequence. As an example, suppose that the data sequence is given as follows: 

x(n) : 8   8   4   –5   –6 … 

After up sampling the data sequence x(n) by a factor of 3 (adding L– 1 zeros for each sample), 

we have the up sampled data sequence w(m) as: 

w(m): 8 0 0  8 0 0  4 0 0  –5 0 0  –6 0 0 … 

The next step is to smooth the up sampled data sequence via an interpolation filter. The process 

is illustrated in Figure  

 

 

 

 

 

 

 

Figure  Block diagram for the upsampling process with L = 3. 
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Similar to the downsampling case, assuming that the data sequence has the current sampling 

period of T, the Nyquist frequency is given by fmax = fs/2. After upsampling by a factor ofL, the 

new sampling period becomes T/L, thus the new sampling frequency is changed to be 

fsL = Lfs. (12.10) 

This indicates that after up sampling, the spectral replicas originally centered at fs, 2fs, … are 

included in the frequency range from 0 Hz to the new Nyquist limit Lfs=2 Hz, as shown in 

Figure. To remove those included spectral replicas, an interpolation filter with a stop frequency 

edge of fs=2 in Hz must be attached, and the normalized stop frequency edge is given by 

Ωstop = 2π (fs/2) × (T/L) = π/L radians. 

 

Figure  Spectra before and after upsampling. 
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After filtering via the interpolation filter, we will achieve the desired spectrum for y(n), as shown 

in Figure 5.2.b. Note that since the interpolation is to remove the high-frequency images that are 

aliased by the upsampling operation, it is essentially an anti-aliasing lowpass filter. 

Example: If x(n) = {1, -1, 2, 4,  3, ,….} 

Then y(m)= x(m/L) for L = 3 is   

 Y (m) = {1, 0, 0,-1,0, 0,2,0, 0, 4, 0, 0, 3, 0, 0,,….} 

 

SAMPLE RATE CONVERSION: 

 In Decimation and Interpolation, sampling rate conversion is achieved by Integer Factor. When 

sampling rate conversion requires by non integer factor, we need to perform sampling rate 

conversion by rational factor I/D . 

 Perform Interpolation by a Factor I. 

 Filter the output of  interpolator using a Low Pass (Anti Imaging Filter) with the 

Bandwidth of π/I. 

 The output of Anti Imaging Filter is Passed through a another Low Pass Filter ( Anti 

Aliasing Filter) to limit the bandwidth of signal to π/D. 

 Finally Signal Band limited to π/D is decimated by factor D.  
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 The anti Imaging Filter and anti Aliasing Filter are operated at same sampling rate and 

hence can be replaced by simple lowpass filter with cut off frequency, 

Wc = min[π/I, π/D] 

It is Important to note that, in order to preserve the spectral characteristics of x(n), the 

interpolation has to be performed first and decimation is to performed next 

 

Example: Show that the upsampler  and down sampler  are time variant systems. 

 Consider a factor of L upsampler defined by  

     y(n) = x(n/L) 

             The o/p due to delayed i/p is 

                  y( n, k) = x(n/L - k) 

          the delayed output is 

                 y(n-k) = x[(n-k)/L] 

  y(n ,k ) ≠ y(n-k)    

        therefore up sampler is a time variant systems. 

        Similarly for down sampler  

                 Y(n) = x(nM) 

                 y(n,k) = x(nM-k) 

                y(n-k) = x(M(n-k)) 

                 y(n ,k ) ≠ y(n-k)    

Therefore down sampler is a time variant systems. 

 

 

 

 

 

FINITE WORD LENGTH EFFECTS 

5.6 NUMBER REPRESENTATION:  
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    In digital signal processing,  (B +1)-bit fixed-point numbers are usually  represented as two’s- 

complementsigned fractions in the format  bo b-ib-2 …… b-B  

The number represented is then  

 

where bo is the sign bit and the number range is —1 <X <1. The advantage of this representation 

is that the product of two numbers in the range from — 1 to 1 is another number in the same 

range. Floating-point numbers are represented as 

 

where s is the sign bit, mis the mantissa, and cis the characteristic or exponent.To make the 

representation of a number unique, the mantissa is normalized so that 0.5 <m <1. 

Although floating-point numbers are always represented in the form of , the way in which this 

representation is actually storedin a machine may differ. Since m >0.5, it is not necessary to store 

the 2-1-weight bit of m, which is always set. Therefore, in practice numbers are usually stored as 

 

where fis an unsigned fraction, 0 <f <0.5.  

Most floating-point processors now use the IEEE Standard 754 32-bit floating point format for 

storing numbers. According to this standard the exponent is stored as an unsigned integer pwhere  

p = c +126 

Therefore, a number is stored as 

 

where s is the sign bit, fis a 23-b unsigned fraction in the range 0 <f <0.5, and p is an 8-b 

unsigned integer in the range 0 <p <255. The total number of bits is 1 + 23 + 8 = 32. For 

example, in IEEE format 3/4 is written (-1)0(0.5 + 0.25)2° so s =0, p =126, and f =0.25. The 

value X =0 is a unique case and is represented by all bits zero (i.e., s = 0, f =0, and p =0). 

Although the 2-1-weight mantissa bit is not actually stored, it does exist so the mantissa has 24 b 

plus a sign bit. 

5.7 FIXED-POINT QUANTIZATION ERRORS : 

 In fixed-point arithmetic, a multiply doubles the number of significant bits. For  example, the 

product of the two 5-b numbers 0.0011 and 0.1001 is the 10-b number 00.000 110 11. The extra 

bit to the left of the decimal point can be discarded without introducing any error. However, the 



DIGITAL SIGNAL PROCESSING 

 

  Page 98 
 

least significant four of the remaining bits must ultimately be discarded by some form of 

quantization so that the result can be stored to 5 b for use in other calculations. In the example 

above this results in 0.0010 (quantization by rounding) or 0.0001(quantization by truncating). 

When a sum of products calculation is performed, the quantization can be performed either after 

each multiply or after all products have been summed with double length precision. 

We will examine three types of fixed-point quantization—rounding, truncation, and magnitude 

truncation. If X is an exact value, then the rounded value will be denoted Qr(X),the truncated 

value Qt(X),and the magnitude truncated value Qmt(X).If the quantized value has Bbits to the 

right of the decimal point, the quantization step size is 

 

Since rounding selects the quantized value nearest the unquantized value, it gives a value which 

is never more than ± A /2 awayfrom the exact value. If we denote the rounding error by 

 

Truncation simply discards the low-order bits, giving a quantized value that is always less than 

or equal to the exact value so 

 

Magnitude truncation chooses the nearest quantized value that has a magnitude less than or equal 

to the exact value so 

 

 

 

The error resulting from quantization can be modeled as a random variable uniformly distributed 

over the appropriate error range. Therefore, calculations with roundoff error can be considered 

error-free calculations that have been corrupted by additive white noise. The meanof this noise 

for rounding is 
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where E{}represents the operation of taking the expected value of a random variable. Similarly, 

the variance of the noise for rounding is 

 

Like wise for truncation, 

 

And for magnitude truncation, 

 

5.8 FLOATING-POINT QUANTIZATION ERRORS: 

 With floating-point arithmetic it is necessary to quantize after both multiplications  and 

additions. The addition quantization arises because, prior to addition, the mantissa of the smaller 

number in the sum is shifted right until the exponent of both numbers is the same. In general, this 

gives a sum mantissa that is too long and so must be quantized. We will assume that quantization 

in floating-point arithmetic is performed by rounding. Because of the exponent in floating-point 

arithmetic, it is the relative error that is important. The relative error is defined as 

 

 

5.9 ROUNDOFF NOISE: 

 To determine the roundoff noise at the output of a digital filter we will assume that the noise due 

to a quantization is stationary, white, and uncorrelated with the filter input, output, and internal 
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variables. This assumption isgood if the filter input changes from sample to sample in a 

sufficiently complex manner. It is not valid for zero or constant inputs for which the effects of 

rounding are analyzed from a limit cycle perspective. 

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters is often 

calculated for the case of a zero-mean white noise filter input signal x(n)of variance a1. This 

simplifies calculation of the output roundoff noise because expected values of the form 

E{x(n)x(n — k)}are zero for k =0 and give a2 when k =0. This approach to analysis has been 

found to give estimates of the output roundoff noise thatare close to the noise actually observed 

for other input signals. 

Another assumption that will be made in calculating roundoff noise is that the product of two 

quantization errors is zero. To justify this assumption, consider the case of a 16-b fixed-point 

processor. In thiscase a quantization error is of the order 2-15, while the product of two 

quantization errors is of the order 2-30, which is negligible by comparison. 

If a linear system with impulse response g(n)is excited by white noise with mean mx and 

variance a2, the output is noise of mean 

 

And variance 

 

Therefore, if g(n)is the impulse response from the point where a round off takes place to the filter 

output, the contribution of that round off to the variance (mean square value) of the output round 

off noise is given by  with a2 replaced with the variance of the round off. If there is more than 

one source of round off error in the filter, it is assumed that the errors are uncorrelated so the 

output noise variance is simply the sum of the contributions from each source. 
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5.10 LIMIT CYCLE OSCILLATIONS: 

A limit cycle, sometimes referred to as a multiplier round off limit cycle, is a low level 

oscillation that can exist in an otherwise stable filter as a result of the nonlinearity associated 

with rounding (or truncating) internal filter calculations . Limit cycles require recursion to exist 

and do not occur in non recursive FIR filters. As an example of a limit cycle, consider the 

second-order filter realized by 

 

where Qr{} represents quantization by rounding. This is stable filter with poles at 0.4375 ± 

j0.6585. Consider the implementation of this filter with 4-b (3-b and a sign bit) two’s 

complement fixed-point arithmetic, zero initial conditions (y(—1) = y(—2) = 0), and an input 

sequence x(n) =|S(n), where S(n)is the unit impulse or unit sample. The following sequence is 

obtained. 

Notice that while the input is zero except for the first sample, the output oscillates with 

amplitude 1/8 and period 6. Limit cycles are primarily of concern in fixed-point recursive filters. 

As long as floating-point filters are realized as the parallel or cascade connection of first- and 

second-order sub filters, limit cycles will generally not be a problem since limit cycles are 

practically not observable in first  and second-order systems implemented with 32-bit floating-

point arithmetic . It has been shown that such systems must have an extremely small margin of 
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stability for limit cycles to exist at anything other than underflow levels, which are at an 

amplitude of less than . There are at least three ways of dealing with limit cycles when fixed-

point arithmetic is used. One is to determine a bound on the maximum limit cycle amplitude, 

expressed as an integral number of quantization steps . It is then possible to choose a word length 

that makes the limit cycle amplitude acceptably low. Alternately, limit cycles can be prevented 

by randomly rounding calculations up or down. However, this approach is complicated to 

implement. The third approach is to properly choose the filter realization structure and then 

quantize the filter calculations using magnitude truncation . This approach has the disadvantage 

of producing more round off noise than truncation or rounding . 

5.11 OVERFLOW OSCILLATIONS: 

 With fixed-point arithmetic it is possible for filter calculations to overflow. This happens when 

two numbers of the same sign add to give a value having magnitude greater than one. Since 

numbers with magnitude greater than one are not representable, the result overflows. For 

example, the two’s complement numbers 0.101 (5/8) and 0.100 (4/8) add togive 1.001 which is 

the two’s complement representation of -7/8. 

 The overflow characteristic of two’s complement arithmetic can be represented  as R{} where 

 

 An overflow oscillation, sometimes also referred to as an adder overflow limit cycle, is a high- 

level oscillation that can exist in an otherwise stable fixed-point filter due to the gross 

nonlinearity associated with the overflow of internal filter calculations .Like limit cycles, 

overflow oscillations require  recursion to exist and do not occur  in non recursive FIR filters. 

Overflow oscillations also do not occur with floating-point arithmetic due to the virtual 

impossibility of overflow. 

Quantization:  

Total number of bits in x is reduced by using two methods namely Truncation and Rounding. 

These are known as quantization Processes.  

Input Quantization Error:  

The Quantized signal are stored in a b bit register but for nearest values the same digital 

equivalent may be represented. This is termed as Input Quantization Error.  

Product Quantization Error:  

The Multiplication of a b bit number with another b bit number results in a 2b bit number but it 

should be  stored in a b bit register. This is termed as Product Quantization Error.  
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Co-efficient Quantization Error:  

The Analog to Digital mapping of signals due to the Analog Co-efficient Quantization results in 

error due to the Fact that the stable poles marked at the edge of the jΩ axis may be marked as an 

unstable pole in the  digital domain.  

Limit Cycle Oscillations: 

If the input is made zero, the output should be made zero but there is an error occur due to the 

quantization effect that the system oscillates at a certain band of values.  

Overflow limit Cycle oscillations:  

Overflow error occurs in addition due to the fact that the sum of two numbers may result in 

overflow. To avoid overflow error saturation arithmetic is used.  

Dead band:  

The range of frequencies between which the system oscillates is termed as Deadband of the 

Filter. It may have a fixed positive value or it may oscillate between a positive and negative 

value.  

Signal scaling:  

The inputs of the summer is to be scaled first before execution of the addition operation to find 

for any possibility of overflow to be occurredafter addition. The scaling factor s0is multiplied 

with the inputs to avoid overflow.  

  

  

 

 

 

 

 

 

 


