College of Engineering & Technology
UGC Autonomous Institution

@
e
e Recognized under 2(0) & 12(8) of UGC Act 1956,
MAAGC, Approved by AICTE &

=]
. INSTITUTION'S
¥ INNOVATION
| COUNCIL
(W niwITy of Eheteion irelislive]
Estd. 2007 Permamnently Adfiliated to JNTUH

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

HANDS ON TRAINING COURSE
ON

STARTS ON January 2, 2022

In association with TLC

Registration : Free
Course Duration : 4 Week

Weekend Course (Saturday)
Invited Participants: Third Year ECE, EEE, CSE
Restricted to 30 Participants/Slot
Resource Persons: In-house Trainers

Coordinators Convener Principal
Mr. E.Parasuramu Prof.k.Ashok Babu Dr.G.Suresh
Q989575859

[elypn|N BYSLIYS IUOWBUY ZLyovLyasl Il
N3YSIYqy SISO LNWSA ZNPOVLPALL 9l
(LY umEEm;oﬂdeﬂ_w LHYOVLYALL =
pno9 Aeulyqy [es ¥ 6HPOVLYPALL pL
elpuaneybey Ij16uer Zerovsyast el
powe.d Ipiddniy 6370V LYALL zL

eueluesg | 8IvovLIyaLL Ll

Appay Yoayuey Iyjey pYPOVLYPALL oL

ngeg ysayejy Unxee|ey 96¥0V 1ALl 6
nppog eAwmos 62v0VLTAa8L]

nypuis Iuewen 60v0VILYAGL L

euefueg Appaiwsasug LZYOV1Pa6L 9
Jewny| yijeieyg ejeanjeg POV LA8L G
JIBN yseuyqns yieaejer c0vOvLvaALl 14
feuip Apesiwey 06¥0VL¥A8L €

lewnsjuniy eeiyng €0vovSyast Z

Appay ueypiep efe) anyiyo Ly¥OvLbasl L

Z A3 [TEETV

AN3ANLS 3HL 40 INVYN

JaquinN 193011 |leH

N

LATHS HONVANILLY

m_.zm_n_:._.m om._.w_._._.mo_._m 5

?mEEmm uo >_z0 951N0J Y}IdM) Z2Z0Z'T0°Z0 Eok_ Emo

OUINPIY UM UY23)S
NO
ISHNOD ONINIVYL NO SANVH

ONIYIINIONI NOILYIINAWIAIOD ANY SJINOYLI3T3 40 LNINLY¥Y4IA

~ ADOTONHI3L ANV DNIYIINIONE 40 3937100 NANI 184S

JUIAUO)) LSM,ME%O
B

CHENRC)
g 4\3 i Q.nm\q\\ Appay ekse weyjuoy| z2avovivall LE
\%\& 2] %@ ueny wnid | SopovLEaZL 0g
(.\N\mﬁudwwﬁ@b § eAdsapa(uebewaag ¥erovivae!l 62
.ﬁwﬁ?ﬁ\d\ gé . Appay eysiwiN LOVOVLYALL 8z
/ BjUIPNY | LSPOVLYASL 12
Q&dx\@?\ §\ efinug yssuew | evrovLPasL oz
\szmsw; LNYPEIN BIEMUSY | ZLYOVLEA6L sz
Q‘Nﬁ% % wekeo ninpng | 9evOVvLyasL ve
J.>._.£.w, SAYS BAlyS UNUNSEd | 6OVOVLYALL £z
é \,%AJAQM Weules'g SEYOVLPABL (44
. \\g JMEN Inuey yleaeun | ovpOvLEAGL 1z
15+ usies Ajledayoeq | LbLOVLYAGL 0z
7%?6 U Inuey nfesebuey | gryOvLbALL 61
G%SQ 10 ,&%QMV efaey | LpOV1LyalLl gl

e, @
e Sri lndu - > INSTITUTION'S
s 3 College of Engineering & Technology F INNOVATION

UGC Autonomous Institution 7 COUNCIL
Recognized under 2(f) & 12(B)of UGC Act 1956, W (Minisuy of Edeosion intistive)
NAAC, Approved by AICTE &

Estd.2001 Permanently Affiliated to JNTUH

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

HANDS ON TRAINING COURSE
ON

STARTS ON January 2, 2022

In association with TLC

Registration Free
Course Duration : 4 Week

Weekend Course (Saturday)
Invited Participants: Third Year ECE, EEE, CSE
Restricted to 30 Participants/Slot
Resource Persons: In-house Trainers

Coordinators Convener Principal
Mr. E.Parasuramu Prof.k.Ashok Babu Dr.G.Suresh
9989575859

What is Arduino?

+ Arduino is an open-source electronics platform
used for building electronics projects.

+ Arduino consists of both a physical
programmable circuit board or microcontroller
and a software IDE (Integrated Development
Environment) that runs on the computer.

« It is used to write and upload computer code to
the physical board.

+ It is intended for making interactive projects.

+ Download Arduino IDE from www.arduino.cc

Features of Arduino IDE

+ Works on Linux, Windows and Mac operating
systems

+ Has many in-built functions that make
programming simple and easy

+ Easy to write code and upload it to the physical
board

+ Arduino IDE can be used with any Arduino
board

+ Can be easily adapted for loT applications

+ Arduino can be turned into loT product by
adding ESP8266 wifi module

Benefits of using Arduino Kit

+ Arduino boards are less expensive compared to
other microcontrollers platform.

+ The Arduino programming environment is easy-
to-use for beginners.

+ For advanced users, the language can be
expanded through C++ libraries and AVR-GCC
programming language can be added to
Arduino programs.

+* The modules are published under a Creative
Commons license, so circuit designers can
make their own version of the module.

+ Arduino platform was designed for hobbyists,
students and professionals to create loT
applications that play in the human interface
world using sensors, motors, etc.

+ Arduino can interact with buttons, LEDs, LCDs,
motors, speakers, cameras, TV and
smartphones, etc.

+ Arduino can be connected to one or more
sensors to capture the data.

Basic Level

+ Overview of Arduino

« Electronic components and connections
+ Introduction to Arduino

+ Arduino components and IDE

+ First Arduino Program

+ Arduino with Tricolor LED and Push button
+ Arduino with LCD

« Display counter using Arduino

+ Seven segment display

+ Pulse Width Modulation

+ Analog to Digital Conversion

+ Wireless Connectivity to Arduino

+ Assembly programming through Arduino
« Digital logic design with Arduino

+ AVR-GCC programming through Arduino

« Interfacing LCD through AVR-GCC
programming

* Mixing Assembly and C programming

Popular uses of Arduino

+ Home automation (controlling lights, fans and
other appliances) via Android smartphone

« Traffic light control

+ PC controlled robotic arm

+ Temperature controlier

« Anti-theft camera system

+ Automated irrigation system
+ Feeder for Aquarium

+ Garage parking

+ Line follower robot

Components required to practise

1. Arduino UNO or Compatible Board (1 no.)

2. USB Power Cable (1no.)

3. Resistor 220 ohms (6 nos.)

4. Resistor 10K Ohms (2 nos.)

5. Resistor 1K Ohms (4 nos.)

6. Breadboard (1 no.)

7. Tricolor LED Common Cathode (1 no.)

8. Red LED Common Cathode (1 no.)

9. Seven segr display - Ci hode (1 no.)
10. Seven segment display - Common anode (1 no.)
11. Decoder - IC 7447 (1 no.)

12.LCD 16 X 2 soldered with pin header (1 no.)

13. Jumper wires Male to Male (20 nos.)

14. Jumper wires Male to Female (8 nos.)

15. Potentiometer 10K Ohms (1 no.)

16. ESP8266 es01 WiFi Black color Module (1 no.)
17. DHT11 Temp_Humidity Sensor Module (1 no.)
18. 293D H-Bridge Motor driver IC (1 no.)

19. Toy Motor (1 no.)

20. Buzzer (1 no.)
21. Push Button Switch (2 nos.)

This tutorial is going to allow you to jump right in and start building circuits.

The easiest way for beginners to get started with Arduino is by creating circuits using a solderless
breadboard. These simple projects will teach you the basics of Arduino Uno, electronics and
programming. In this tutorial, you will be creating circuits using the following electronic components:

LED

RGB LED
Temp Sensor
Pushbutton
Potentiometer
Photoresistor
Servo

Motor

Buzzer

LCD screen

If you need some

background on the Arduino Uno board or the tools that are needed, please check out post — Arduino Uno
For Beginners.

https://www.makerspaces.com/arduino-uno-tutorial-beginners/
https://www.makerspaces.com/arduino-uno-tutorial-beginners/

Getting Started

Before you can start working with Arduino, you need to make sure you have the IDE software
installed on your computer. This program allows you to write, view and upload the code to your Arduino
Uno board. You can download the IDE for free on Arduino’s website.
Once the IDE is installed, you will need to connect your Arduino to your computer. To do this, plug one
end of the USB cable to the Arduino Uno and then the other end of the USB to your computer’s USB
port.

Select The Board
Once the board is plugged in, you will need to open the IDE and click on Tools > Board > Arduino
Uno to select the board.

@ Makerspaces_com | Arduino 1.8.1 — [} >
File Edit Sketch Tools Help

Aute Format Ctrl+T
Archive Sketch
Makerspaces_| Fix Encoding & Reload
Serial Monitor Ctrl+Shift+ M -~

A4 This is th)

Serial Plotter Ctrl+5Shift+L
WiFi107 Firmware Updater
void setup() Board: "Arduino/Genuino Uno" Boards Manager...
£ put your
Port Arduino AVR Boards
1 Get Board Info Arduine Ydn
2 . -
veid loop() | Programmer: "AVRISP mikll" COENIEEEENITES LED
/7 put your Burn Bootloader Arduine Duemilanove or Diecimila
Arduino Nanc
1 Arduine/Genuino Mega or Mega 2560

Arduino Mega ADK
Arduino Leonardo
Arduino Leonardo ETH

Arduino/Genuino Micro

Select Serial Port
Next, you have to tell the Arduino which port you are using on your computer. To select the port, go
to Tools > Port and then select the port that says Arduino.
&% Makerspaces_com | Arduine 1.8.1 — | =
File Edit Sketch Teels Help
Auto Format Ctrl+T
Archive Sketch

Makerspaces_ Fiz Encoding & Reload

Serial Menitor Ctrl+ Shift+ M i
// This is th Serial Plotter Ctrl+ Shift+ L
WiFi101 Firmware Updater
vold setup() Board: "Arduine/Genuino Uno" ¥
T yo
/4 put your Port: "COM4 (Arduino/Genuino Uno)" Serial ports
1 Get Board Info ~ COM4 (Arduino/Genuino Uno)
void loop() | Programmer: "AVRISP mkll" >

ff put your Burn Bootloader

Project Code

To complete the projects in this tutorial, you will need to download the project code which are known as
sketches. A sketch is simply a set of instructions that tells the board what functions it needs to
perform. For some of these projects, we are using open-source code that was released by the good people
at Sparkfun and Arduino. Use the link below to download the zip folder containing the code.

Download Project Code — (ZIP File)

Once the file has been downloaded, you will need to unzip/extract the folder in order to use it.

https://www.arduino.cc/en/Main/Software
https://www.sparkfun.com/
https://www.arduino.cc/
https://www.makerspaces.com/wp-content/uploads/2017/06/Arduino-Project-Code.zip

#1 — Test Arduino

The first project is one of the most basic and simple circuits you can create with Arduino. This project
will test your Arduino by blinking an LED that is connected directly to the board.

Parts Needed
e (1) Arduino Uno
e (1) USB A-to-B Cable
e (1) LED 5mm
e (1) 220 Q Resistor
Project Diagram

il
\

=
e
-
=
=
=
—
=
o,

. NOWE st
joe

Aace with
fritzing

Project Steps

1. Twista 220 Q resistor to the long leg (+) of the LED.

2. Push the short leg of the LED into the ground (GND) pin on the board.

3. Push the resistor leg that’s connected to the LED into the #13 pin.
Project Code

1. Connect the Arduino board to your computer using the USB cable.

2. Open project code — Circuit_01_TestArduino

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#2 — Blink an LED

This project is identical to project #1 except that we will be building it on a breadboard. Once complete,
the LED should turn on for a second and then off for a second in a loop.

Parts Needed
e (1) Arduino Uno
e (1) USB A-to-B Cable
e (1) Breadboard — Half Size
e (1) LED 5mm
e (1) 220 Q Resistor
e (2) Jumper Wires
Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/1-Test-Arduino_-LARGE.jpg

Project Code

1. Connect the Arduino board to your computer using the USB cable.

Open project code — Circuit_02_Blink

2.
3. Select the board and serial port as outlined in earlier section.
4.

Click upload button to send sketch to the Arduino.

#3 — Push Button

Using a push button switch, you will be able to turn on and off an LED.

Parts Needed

(1) Arduino Uno

(1) USB A-to-B Cable

(1) Breadboard — Half Size
(1) LED 5mm

(1) 220 Q Resistor

(1) 10K Q Resistor

(1) Push Button Switch

(6) Jumper Wires

Project Diagram

Uy

I8
"

MO

R | |

R
Qo gw "3
.‘4-./“"

Project Code

1. Connect the Arduino board to your computer using the USB cable.

2. Open project code — Circuit_03_Pushbutton

LR)

CRURU)
L R R

https://www.makerspaces.com/wp-content/uploads/2017/05/2-Blink-an-LED_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/3-Pushbutton_LARGE.jpg

3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

#4 — Potentiometer
Using a potentiometer, you will be able to control the resistance of an LED. Turning the knob will
increase and decrease the frequency the LED blinks.

Parts Needed

(1) Arduino Uno

(1) USB A-to-B Cable

(1) Breadboard — Half Size

(1) LED 5mm

(1) 220 Q Resistor

(1) Potentiometer (10k Trimpot)
(6) Jumper Wires

Project Diagram

LERLY K
.

-

‘e e
AL AR A

ounply X

Y)
IR N}

(R}

‘ -
sS4
.

Project Code
1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_04_Potentiometer
3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

#5— Fade an LED
By using a PWM pin on the Arduino, you will be able to increase and decrease the intensity of brightness
of an LED.

Parts Needed
e (1) Arduino Uno
e (1) USB A-to-B Cable
e (1) Breadboard — Half Size
e (1) LED 5mm
e (1) 220 Q Resistor
e (2) Jumper Wires
Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/4-Potentiometer_LARGE.jpg

LU
L N N R R N RN

LR N

Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_05_Fade

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#6 — Scrolling LED
This project will blink 6 LEDs, one at a time, in a back and forth formation. This type of circuit was
made famous by the show Knight Rider which featured a car with looping LEDs.

Parts Needed

(1) Arduino Uno

(1) USB A-to-B Cable

(1) Breadboard — Half Size
(6) LED 5mm

(6) 220 Q Resistor

(7) Jumper Wires

Project Diagram

I‘Ill A

A

L
o

AANEE AR A

il N A

ooooo

Al

AAAAE AR AR AaAEs A aaas

Wonche i
fritzing

https://www.makerspaces.com/wp-content/uploads/2017/05/5-Fade-an-LED_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/6-For-Loop-Scrolling-LED_LARGE.jpg

Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_06_Scrolling

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#7 — Bar Graph
Using a potentiometer, you can control a series of LEDs in a row. Turning the potentiometer knob will
turn on or off more of the LEDs.

Parts Needed

(1) Arduino Uno

(1) USB A-to-B Cable

(1) Breadboard — Half Size
(1) Potentiometer — Rotary
(10) LED 5mm

(10) 220 Q Resistor

(11) Jumper Wires
Project Diagram

ouTnpJY WX
ONE

. e

Project Code
1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_07_BarGraph
3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

#8 — Multiple LEDs
This project will use 8 pins on the Arduino board to blink 8 LEDs at the same time.

Parts Needed
e (1) Arduino Uno
(1) USB A-to-B Cable
(1) Breadboard — Half Size
(8) LED 5mm
(8) 330 Q Resistor
(9) Jumper Wires
Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/7-Bar-Graph_LARGE.jpg

)

|

Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_08 MultipleLEDs

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#9 - RGB LED
This project will be using an RGB LED to scroll through a variety of colors. RGB stands for Red, Green
and Blue and this LED has the ability to create nearly unlimited color combinations.

Parts Needed
e (1) Arduino Uno
(1) USB A-to-B Cable
(1) Breadboard — Half Size
(1) RGB LED
(3) 330 Q Resistor
(5) Jumper Wires
Project Diagram

oooooooooo

7

..........
..........
..........
..........

..........
..........

..........

oooooooooo
..........
..........

-,

e .. .

..........
..........

..........
oooooooooo

W-f
Y

AL A AL AR

GRS ¢ A 48 A AR AR M

sebvs S1TESTRS

fritzing
Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_09 RGBLED

https://www.makerspaces.com/wp-content/uploads/2017/05/8-Multiple-LEDs_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/9-RGB-LED_LARGE.jpg

3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

#10 — Photoresistor
A photoresistor changes the resistance a circuit gets based on the amount of light that hits the sensor. In
this project, the brightness of the LED will increase and decrease based on the amount of light present.

Parts Needed

(1) Arduino Uno

(1) USB A-to-B Cable

(1) Breadboard — Half Size
(1) LED 5mm

(1) 330 Q Resistor

(1) 10K Q Resistor

(1) Photoresistor

(6) Jumper Wires

Project Diagram

Araraaan
Aesa e

W

DR XX O

.....

.....

.....
.....

f
e

.
.
| S

. Gd ¢ 4 4 h A r e A s Al

00

..........
..........
..........

Project Code
1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_10_Photoresistor
3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

#11 — Temp. Sensor
A temperature sensor measures ambient temperatures of the world around it. In this project, we will be
displaying the temperature in the serial monitor of the Arduino IDE.

Parts Needed
e (1) Arduino Uno
(1) USB A-to-B Cable
(1) Breadboard — Half Size
(1) Temperature Sensor — TMP36
(5) Jumper Wires
Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/10-Photoresistor_LARGE.jpg

N\

25N

AT

Ui CEEEEEEEEED A AR AAAAE ARAAE AR RAN s

e

-
-
DR

oulnpay W

"med s .

. .
.
.

ﬂ
0 7

Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_11 TempSensor

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#12 — Tone Melody
The project will use a piezo buzzer/speaker to play a little melody.

Parts Needed

e (1) Arduino Uno
(1) USB A-to-B Cable
(1) Breadboard — Half Size
(1) Piezo Buzzer/Speaker
(2) Jumper Wires
Project Diagram

.....
.....

.....
ooooo

.....

S0 LA
A8 L

ooooo
ooooo

!

"
Ao
....

\

ouynpy MK

SO Ay
SR

:::

Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_12_ToneMelody

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

L R T N N A S N)
LU N R B R U N B N N N N N N N)

https://www.makerspaces.com/wp-content/uploads/2017/05/11-Temp-Sensor_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/12-Tone-Melody_LARGE.jpg

#13 — Servo
In this project, you will be able to sweep a servo back and forth through its full range of motion.

Parts Needed
e (1) Arduino Uno
(1) USB A-to-B Cable
(1) Breadboard — Half Size
(1) Servo
(6) Jumper Wires
Project Diagram

\
)

Madaa

.....

.....

(R
LN

e R Y
——]

Project Code

1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_13_Servo

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#14 — Motor
Using a switching transistor, we will be able to control a DC motor. If everything is connected correctly,
you should see the motor spinning.

Parts Needed
e (1) Arduino Uno
(1) USB A-to-B Cable
(1) Breadboard — Half Size
(1) DC Motor
(1) 330 Q Resistor
(1) Diode 1N4148
(1) NPN Transistor
(6) Jumper Wires
Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/13-Servo_LARGE.jpg

fritzing

Project Code
1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_14 Motor
3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

#15— LCD Screen

An LCD is a liquid crystal display that is able to display text on its screen. In this project, you should see
the words “hello,world!” displayed on the screen. The potentiometer is used to adjust the contrast of the
display.

Parts Needed

e (1) Arduino Uno

e (1) USB A-to-B Cable

e (1) Breadboard — Half Size

e (1) LCD Screen

e (1) Potentiometer

e (16) Jumper Wires
Project Diagram

Agees saan
seaalannan

I

R

e

J

Project Code
1. Connect the Arduino board to your computer using the USB cable.
2. Open project code — Circuit_15 LCD
3. Select the board and serial port as outlined in earlier section.
4. Click upload button to send sketch to the Arduino.

https://www.makerspaces.com/wp-content/uploads/2017/05/14-Motor_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/15-LCD-Screen_LARGE.jpg

Troubleshooting

e Make sure your board and serial port is selected in the IDE. To do this, plug your board in and go
to Tools > Board >Arduino to select your board. Next, go to Tools > Port >Com (Arduino) to
select your serial port.

e The long leg of the LED is the (+) positive and the short leg is the (-) negative. Make sure the
correct leg of the LED is in the proper pin of the Arduino or breadboard as directed.

e It can be easy to put a component or jumper into the wrong pin on the Arduino or the
breadboard. Double check the correct pin is being used.

Experiment 1: Turn an LED
Turn an LED on for one second, off for one second, and repeat forever.

void setup()

pinMode(13, OUTPUT);

}

void loop()

{
digitalWrite(13, HIGH); // Turn on the LED
delay(1000); // Wait for one second
digitalWrite(13, LOW); /I Turn off the LED
delay(1000); // Wait for one second

}

/*

Experiment 2: Turns on and off LED

Turns on and off a light emitting diode(LED) connected to digital
pin 13, when pressing a pushbutton attached to pin 2.

The circuit:

* LED attached from pin 13 to ground

* pushbutton attached to pin 2 from +5V

* 10K resistor attached to pin 2 from ground

* Note: on most Arduinos there is already an LED on the board
attached to pin 13.

/I set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

/ variables will change:
int buttonState = 0; // variable for reading the pushbutton status

void setup() {
[l initialize the LED pin as an output:

pinMode(ledPin, OUTPUT);
/I initialize the pushbutton pin as an input:
pinMode(buttonPin, INPUT);

}

void loop() {
/I read the state of the pushbutton value:
buttonState = digitalRead(buttonPin);

/I check if the pushbutton is pressed.

/I if it is, the buttonState is HIGH:

if (buttonState == HIGH) {
/[turn LED on:
digitalWrite(ledPin, HIGH);

}else {
/[turn LED off:
digitalWrite(ledPin, LOW);

}

}

Experiment 3: Display RGB LED

const int RED_PIN = 9;
const int GREEN_PIN = 10;
const int BLUE_PIN = 11,

const int DISPLAY_TIME = 1000; // used in mainColors() to determine the
/I length of time each color is displayed.

void setup() //Configure the Arduino pins to be outputs to drive the LEDs

pinMode(RED_PIN, OUTPUT);
pinMode(GREEN_PIN, OUTPUT);
pinMode(BLUE_PIN, OUTPUT);

}
void loop()

mainColors(); /I Red, Green, Blue, Yellow, Cyan, Purple, White
/I showSpectrum(); // Gradual fade from Red to Green to Blue to Red

}

/**

* void mainColors()

* This function displays the eight "main” colors that the RGB LED
* can produce. If you'd like to use one of these colors in your

* own sketch, you can copy and paste that section into your code.

[FAFF Kk iaiskekiiaiaisiiaiaiasiiiaiaie itisisiiiaiaisiaiaiaiaiaiiole */
void mainColors()

[/l all LEDs off
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);

digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Red

digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

Il Green

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

// Blue

digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

/I Yellow (Red and Green)
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, LOW);
delay(DISPLAY_TIME);

/I Cyan (Green and Blue)
digitalWrite(RED_PIN, LOW);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

// Purple (Red and Blue)
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, LOW);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

/I White (turn all the LEDs on)
digitalWrite(RED_PIN, HIGH);
digitalWrite(GREEN_PIN, HIGH);
digitalWrite(BLUE_PIN, HIGH);
delay(DISPLAY_TIME);

}

/**

* void showSpectrum()

*

* Steps through all the colors of the RGB LED, displaying a rainbow.

* showSpectrum() calls a function RGB(int color) that translates a number
* from O to 767 where 0 = all RED, 767 = all RED

*

* Breaking down tasks down into individual functions like this
* makes your code easier to follow, and it allows.
* parts of your code to be re-used.

/***/

void showSpectrum()
{
for (int x = 0; X <= 767; X++)
{
RGB(x); /Il Increment x and call RGB() to progress through colors.
delay(10); // Delay for 10 ms (1/100th of a second) - to help the "smoothing"

¥
¥

/**

* void RGB(int color)
*

* RGB(###) displays a single color on the RGB LED.

* Call RGB(###) with the number of a color you want

* to display. For example, RGB(0) displays pure RED, RGB(255)
* displays pure green.

*

* This function translates a number between 0 and 767 into a
* specific color on the RGB LED. If you have this number count
* through the whole range (0 to 767), the LED will smoothly
* change color through the entire spectrum.

*

* The "base" numbers are:

*0 =purered

* 255 = pure green

* 511 = pure blue

* 767 = pure red (again)

*

* Numbers between the above colors will create blends. For
* example, 640 is midway between 512 (pure blue) and 767
* (pure red). It will give you a 50/50 mix of blue and red,
* resulting in purple.
[Ik ihishisisisisiaiaiisiaiei ishaisiisisiaisiisiaiaiaiai */
void RGB(int color)
{
int redIntensity;
int greenintensity;
int bluelntensity;

color = constrain(color, 0, 767); // constrain the input value to a range of values from 0 to 767

/I if statement breaks down the "color" into three ranges:
if (color <=255) //RANGE 1 (0 - 255) - red to green

{
redIntensity = 255 - color; // red goes from on to off
greenlintensity = color; Il green goes from off to on
bluelntensity = 0; / blue is always off

¥

else if (color <= 511) // RANGE 2 (256 - 511) - green to blue

{
redIntensity = 0; /I red is always off
greenlntensity = 511 - color; /I green on to off
bluelntensity = color - 256; // blue off to on
}
else Il RANGE 3 (>=512)- blue to red
{
redintensity = color - 512; // red off to on
greenlintensity = 0; Il green is always off
bluelntensity = 767 - color; /I blue on to off
}

/I "'send" intensity values to the Red, Green, Blue Pins using analogWrite()
analogWrite(RED_PIN, redintensity);

analogWrite(GREEN_PIN, greenlintensity);

analogWrite(BLUE_PIN, bluelntensity);

}

Experiment 4: Dancing LED

int ledPins[] = {2,3,4,5,6,7,8,9}; // Defines an array to store the pin numbers of the 8 LEDs.
/I An array is like a list variable that can store multiple numbers.

/I Arrays are referenced or "indexed" with a number in the brackets []. See the examples in
/I the pinMode() functions below.

void setup()

/I setup all 8 pins as OUTPUT - notice that the list is "indexed" with a base of 0.
pinMode(ledPins[0],OUTPUT); // ledPins[0] = 2
pinMode(ledPins[1],OUTPUT); // ledPins[1] = 3
pinMode(ledPins[2],OUTPUT); // ledPins[2] = 4
pinMode(ledPins[3],OUTPUT); // ledPins[3] =5
pinMode(ledPins[4],OUTPUT); // ledPins[4] = 6
pinMode(ledPins[5],OUTPUT); // ledPins[5] = 7
pinMode(ledPins[6],OUTPUT); // ledPins[6] = 8
pinMode(ledPins[7],OUTPUT); // ledPins[7] =9
}

void loop()
{

/I This loop() calls functions that we've written further below.

/I We've disabled some of these by commenting them out (putting
/1'I" in front of them). To try different LED displays, remove

/I the "'/I'" in front of the ones you'd like to run, and add "//"

/l'in front of those you don't to comment out (and disable) those
/I lines.

oneAfterAnother(); // Light up all the LEDs in turn

/loneOnAtATIme(); /[l Turn on one LED at a time

/IpingPong(); /I Same as oneOnAtATime() but change direction once LED reaches edge
/Imarquee(); /I Chase lights like you see on theater signs

/IrandomLED(); // Blink LEDs randomly
}

/**

* oneAfterAnother()
*

* This function turns all the LEDs on, pauses, and then turns all
* the LEDS off. The function takes advantage of for() loops and
* the array to do this with minimal typing.

/***/

void oneAfterAnother()
{
int index;
int delayTime = 100; // milliseconds to pause between LEDs
// make this smaller for faster switching

/I Turn all the LEDs on:
for(index = 0; index <= 7; index = ++index) // step through index from 0 to 7
{

digitalWrite(ledPins[index], HIGH);

delay(delayTime);

/I Turn all the LEDs off:
for(index = 7; index >= 0; index = --index) // step through index from 7 to O
{
digitalWrite(ledPins[index], LOW);
delay(delayTime);
}
}

* oneOnAtATIme()
*

* This function will step through the LEDs, lighting only one at
*atime. It turns each LED ON and then OFF before going to the
* next LED.

/**/

void oneOnAtATiIme()
{

int index;
int delayTime = 100; // milliseconds to pause between LEDs
/I make this smaller for faster switching

for(index = 0; index <= 7; index = ++index) // step through the LEDs, from 0 to 7
{

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); I/ pause to slow down
digitalWrite(ledPins[index], LOW); // turn LED off

¥
¥

/***
* pingPong()
*

* This function will step through the LEDs, lighting one at at

* time in both directions. There is no delay between the LED off
* and turning on the next LED. This creates a smooth pattern for
* the LED pattern.

/**/

void pingPong()
{

int index;
int delayTime = 100; // milliseconds to pause between LEDs

for(index = 0; index <= 7; index = ++index) // step through the LEDs, from 0 to 7

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); I/ pause to slow down
digitalWrite(ledPins[index], LOW); //turn LED off

}
for(index = 7; index >= 0; index = --index) // step through the LEDs, from 7 to 0

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); /I pause to slow down
digitalWrite(ledPins[index], LOW); //turn LED off

¥
¥

* marquee()

*

* This function will mimic "chase lights" like those around
* theater signs.

/**/

void marquee()

L
int index;
int delayTime = 200; // milliseconds to pause between LEDs

/I Step through the first four LEDs
/I (We'll light up one in the lower 4 and one in the upper 4)

for(index = 0; index <= 3; index++) // Step from 0 to 3
digitalWrite(ledPins[index], HIGH); // Turna LED on

digitalWrite(ledPins[index+4], HIGH); // Skip four, and turn that LED on
delay(delayTime); // Pause to slow down the sequence

digitalWrite(ledPins[index], LOW); // Turn the LED off
digitalWrite(ledPins[index+4], LOW); // Skip four, and turn that LED off

¥
¥

/***

* randomLED()
*

* This function will turn on random LEDs. Can you modify it so it
* also lights them for random times?

/**/

void randomLED()
{

int index;
int delayTime;

index = random(8); // pick a random number between 0 and 7
delayTime = 100;

digitalWrite(ledPins[index], HIGH); // turn LED on
delay(delayTime); I/ pause to slow down
digitalWrite(ledPins[index], LOW); //turn LED off

¥

Experiment 5: Running Motor

const int motorPin = 9; // Connect the base of the transistor to pin 9.
// Even though it's not directly connected to the motor,
I/ we'll call it the 'motorPin’

void setup()

pinMode(motorPin, OUTPUT); // set up the pin as an OUTPUT
Serial.begin(9600); // initialize Serial communications

}

void loop()

{ // This example basically replicates a blink, but with the motorPin instead.
int onTime = 3000; // milliseconds to turn the motor on
int off Time = 3000; // milliseconds to turn the motor off

analogWrite(motorPin, 255); // turn the motor on (full speed)

delay(onTime); /I delay for onTime milliseconds
analogWrite(motorPin, 0); // turn the motor off
delay(offTime); /I delay for offTime milliseconds

/I Uncomment the functions below by taking out the //. Look below for the
/l code examples or documentation.

/I speedUpandDown();
/1 serialSpeed();

/I This function accelerates the motor to full speed,
/I then decelerates back down to a stop.
void speedUpandDown()
{
int speed;
int delayTime = 20; // milliseconds between each speed step

/I accelerate the motor

for(speed = 0; speed <= 255; speed++)

{
analogWrite(motorPin,speed); /I set the new speed
delay(delayTime); /I delay between speed steps

}

/I decelerate the motor

for(speed = 255; speed >= 0; speed--)

{
analogWrite(motorPin,speed); /1 set the new speed
delay(delayTime); /I delay between speed steps

}

}

/I Input a speed from 0-255 over the Serial port
void serialSpeed()

int speed;

Serial.printin("Type a speed (0-255) into the box above,");
Serial.printIn("then click [send] or press [return]™);
Serial.printIn(); // Print a blank line

/I In order to type out the above message only once,
/I we'll run the rest of this function in an infinite loop:

while(true) // "true" is always true, so this will loop forever.

/l Check to see if incoming data is available:
while (Serial.available() > 0)
{
speed = Serial.parselnt(); // parselnt() reads in the first integer value from the Serial Monitor.
speed = constrain(speed, 0, 255); // constrains the speed between 0 and 255
I/ because analogWrite() only works in this range.
Serial.print("Setting speed to "); // feedback and prints out the speed that you entered.
Serial.printIn(speed);

analogWrite(motorPin, speed); // sets the speed of the motor.

¥
¥
¥

Experiment 6: Potentiometer

int sensorPin = AQ; // select the input pin for the potentiometer

int ledPin = 13; // select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
// declare the ledPin as an OUTPUT:
pinMode(ledPin, OUTPUT);

}

void loop() {
/l read the value from the sensor:
sensorValue = analogRead(sensorPin);
[/ turn the ledPin on
digitalWrite(ledPin, HIGH);
/I stop the program for <sensorValue> milliseconds:
delay(sensorValue);
[l turn the ledPin off:
digitalWrite(ledPin, LOW);
/I stop the program for for <sensorValue> milliseconds:
delay(sensorValue);

¥

Experiment 7: Scrolling LED
int timer = 100; /I The higher the number, the slower the timing.

void setup() {
/ use a for loop to initialize each pin as an output:
for (int thisPin = 2; thisPin < 8; thisPin++) {
pinMode(thisPin, OUTPUT);
}
}

void loop() {
//'loop from the lowest pin to the highest:
for (int thisPin = 2; thisPin < 8; thisPin++) {
/[turn the pin on:
digitalWrite(thisPin, HIGH);
delay(timer);
/[turn the pin off:
digitalWrite(thisPin, LOW);
}

//'loop from the highest pin to the lowest:
for (int thisPin = 7; thisPin >= 2; thisPin--) {
{/ turn the pin on:
digitalWrite(thisPin, HIGH);
delay(timer);
// turn the pin off:
digitalWrite(thisPin, LOW);
}

Experiment 8: Potentiometer

int sensorPin = AQ; // select the input pin for the potentiometer

int ledPin = 13; // select the pin for the LED

int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
// declare the ledPin as an OUTPUT:
pinMode(ledPin, OUTPUT);

¥

void loop() {
/I read the value from the sensor:
sensorValue = analogRead(sensorPin);
[/l turn the ledPin on
digitalWrite(ledPin, HIGH);
/I stop the program for <sensorValue> milliseconds:
delay(sensorValue);
[turn the ledPin off:
digitalWrite(ledPin, LOW);
/I stop the program for for <sensorValue> milliseconds:
delay(sensorValue);

Experiment 9: LED with PWM

intled=09; I/ the PWM pin the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

/I the setup routine runs once when you press reset:
void setup() {

/[declare pin 9 to be an output:

pinMode(led, OUTPUT);

}

/[the loop routine runs over and over again forever:
void loop() {

/I set the brightness of pin 9:

analogWrite(led, brightness);

/I change the brightness for next time through the loop:
brightness = brightness + fadeAmount;

/I reverse the direction of the fading at the ends of the fade:
if (brightness <= 0 || brightness >= 255) {

fadeAmount = -fadeAmount;
}
// wait for 30 milliseconds to see the dimming effect
delay(30);

Experiment 10: To measure the temperature sensor's
/I signal pin.

const int temperaturePin = AQ;

void setup()

Serial.begin(9600); //Initialize serial port & set baud rate to 9600 bits per second (bps)

}
void loop()
float voltage, degreesC, degreesF; //Declare 3 floating point variables
voltage = getVoltage(temperaturePin); //Measure the voltage at the analog pin
degreesC = (voltage - 0.5) * 100.0; // Convert the voltage to degrees Celsius
degreesF = degreesC * (9.0 / 5.0) + 32.0; //Convert degrees Celsius to Fahrenheit
//Now print to the Serial monitor. Remember the baud must be 9600 on your monitor!
/I These statements will print lines of data like this:
// "voltage: 0.73 deg C: 22.75 deg F: 72.96"
Serial.print("voltage: ");
Serial.print(voltage);
Serial.print(" deg C: ");
Serial.print(degreesC);
Serial.print(" deg F:");
Serial.printIn(degreesF);
delay(1000); // repeat once per second (change as you wish!)
}
float getVoltage(int pin) /[Function to read and return
/ffloating-point value (true voltage)
/lon analog pin
{
return (analogRead(pin) * 0.004882814);
/I This equation converts the 0 to 1023 value that analogRead()
I returns, into a 0.0 to 5.0 value that is the true voltage
// being read at that pin.
}

/I Other things to try with this code:
/' Turn on an LED if the temperature is above or below a value.

/I Read that threshold value from a potentiometer - now you've
/I created a thermostat!

