
SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

LAB MANUAL

 ON

R20INF31L2 : DATA COMMUNICATIONS AND NETWORKS

LAB

 III B. TECH I SEMESTER

R20 B.TECH ECE

DATA COMMUNICATIONS AND NETWORKS LAB

B.Tech. III Year I Sem. L T P C

0 0 3 1.5

Note:

A. Minimum of 12 Experiments have to be conducted

B. All the Experiments may be Conducted using Network Simulation software like NS-2,

NSG-2.1 and Wire SHARK/equivalent software.

Note: For Experiments 2 to 10 Performance may be evaluated through simulation by using the

parameters Throughput, Packet Delivery Ratio, Delay etc.

1. Writing a TCL Script to create two nodes and links between nodes

2. Writing a TCL Script to transmit data between nodes

3. Evaluate the performance of various LAN Topologies

4. Evaluate the performance of Drop Tail and RED queue management schemes

5. Evaluate the performance of CBQ and FQ Scheduling Mechanisms

6. Evaluate the performance of TCP and UDP Protocols

7. Evaluate the performance of TCP, New Reno and Vegas

8. Evaluate the performance of AODV and DSR routing protocols

9. Evaluate the performance of AODV and DSDV routing protocols

10. Evaluate the performance of IEEE 802.11 and IEEE 802.15.4

11. Evaluate the performance of IEEE 802.11 and SMAC

12. Capturing and Analysis of TCP and IP Packets

13. Simulation and Analysis of ICMP and IGMP Packets

14. Analyze the Protocols SCTP, ARP, NetBIOS, IPX VINES

15. Analysis of HTTP, DNS and DHCP Protocols

Major Equipment Required:

Required software (Open Source) like NS-2, NSG-2.1 and Wire SHARK

1/3

THE FIRST TCL SCRIPT

How to start
Now we are going to write a 'template' that you can use for all of the first Tcl scripts. You
can write your Tcl scripts in any text editor like joe or emacs. I suggest that you call this
first example 'example1.tcl'.

First of all, you need to create a simulator object. This is done with the command

set ns [new Simulator]

Now we open a file for writing that is going to be used for the nam trace data.

set nf [open out.nam w]

$ns namtrace-all $nf

The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. In the second

line we tell the
simulator object that we created above to write all simulation data that is going to be
relevant for nam into this file.

The next step is to add a 'finish' procedure that closes the trace file and starts nam.

proc finish {} {

global ns nf

$ns flush-trace close $nf

exec nam out.nam & exit 0

}

You don't really have to understand all of the above code yet. It will get clearer to you once
you see what the code does.

The next line tells the simulator object to execute the 'finish' procedure after 5.0 seconds of
simulation time.

$ns at 5.0 "finish"

You probably understand what this line does just by looking at it. ns provides you with a very
simple way to schedule events with the 'at' command.

The last line finally starts the simulation.

2/3

$ns run

You can actually save the file now and try to run it with 'ns example1.tcl'. You are going to get
an error message like 'nam: empty trace file out.nam' though, because until now we haven't
defined any objects (nodes, links, etc.) or events. We are going to define the objects in the
events.

Two nodes, one link
In this section we are going to define a very simple topology with two nodes that are connected
by a link. The following two lines define the two nodes. (Note: You have to insert the code in
this section before the line '$ns run', or even better, before the line '$ns at 5.0 "finish"').

set n0 [$ns node] set n1 [$ns node]

A new node object is created with the command '$ns node'. The above code creates two nodes

and assigns them to the handles 'n0' and 'n1'.

The next line connects the two nodes.

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

This line tells the simulator object to connect the nodes n0 and n1 with a duplex link
with the bandwidth 1Megabit, a delay of 10ms and a DropTail queue.

Now you can save your file and start the script with 'ns example1.tcl'. nam will be started
automatically and you should see an output that resembles the picture below.

Sending data
Of course, this example isn't very satisfying yet, since you can only look at the topology, but
nothing actually happens, so the next step is to send some data from node n0 to node n1. In ns,
data is always being sent from one 'agent' to another. So the next step is to create an agent object
that sends data from node n0, and another agent object that receives the data on node n1.

3/3

#Create a UDP agent and
attach it to node n0 set udp0
[new Agent/UDP]

$ns attach-agent $n0 $udp0

Create a CBR traffic source and
attach it to udp0 set cbr0 [new
Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

These lines create a UDP agent and attach it to the node n0, then attach a CBR traffic generatot

to the UDP
agent. CBR stands for 'constant bit rate'. Line 7 and 8 should be self-explaining. The packetSize
is being set to 500 bytes and a packet will be sent every 0.005 seconds (i.e. 200 packets per
second). You can find the relevant parameters for each agent type In The next lines create a
Null agent which acts as traffic sink and attach it to node n1.

set null0 [new Agent/Null]

$ns attach-agent $n1 $null0

Now the two agents have to be connected with each other.

$ns connect $udp0 $null0

And now we have to tell the CBR agent when to send data and when to stop sending. Note: It's
probably best to put the following lines just before the line '$ns at 5.0 "finish"'.

$ns at 0.5 "$cbr0 start"

$ns at 4.5 "$cbr0 stop"

This code should be self-explaining again.

Now you can save the file and start the simulation again. When you click on the 'play' button in

the nam
window, you will see that after 0.5 simulation seconds, node 0 starts sending data packets to
node 1. You might want to slow nam down then with the 'Step' slider.

4/3

I suggest that now you start some experiments with nam and the Tcl script. You can click on
any packet in the nam window to monitor it, and you can also click directly on the link to get
some graphs with statistics. I also suggest that you try to change the 'packetsize_' and
'interval_' parameters in the Tcl script to see what happens. You can download the full
example here.

Most of the information that I needed to be able to write this Tcl script was taken directly from
the example files in the 'tcl/ex/' directory, while I learned which CBR agent arguments
(packetSize_, interval_) I had to set from the ns manual page.

How to start tcl program

set ns [new Simulator]

set nf [open out.nam w]

$ns namtrace-all $nf

proc finish {} {

global ns nf

$ns flush-trace

close $nf

exec nam out.nam &

exit 0

}

$ns at 5.0 "finish"

$ns run

https://www.isi.edu/nsnam/ns/tutorial/examples/example1b.tcl
http://www.isi.edu/nsnam/ns/doc/index.html

5/3

1. Writing a TCL Script to create two nodes and links between nodes

#Create a simulator object

set ns [new Simulator]

#Open the nam trace file

set nf [open out.nam w]

$ns namtrace-all

$nf

#Define a 'finish' procedure

proc finish {}

{

global ns nf

$ns flush-trace

#Close the trace file

close

$nf

#Execute nam on the trace file

exec nam out.nam &

exit 0

}

#Create two nodes

set n0 [$ns node]

set n1 [$ns node]

#Create a duplex link between the nodes

$ns duplex-link

$n0

$n1 1Mb 10ms DropTail

#Call the finish procedure after 5 seconds of simulation time

6/3

$ns at 5.0 "finish"

#Run the simulation

$ns run

OUT PUT

2 Writing a TCL Script to transmit data between nodes

set ns [new Simulator]

set nf [open out.nam w]

$ns namtrace-all $nf

proc finish {} {

global ns nf

$ns flush-trace

close $nf

exec nam out.nam &

exit 0

}

set n0 [$ns node]

set n1 [$ns node]

7/3

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

#Create a UDP agent and attach it to node n0

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

set null0 [new Agent/Null]

$ns attach-agent $n1 $null0

$ns connect $udp0 $null0

$ns at 0.5 "$cbr0 start"

$ns at 4.5 "$cbr0 stop"

$ns at 5.0 "finish"

$ns run

OUT PUT

3. Evaluate the performance of various LAN Topologies

#Create a simulator object

set ns [new Simulator]

#Define different colors for data flows

$ns color 1 Blue

$ns color 2 Red

#Open the nam trace file

set nf [open out.nam w]

8/3

$ns namtrace-all $nf

#Define a 'finish' procedure

proc finish {} {

global ns nf

$ns flush-trace

#Close the trace file

close $nf

#Execute nam on the trace file

exec nam out.nam &

exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 1Mb 10ms DropTail

$ns duplex-link $n1 $n2 1Mb 10ms DropTail

$ns duplex-link $n3 $n2 1Mb 10ms SFQ

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for the link between node 2 and node 3

$ns duplex-link-o

9/

p $n2 $n3 queuePos 0.5

#Create a UDP agent and attach it to node n0

set udp0 [new Agent/UDP]

$udp0 set class_ 1

$ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

#Create a UDP agent and attach it to node n1

set udp1 [new Agent/UDP]

$udp1 set class_ 2

$ns attach-agent $n1 $udp1

Create a CBR traffic source and attach it to udp1

set cbr1 [new Application/Traffic/CBR]

$cbr1 set packetSize_ 500

$cbr1 set interval_ 0.005

$cbr1 attach-agent $udp1

#Create a Null agent (a traffic sink) and attach it to node n3

set null0 [new Agent/Null]

$ns attach-agent $n3 $null0

#Connect the traffic sources with the traffic sink

$ns connect $udp0 $null0

$ns connect $udp1 $null0

10/

#Schedule events for the CBR agents

$ns at 0.5 "$cbr0 start"

$ns at 1.0 "$cbr1 start"

$ns at 4.0 "$cbr1 stop"

$ns at 4.5 "$cbr0 stop"

#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 "finish"

#Run the simulation

$ns run

OUT PUT

4. Evaluate the performance of Drop Tail and RED queue management schemes

#Create a simulator object

set ns [new Simulator]

#Define different colors for data flows (for NAM)

$ns color 1 Blue

$ns color 2 Red

11/

#Open the NAM trace file

set nf [open out.nam w]

$ns namtrace-all $nf

#Define a 'finish' procedure

proc finish {} {

global ns nf

$ns flush-trace

#Close the NAM trace file

close $nf

#Execute NAM on the trace file

exec nam out.nam &

exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n1 $n2 2Mb 10ms DropTail

$ns duplex-link $n2 $n3 1.7Mb 20ms DropTail

#Set Queue Size of link (n2-n3) to 10

$ns queue-limit $n2 $n3 10

12/

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a TCP connection

set tcp [new Agent/TCP]

$tcp set class_ 2

$ns attach-agent $n0 $tcp

set sink [new Agent/TCPSink]

$ns attach-agent $n3 $sink

$ns connect $tcp $sink

$tcp set fid_ 1

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ftp set type_ FTP

#Setup a UDP connection

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Null]

$ns attach-agent $n3 $null

$ns connect $udp $null

$udp set fid_ 2

13/

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR

$cbr set packet_size_ 1000

$cbr set rate_ 1mb

$cbr set random_ false

#Schedule events for the CBR and FTP agents

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 4.0 "$ftp stop"

$ns at 4.5 "$cbr stop"

#Detach tcp and sink agents (not really necessary)

$ns at 4.5 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3 $sink"

#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 "finish"

#Print CBR packet size and interval

puts "CBR packet size = [$cbr set packet_size_]"

puts "CBR interval = [$cbr set interval_]"

#Run the simulation

$ns run

OUT PUT

14/

5. Evaluate the performance of CBQ and FQ Scheduling Mechanisms

#Create a simulator object

set ns [new Simulator]

#Tell the simulator to use dynamic routing

$ns rtproto DV

#Open the nam trace file

set nf [open out.nam w]

$ns namtrace-all $nf”

#Define a 'finish' procedure

proc finish {} {

global ns nf

$ns flush-trace

#Close the trace file

close $nf

#Execute nam on the trace file

exec nam out.nam &

exit 0

}

15/

#Create seven nodes

for {set i 0} {$i < 7} {incr i} {

set n($i) [$ns node]

}

#Create links between the nodes

for {set i 0} {$i < 7} {incr i} {

$ns duplex-link $n($i) $n([expr ($i+1)%7]) 1Mb 10ms DropTail

}

#Create a UDP agent and attach it to node n(0)

set udp0 [new Agent/UDP]

$ns attach-agent $n(0) $udp0

Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) and attach it to node n(3)

set null0 [new Agent/Null]

$ns attach-agent $n(3) $null0

#Connect the traffic source with the traffic sink

$ns connect $udp0 $null0

#Schedule events for the CBR agent and the network dynamics

$ns at 0.5 "$cbr0 start"

$ns rtmodel-at 1.0 down $n(1) $n(2)

$ns rtmodel-at 2.0 up $n(1) $n(2)

16/

$ns at 4.5 "$cbr0 stop"

#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 "finish"

#Run the simulation

$ns run

OUT PUT

#Create a simulator object

set ns [new Simulator]

#Open the output files

set f0 [open out0.tr w]

set f1 [open out1.tr w]

set f2 [open out2.tr w]

17/

#Create 5 nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

#Connect the nodes

$ns duplex-link $n0 $n3 1Mb 100ms DropTail

$ns duplex-link $n1 $n3 1Mb 100ms DropTail

$ns duplex-link $n2 $n3 1Mb 100ms DropTail

$ns duplex-link $n3 $n4 1Mb 100ms DropTail

#Define a 'finish' procedure

proc finish {} {

global f0 f1 f2

#Close the output files

close $f0

close $f1

close $f2

#Call xgraph to display the results

exec xgraph out0.tr out1.tr out2.tr -geometry 800x400 &

exit 0

}

#Define a procedure that attaches a UDP agent to a previously created node

#'node' and attaches an Expoo traffic generator to the agent with the

#characteristic values 'size' for packet size 'burst' for burst time,

18/

#'idle' for idle time and 'rate' for burst peak rate. The procedure connects

#the source with the previously defined traffic sink 'sink' and returns the

#source object.

proc attach-expoo-traffic { node sink size burst idle rate } {

#Get an instance of the simulator

set ns [Simulator instance]

#Create a UDP agent and attach it to the node

set source [new Agent/UDP]

$ns attach-agent $node $source

#Create an Expoo traffic agent and set its configuration parameters

set traffic [new Application/Traffic/Exponential]

$traffic set packetSize_ $size

$traffic set burst_time_ $burst

$traffic set idle_time_ $idle

$traffic set rate_ $rate

Attach traffic source to the traffic generator

$traffic attach-agent $source

#Connect the source and the sink

$ns connect $source $sink

return $traffic

}

#Define a procedure which periodically records the bandwidth received by the

#three traffic sinks sink0/1/2 and writes it to the three files f0/1/2.

proc record {} {

global sink0 sink1 sink2 f0 f1 f2

19/

#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be called again

set time 0.5

#How many bytes have been received by the traffic sinks?

set bw0 [$sink0 set bytes_]

set bw1 [$sink1 set bytes_]

set bw2 [$sink2 set bytes_]

#Get the current time

set now [$ns now]

#Calculate the bandwidth (in MBit/s) and write it to the files

puts $f0 "$now [expr $bw0/$time*8/1000000]"

puts $f1 "$now [expr $bw1/$time*8/1000000]"

puts $f2 "$now [expr $bw2/$time*8/1000000]"

#Reset the bytes_ values on the traffic sinks

$sink0 set bytes_ 0

$sink1 set bytes_ 0

$sink2 set bytes_ 0

#Re-schedule the procedure

$ns at [expr $now+$time] "record"

}

#Create three traffic sinks and attach them to the node n4

set sink0 [new Agent/LossMonitor]

set sink1 [new Agent/LossMonitor]

20/

set sink2 [new Agent/LossMonitor]

$ns attach-agent $n4 $sink0

$ns attach-agent $n4 $sink1

$ns attach-agent $n4 $sink2

#Create three traffic sources

set source0 [attach-expoo-traffic $n0 $sink0 200 2s 1s 100k]

set source1 [attach-expoo-traffic $n1 $sink1 200 2s 1s 200k]

set source2 [attach-expoo-traffic $n2 $sink2 200 2s 1s 300k]

#Start logging the received bandwidth

$ns at 0.0 "record"

#Start the traffic sources

$ns at 10.0 "$source0 start"

$ns at 10.0 "$source1 start"

$ns at 10.0 "$source2 start"

#Stop the traffic sources

$ns at 50.0 "$source0 stop"

$ns at 50.0 "$source1 stop"

$ns at 50.0 "$source2 stop"

#Call the finish procedure after 60 seconds simulation time

$ns at 60.0 "finish"

#Run the simulation

$ns run

6. Evaluate the performance of TCP and UDP Protocols

#Create a simulator object

set ns [new Simulator]

21/

#Define different colors for data flows (for NAM)

$ns color 1 Blue

$ns color 2 Red

#Open the NAM trace file

set nf [open out.nam w]

$ns namtrace-all $nf

#Define a 'finish' procedure

proc finish {} {

global ns nf

$ns flush-trace

#Close the NAM trace file

close $nf

#Execute NAM on the trace file

exec nam out.nam &

exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n1 $n2 2Mb 10ms DropTail

$ns duplex-link $n2 $n3 1.7Mb 20ms DropTail

#Set Queue Size of link (n2-n3) to 10

$ns queue-limit $n2 $n3 10

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a TCP connection

set tcp [new Agent/TCP]

$tcp set class_ 2

$ns attach-agent $n0 $tcp

set sink [new Agent/TCPSink]

$ns attach-agent $n3 $sink

$ns connect $tcp $sink

22/

$tcp set fid_ 1

#Setup a FTP over TCP connection

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ftp set type_ FTP

#Setup a UDP connection

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Null]

$ns attach-agent $n3 $null

$ns connect $udp $null

$udp set fid_ 2

#Setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR

$cbr set packet_size_ 1000

$cbr set rate_ 1mb

$cbr set random_ false

#Schedule events for the CBR and FTP agents

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 4.0 "$ftp stop"

$ns at 4.5 "$cbr stop"

#Detach tcp and sink agents (not really necessary)

$ns at 4.5 "$ns detach-agent $n0 $tcp ; $ns detach-agent $n3

$sink"

#Call the finish procedure after 5 seconds of simulation time

$ns at 5.0 "finish"

#Print CBR packet size and interval

puts "CBR packet size = [$cbr set packet_size_]"

puts "CBR interval = [$cbr set interval_]"

#Run the simulation

$ns run

OUT PUT

23/

7, (10.) Evaluate the performance of IEEE 802.11 and IEEE 802.15.4

Simulator Instance Creation

set ns [new Simulator]

#Fixing the co-ordinate of simutaion area

set val(x) 500

set val(y) 500

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 2 ;# number of mobilenodes

24/

set val(rp) AODV ;# routing protocol

set val(x) 500 ;# X dimension of topography

set val(y) 400 ;# Y dimension of topography

set val(stop) 10.0 ;# time of simulation end

set up topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

#Nam File Creation nam – network animator

set namfile [open sample1.nam w]

#Tracing all the events and cofiguration

$ns namtrace-all-wireless $namfile $val(x) $val(y)

#Trace File creation

set tracefile [open sample1.tr w]

#Tracing all the events and cofiguration

$ns trace-all $tracefile

general operational descriptor- storing the hop details in the network

create-god $val(nn)

configure the nodes

$ns node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

25/

-phyType $val(netif) \

-channelType $val(chan) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF \

-movementTrace ON

Node Creation

set node1 [$ns node]

Initial color of the node

$node1 color black

#Location fixing for a single node

$node1 set X_ 200

$node1 set Y_ 100

$node1 set Z_ 0

set node2 [$ns node]

$node2 color black

$node2 set X_ 200

$node2 set Y_ 300

$node2 set Z_ 0

Label and coloring

$ns at 0.1 "$node1 color blue"

$ns at 0.1 "$node1 label Node1"

$ns at 0.1 "$node2 label Node2"

#Size of the node

26/

$ns initial_node_pos $node1 30

$ns initial_node_pos $node2 30

ending nam and the simulation

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "stop"

#Stopping the scheduler

$ns at 10.01 "puts \"end simulation\" ; $ns halt"

#$ns at 10.01 "$ns halt"

proc stop {} {

global namfile tracefile ns

$ns flush-trace

close $namfile

close $tracefile

#executing nam file

exec nam sample1.nam &

}

#Starting scheduler

$ns run

8(15.) Analysis of HTTP, DNS and DHCP Protocols. 10, 11 EXPERMENT PROGRAM

#Lan simulation

set ns [new Simulator]

#define color for data flows

$ns color 1 Blue

$ns color 2 Red

27/

#open tracefiles

set tracefile1 [open out.tr w]

set winfile [open winfile w]

$ns trace-all $tracefile1

#open nam file

set namfile [open out.nam w]

$ns namtrace-all $namfile

#define the finish procedure

proc finish {} {

global ns tracefile1 namfile

$ns flush-trace

close $tracefile1

close $namfile

exec nam out.nam &

exit 0

} #create six nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

$n1 color Red

$n1 shape box

#create links between the nodes

28/

$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n1 $n2 2Mb 10ms DropTail

$ns simplex-link $n2 $n3 0.3Mb 100ms DropTail

$ns simplex-link $n3 $n2 0.3Mb 100ms DropTail

set lan [$ns newLan "$n3 $n4 $n5" 0.5Mb 40ms LL Queue/DropTail

MAC/Csma/Cd Channel]

#Give node position

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns simplex-link-op $n2 $n3 orient right

$ns simplex-link-op $n3 $n2 orient left

#set queue size of link(n2-n3) to 20

$ns queue-limit $n2 $n3 20

#setup TCP connection

set tcp [new Agent/TCP/Newreno]

$ns attach-agent $n0 $tcp

set sink [new Agent/TCPSink/DelAck]

$ns attach-agent $n4 $sink

$ns connect $tcp $sink

$tcp set fid_ 1

$tcp set packet_size_ 552

#set ftp over tcp connection

set ftp [new Application/FTP]

$ftp attach-agent $tcp

#setup a UDP connection

29/

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Null]

$ns attach-agent $n5 $null

$ns connect $udp $null

$udp set fid_ 2

#setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR

$cbr set packet_size_ 1000

$cbr set rate_ 0.01Mb

$cbr set random_ false

#scheduling the events

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 124.0 "$ftp stop"

$ns at 125.5 "$cbr stop"

proc plotWindow {tcpSource file} {

global ns

set time 0.1

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

puts $file "$now $cwnd"

$ns at [expr $now+$time] "plotWindow $tcpSource $file"

30/

}

$ns at 0.1 "plotWindow $tcp $winfile"

$ns at 125.0 "finish"

$ns run

