COURSE OUTCOMES AND PROGRAM OUTCOMES

During every Academic year, before starting of the semester after completing the subject allocation to the faculties, well defined Course Outcomes were collected from individual subject handlers. The collective COs of all subjects was reviewed and redefined by the Programme Assessment Committee (PAC) during the brainstorming session to evaluate the relevance of COs are specific, measurable and achievable.

In advance lesson plan, lecture modules, Question Bank were prepared, and the strength of correlations were considered based on Cognitive, Affective domain levels for the proper mapping of course contents and Questions with COs and Revised Bloom's Taxonomy (RBT) Levels.

Annexure: 3.1A Mapping of CO sample copy, Question paper Mapping with COs and Taxonomy Level- Sample Mid Question Paper.

Also, to create awareness among faculty members on preparing CO-PO articulation matrix, hands on sessions were conducted. PAC has conducted brainstorming session for the faculty members to detail CO-PO mapping, Rubrics chart. Then, the articulation matrix of CO -PO mapping were carried out based on the AICTE examination reformation policy, using suggested key performance indicators and competencies.

Annexure : 3.1B Brainstorming Session Annexure : 3.1C Performance Indicator Chart

The formulated assessment plans for the course in the program that brings the clarity to alignment of assessment with learning outcome of the course, cognitive level of learning student is expected to achieve and adapted assessment methods and tools. To evaluate the continues improvement in attainment, students' performance for attainment of course outcomes and hence POs, it is of utmost importance maintains reliable attainment evaluation procedure and proper assessment tools.

The academic batch wise, subject wise, script wise and question wise attainments were calculated with strongly set rubrics. The target is set based on the achievements in PO attainments of previous three years. Further, the target attainments were measured for corrective actions to impact continuous improvements in POs. During these three assessment periods the department has got progressive attainments as presented.

The benchmark rubric is set for the subjects to measure the consistency in attainments.

Annexure : 3.2.1A Batchwise Attainment Sheet Annexure: 3.2.1B Batchwise Rubric Chart

The record of attainment of course outcomes of all courses with respect to set attainment levels are evaluated for batch wise

and evidences are properly documented. The micro level of assessment is made on question wise, script wise, subject wise mapping attainment has been calculated for the batch of 2017-21, 2016-20 and 2015-19. Benchmarked rubrics were set for attainment calculation in specific to the nature of subjects based on previous achievements. There are three levels of induction programs were conducted to create awareness on CO-PO mapping, Attainments, and assessment processes the department PAC, IQAC and also NPTEL Video Lectures were shared for knowing more about attainment schemes. Hence, all the faculty members were taking the opportunity for learning the process and good understanding.

The complete knowledge transfer is made by the expert members, internal faculty members those who attended the OBE related courses/ completed NPTEL courses/ Workshops & Webinars and also the following key points were discussed during interaction.

Bench mark and rubrics level according to the attainment level of COs table.

CO PO articulation matrix.

Rubrics chart.

Annexure : 3.2.2 Programme Assessment Committee session Interaction Photos

Attainment of Program Outcomes and Program Specific Outcomes

The Assessment tools and processes were fully adapted batch wise for measuring the attainment of each program outcome and program specific outcomes. The micro level of assessment is made on question wise, script wise, subject wise mapping attainment has been calculated for the batch of 2017-21, 2016-20 and 2015-19. Bench marked rubrics were set for attainment calculation in specific to the nature of subjects based on previous achievements.

List & Description of assess	<mark>sment processes</mark>	
Assessment Tools	Direct/ Indirect	Remarks
Internal, External Exam	Direct	Conducted by the University / College during each semester for
Internal, External Exam	Direct	every course.
Assignment	Direct	Two assignments are Assessed during course of study and the
Assignment	Direct	corresponding COs are mapped
Oral Exams/Viva Voce	Direct	Viva Voce conducted during lab sessions. End semester course viva
Orar Exams/ viva voce	Dilect	is also used to measure the same.
Project Evaluation	Direct	Project Evaluation conducted among the students towards the end of

		their final year.
Alumni Survey	Indirect	Alumni Survey conducted among alumni at the end of each
Aluliin Sulvey	maneet	academic year.
Employer survey	Indirect	Employer Survey conducted among employers both as formal and
Employer survey	munect	informal mode of communication.
Derant Survey	Indirect	Parent Survey conducted among parents at the end of each academic
Parent Survey	munect	year.
Graduating Student Exit	Indirect	Student Exit Survey conducted among the graduates.
Survey	maneet	Student Exit Survey conducted among the graduates.

The assessment process and micro level attainment are carried out in detailed procedure both direct and indirect assessments as mentioned. Bottom up process Script wise Question wise COs POs of each subject and PSOs are mapped with all possible assessment tools for attainment calculation.

Annexure :3.3.1 Overall PO Direct and Indirect Attainment

The Assessment tools and attainment processes were fully adapted batch wise for measuring the attainment and evaluation of each program outcome and program specific outcomes for the batch 2017-21, 2016-20 & 2015-19. PO mapping is intensively analyzed and proper correlation is done with reference to performance indicators chart and rubrics as per the AICTE Examination reformation policy. In the revised evaluation procedure, benchmark target is set based upon the average of the number of students scoring above the class average marks during the previous three years' performances. The evaluation sheet for each course is maintained formula driven Excel sheet to assess the attainments of CO, PO and PSOs for the set target.

Annexure: 3.3.2 Batch wise attainment of PO and PSOs

Annexure: Annexure: 3.1A Mapping of CO sample copy

Course Code & Name: R16CSE1104 – Data Structures through C++ Upon the completion of the course, Students will be able to:

Course Name	Course outcomes
C213.1	Describe concept of Object Oriented Program. (Apply)
C213.2	Examine the basic operations on linear and non-linear data structures using classes and Templates. (Apply)
C213.3	Classify the various searching and sorting techniques for the given problem domain. (Analyze).
C213.4	Generate the search trees for the given problem data set. (Create)
C213.5	Illustrate the concept of Text pattern matching algorithms. (Apply)
C213.6	Assess the performance of graph traversal techniques. (Evaluate)

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C213.1	3	1	-	-	3	19433	82 4 33	-	-	1000	1	- 22	1	1	1
C213.2	3	3	3	-	3	020	1023	1.00	-	19 <u>2</u> 11	- 112	2	1	1020	1911 1
C213.3	1	2	3	-	2	10+53			-	-	-		2.4	20 4 3	-
C213.4	1	1	2	-	3	19 4 51			-		2		-	20 4 3	-
C213.5	3	2	1	-	3	1000		*	-	-	1	-	2	2	~
C213.6	2	127-23	~	3	-	1.70	80 7 0	-	- 1	0700	1	-	-	್ರಾಂ	.
C213	2.17	1.8	2.25	3	2.8	10 - 02	-	-	-		1.25	-	1.33	1.5	1

Annexure : 3.1 A Lesson Plan

1	ENCLARE STREET			LESSO (Regula	E OF ENG N PLAN tion :R20) r Science an				eared on:7.10.21 ev1:	
(=	Su Su	ıb. Code & Tit	le	R20CSE	2101 Data St	ructures				
1		cademic Year:	2021-	22	Year/Sem	./Section	II-I/A,I	3,C,D		
	Fa	aculty Name &	Desig	nation	Dr. S R. Ma A. Ramya , P. Madhav	Assistant]	Professor			
Unit/ Item No.	Topic (s)		Bool		Page (s) m To	Teachi Methodo	ng N	oposed lo. of eriods	Actual Date of Handled	CO/RBT
			UNIT-I							
I		In	atroduct	ion				18		
1.1	Introduction to Data Structure	es	R1	3	8	Black board	1	03		CO1, L1
1.2	Abstract data types		R1	9	15	Black board	1	01		CO1, L1
1.3	Linear list – singly linked list	implementation	R1	19	3 194	PowerPoint Presentation		02		CO1, ,L2
1.4	Insertion, deletion and search on linear list	ing operations	R1	19:	5 212	Black board	1	01		CO1, L2
1.5	Stacks-Operations, stack app	lications	R1	80	81	MODEL		02		CO1,L2
1.6	Array and linked representations stacks	ons of	R1	83	89	Black board	1	01		CO1, L1
1.7	Queues-operations		R1	14	8 150	Black board	1	01		CO1, L2
1.8	Queues using array		R1	150	0 150	Black board	1	01		C01,L2
1.9	Queues using Linked list		R1	15	1 158	Black board	1 I	02		CO1,L1
	Review			Signatur	e of the HOD/C	oordinator				
				UNIT	-11					
11		D	viction ar	ies				1.4		
2.1	Dictionaries: linear list re	presentation	т1	39:	5 395	Black board	1	01		CO2, L1
2.2	skip list represent	ation	T1			Black board	1	01		CO 2, L1
2.3	operations - insertion, deletio	on and searching	Т1			Power point Presentation	1	01		CO 2, L2
2.3	Hash Table Representation:	hash functions	R1	39'	7 398	Power poin Presentation		01		CO 2, L2
2.4	collision resolution-separ	rate chaining	R1	62	0 621	Black board	1	02		CO2, L2
2.5	open addressing-linea	r probing	R1	62.	3 624	Black board	1	02		CO 2, L3
2.6	quadratic probing, , dou	ble hashing	RI	62:	5 625	Black board	1	01		CO2, L3
2.7	Rehashing, extendible	e hashing	R1			Black board	1	01		CO 2, L2
	Review				Signature of	the HOD/Co	ordinator			

Annexure : 3.1 A Question Bank with mapped COs and Taxonomy Levels

S OF ENGINEENING		QUEST (Regula	E OF ENGG & TECH ON BANK ution :R20) er Science and Engineer		(Regulation: R20) Prepared on:7.10.21 Rev1:
	Sub. Code & Title	R20CSI			
Same 15	Academic Year: 202	1-22	Year/Sem./Section	II-I/A,B	,C,D
MANNAPATHAM .	Faculty Name & Des	ignation	Dr. S R. Mugunthan , A. Ramya , Assistant I P. Madhavi , Assistant	Professor	

QUESTION BANK WITH BLOOMS TAXONOMY LEVEL (BTL)

(1. Remembering 2. Understanding 3. Applying 4. Analyzing 5. Evaluating 6. Creating)

	UNIT I		
	PART A 1 MARK OUESTIONS	BT	COURSE
		LEVEL	OUTCOME
1	Define a data structure? Mar 2018	1	CO1
2.	Define Linear data structure? Dec 2016	1	CO1
3.	Describe Non Linear data structure?	2	CO1
4.	Write about abstract data type? Nov 2018	3	CO1
5.	Define Stack? DEC 2012	1	CO1
6.	Describe Queue? Oct 2018	2	CO1
7.	Describe Linked list? Nov 2019	2	CO1
8	Explain the advantages and disadvantages of linked list?	2	CO1,CO2
9	What ate the advantages and disadvantages of arrays? Oct 2016	1	CO1
10	Explain the applications of Linked list? DEC 2017	2	CO1
	PART B		
	10 MARKS QUESTIONS		
1	Discuss about implementation of single linked list.? Oct 2019	2	CO1
2	Write a program to implement single linked list? Dec 2016	6	CO1,CO2
3	Explain the following data structures a)stack operations b)Queue operations	2	CO1
4	Write about Stack representation using array and linked list? July 2021 Nov 2019	3	CO1.CO2
5	Write about Queue representation using array and linked list? Mar 2021	3	CO1,CO2
6	Write a program to implement stack using Linked list?	6	CO1.CO2
7	Write a program to implement Queue using array? Oct 2020	6	CO1.CO2
8	Explain about Stack applications and Queue applications.	2	CO1,CO2
9	Describe Linked list? Distinguish between array and linked list? Mar 2018	4	CO1
10	Explain about following a) Data structure b) Abstract Data Type c) Linear data structure d) Non Linear Data structure	2	COI

BR-2	20 SRI INDU COLLEGE OF ENGINEER	NG & TECHNOLOGY	(D4
	(An Autonomous Institution Under 2(f) and 12(F) of UGC Act 1956, New	v Delhi)	
	II B.Tech - I Semester - I Mid Term Exam	inations, December - 20	021	
	(R20CSE2102) COMPUTER ORGANIZAT	ION and ARCHITECT	URE	
	(For CSE, IT, CS, AIML, DS	and CSIT)		
Dura	ation: 90Mins Date: 17-12-2021, Day	-2 (AN)	Max M	larks: 25M
5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Section – A			3-
Ansv	wer <u>All</u> the questions	Ν	Marks: 50	x1M = 5M
(*Ll-R	Remembering, L2-Understanding, L3-Applying, L4-Analyzing, L5-Evaluating, L6-Cre		looms nomyLevel	Course Outcomes
1.	Define a Micro Program & Micro Instruction.	((L1)	(CO1)
2.	List Computer Registers.	((L1)	(CO1)
3.	What is control address register?	((L2)	(CO2)
4.	What is mapping instruction?	((L2)	(CO5)
5.	List out computer arithmetic operations.	((L1)	(CO3)
	Section - B			
Ansv	wer any <u>FOUR</u> questions	М	larks: 4Q	x5M = 20M
6.	Explain in detail about the computer Instructions.	(L1)	(CO1)
7.	Draw the flowchart for interrupt cycle and experiment with	it with explanation. (L1)	(CO1)
8.	Compare the register direct and indirect addressing modes with direct a	nd indirect addressing modes. (L4)	(CO2)
9.	Evaluate the following program using two address instruction format X	=(A+B) * (C+D). (.	L5)	(CO2)
10.	Demonstrate the different types of addressing modes with e	xample. (L3)	(CO2)
11.	Explain the booth's multiplication algorithm with neat skete	ch of hardware design. ((L2)	(CO3)

Annexure : 3.1 A Sample Mid Question Paper

Annexure: 3.1B Brainstorming Session

S.No	Workshop Name	Date	Participant
1.	CO-PO mapping awareness session	07-03-2021 & 08-03-2021	All the CSE faculty members.

Annexure: C3.1C Performance Indicator Chart

ubject Code / Name :	2 I				ii		8			8
P0/ C0	5	Competency		Performance Indicators	CO1	CO2	CO3	CO4	C05	cc
			1.1.1	Apply mathematical techniques such as linear algebra, differential calculus, differential equations and integral calculus to solve problems	у		У		У	у
	1.1	Demonstrate competence in mathematical modeling	1.1.2	Apply concepts of Complex Variable, probability, linear algebra, vector integration and transformation techniques to model and solve electronics engineering problems.	у			у	у	у
POI: Engineering Knowledge: apply knowledge of mathematics, science, engineering fundamentals and an engineering	1.2	Demonstrate competence in basic sciences	1.2.1	Apply laws of natural science to an engineering problem	У		У	У		
specialization to the solution of complex engineering problems.	1.3	Demonstrate competence in engineering fundamentals	1.3.1	Apply engineering fundamentals	у		у		у	y
	1.4	Demonstrate competence in specialized engineering knowledge to the program	1.4.1	Apply electronics engineering concepts to solve engineering problems	У		У		У	3
		Interredge to the product		Average	3	0	2	1	2	
				Average Final	3	- 927	2	1	2	
		Demonstrate an ability to	2.1.1	Articulate problem statements and identify objectives.	y			Y		
	2.1	identify and formulate complex engineering	2.1.2	Identify engineering systems, variables, and parameters to solve a problem	¥			Y		T
		problem	2.1.3	Identify the mathematical, engineering and other relevant knowledge that applies to a given problem	У		Y	Y		
		Demonstrate an ability to formulate a solution plan and methodology for an	2.2.1	Reframe complex problems into interconnected sub- problems.	У		Ŷ	¥		
	2.2	engineering problem	2.2.2	Identify, assemble and evaluate information and	У		Y	Y.		
	6.6		2.2.3	Identify existing solution/methods for solving the problem, including forming justified approximations and assumptions	¥		Y	Y		
PO2: Problem Analysis: identify, formulate, review			2.2.4	Compare and contrast alternative solution/methods to	У		Y	Y.		
PO2: Problem Analysis: identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.		Demonstrate an ability to	2.3.1	Combine scientific principles and engineering concepts to formulate model/s (mathematical or otherwise) of a system or process that is appropriate in terms of applicability and required accuracy.	у		¥	¥		
	2.3	formulate and interpret a model	2.3.2	identify assumptions (mathematical and physical) necessary to allow modeling of a system at the level of accuracy required.	У		¥	¥		
			2.4.1	Apply engineering mathematics to implement solution	у		4			
	2.4	Demonstrate an ability to	2.4.2	Analyze and interpret the results using contemporary	У					F
		execute a solution process and analyze results	2.4.3	Identify the limitations of the solution and sources/causes Arrive at conclusions with respect to the objectives.	У					
			2.4.4		У					
			Average	3	0	1	2	0		

Annexure: 3.2.1 Batchwise Attainment Sheet

		DEPART	MENT OF	CO	MP	UTE	R SC	IENO	E AN	JD E	NGI	NEE	RING	G								
						_																
OUR	E:DISTRIBUTI	ED SYSTEMS																	Α.	Y:201	3 - 20	19
OUR	SE CODE : R16	CSE1143																	VE	AR/SE	M+ 111	11
																			11/	ANJ JE	vi. iii	/ 1
ourse	Instructor : G	.Natarajasekar, Assistant Professor																				
					_	-	-					_	_						_			_
		Course Outcomes		C	01	_		CO2			CO3		4	co	04			CO5			C06	_
		Event Name Question Numbers	PA	Q6	Q7	AQ1	Q8	MID I Q9	AQ2	Q10	Q11	AQ3	PA	Q6	Q7	AQ1	Q.8	Q9	AQ2	Q10	Q11	A
	ľ	Max.				AQI			AQZ		QII	AUS	PA				ų,s		AQ2			
SI. No	Register No.	Name Marks	5	5	5	2	5	5	2	5	5	1	5	5	5	2	5	5	2	5	5	
1	15D41A05J2	P VARSHA	3	3	3	2	1	NA	2	5	NA	1	3	5	5	2	5	NA	2	2	1	
2	16D41A0501	A HARSHA TEJA	5	5	5	2	1	NA	2	0	NA	1	5	5	3	2	4	NA	2	2	0	
3	16D41A0502	ABHINAV EMMANUEL PAUL	4	4	NA	1	4	NA	2	4	5	1	4	4	NA	1	4	2	2	1	2	
4	16D41A0503	ADDULA HARITHA	5	5	5	2	4	NA	2	3	NA	1	3	2	5	2	5	NA	2	2	5	
5	16D41A0504	AJMERA PRASHANTH	4	4	4	2	5	NA	2	3	NA	1	3	2	5	2	5	NA	2	2	5	
6	16D41A0505	AKITI AMATI REDDY	3	4	3	2	4	NA	2	3	NA	1	5	4	5	2	5	NA	2	2	4	
7	16D41A0506	ALLAM TEJASWI	5	4	5	2	5	NA	2	5	NA	1	5	4	5	2	5	2	2	2	4	-
8	16D41A0507	AMBOTHU LALITHA	5	5	5	2	4	NA	2	3	NA	1	5	4	5	2	5	2	2	2	4	
9	16D41A0508	AMUDALAPALLY ARAVIND	5	5	4	2	3	NA	2	3	NA	1	5	5	4	2	3	1	2	2	4	-
10	16D41A0509	ANANTHULA VINAY KUMAR	4	3	3	2	5	NA	2	3	NA	1	3	2	5	2	5	2	2	2	5	
11	16D41A0510	ANUMALA BHOOPATHI	3	3	NA	1	5	NA	2	4	4	1	3	5	5	1	5	2	2	1	1	
12	16D41A0511	ARAVINDH KUMAR NAMPALLI	5	5	5	2	4	NA	2	3	NA 3	1	3	4	5	2	4	2	2	2	4	
13	16D41A0512 16D41A0513	ARPULA SRI RANGA ARAVIND ARUDALA VENKAT KRISHNA	4	3	NA 2	2	5	NA	2	4	NA	1	4	5	0	2	3	2	2	2 NA	3	
14	16D41A0513	JAGINI SUSHEEL KUMAR	4	3	5	2	3	NA	2	4	NA	1	4	5	5	2	5	2	2	NA	0	
16	16D41A0515	AVINASH REDDY DUBBAKA	5	5	5	2	4	NA	2	3	NA	1	3	3	5	2	4	2	2	NA	5	
17	16D41A0515	BACHU LOHITH	4	4	NA	1	4	NA	2	5	5	1	3	NA	5	1	4	1	2	NA	5	
18	16D41A0518	BADUGU HEMANTH	3	3	5	1	2	NA	2	0	4	1	3	5	5	1	5	2	2	NA	NA	
19	16D41A0519	BALAPURAM NAVEEN KUMAR	4	3	NA	2	5	NA	2	3	3	1	3	NA	4	2	4	2	2	2	5	
20	16D41A0521	BARADHWAJ ANIL SHARMA	3	4	3	2	4	NA	2	3	NA	1	A	5	5	2	5	NA	2	2	4	
21	16D41A0522	BEERAM UDAY KIRAN REDDY	4	5	NA	2	4	NA	2	1	5	1	3	2	5	2	NA	5	2	1	5	
22	16D41A0523	BHUKYA MAHESHWARI	1	NA	5	1	2	NA	2	4	5	1	3	3	5	1	NA	5	2	2	5	
23	16D41A0524	BOINI ANIL KUMAR	2	5	4	2	3	NA	2	3	NA	1	1	5	5	2	5	NA	2	2	3	
24	16D41A0525	BOLLEPALLY HARSHITHA	5	5	4	2	3	NA	2	3	NA	1	5	5	5	2	4	NA	2	2	3	
25	16D41A0526	BOORA MEGHANA	4	0	5	2	1	NA	2	5	NA	1	5	5	5	2	0	2	2	2	2	
26	16D41A0527	BOTHSA INDRANI	5	5	5	2	4	NA	2	3	NA	1	4	5	5	2	5	2	2	2	5	
27	16D41A0528	BUCHANNAGARI MARUTHI REDDY	4	4	4	2	2	NA	1	0	NA	1	4	4	2	2	4	1	1	2	5	
28	16D41A0529	C RAJAVARDHAN REDDY	2	3	NA	2	5	NA	2	4	4	1	5	5	3	2	3	2	2	2	5	
29	16D41A0530	CH MAHA LAKSHMI	4	3	4	2	5	NA	2	5	NA	1	5	5	3	2	3	2	2	1	5	-
30	16D41A0531	CHANNA RASHMITHA	5	4	5	2	5	NA	2	5	NA	1	3	3	4	2	1	2	2	2	5	
31	16D41A0532	CHEGURI ANUSHA	5	4	5 NA	2	5	NA	2	5	NA 2		4	5	5 NA	2	5	2	2	2 NA	5	-
32	16D41A0533 16D41A0534	CHERUKU PAVAN TEJA CHERUKUMALLI SAI SESHIDHAR	5	3	3	2	4	NA	2	3	2 NA	1	5	5	5 5	2	5	2	2	NA	NA	
34	16D41A0535	CHERUPALLY VAMSHI KUMAR	4	3	2	2	5	NA	2	4	NA	1	3	3	5	2	4	2	2	NA	5	
35	16D41A0535	CHILUMULA RAGHU VAMSHI REDDY	5	4	NA	2	5	NA	2	5	2	1	3	5	5	1	5	1	2	NA	NA	+
36	16D41A0539	DHARMAREDDY SUSHMITHA	5	3	NA	1	5	NA	1	3	4	1	5	5	NA	1	2	2	1	NA	2	1
37	16D41A0540	CHITTIMALLA SAI PRIYA	5	4	5	2	5	NA	2	5	NA	1	4	5	5	2	5	2	2	2	5	
38	16D41A0541	D KESHAVA	4	5	5	2	4	NA	2	1	NA	1	5	5	3	2	3	NA	2	2	5	
39	16D41A0542	DAGGU SRIKANTH	2	5	4	2	4	NA	2	5	NA	1	5	5	NA	2	1	NA	2	1	5	
					-					-		-						-				1 5

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY Autonomous (D4) Sheriguda (V), R.R.Dist Department of Computer Science and Engineering

BATCH: 2016 - 2020 AY: 2018 - 2019 Course Instructor : M.Chinnaguravaiah, Assistant Professor Year/Sem: II/I

co							Program	Outcome	5						
	POI	P01	P03	P04	P05	206	P07	P08	209	P010	P011	P012	PSO1	PSO2	PS03
1	2	3	2.82	2	2		10	1	1.0	1	1	1	. •	1	1
2	1.	3	3	1.0		100	10		12		1.0	- 10			12
3	Т.	3	3		12				1.0		10	- 26		1	1
4	1)	2		- A -)	(*)	1		1.0	1.	- 81	- 23	2	. 1	1
5	2	1	1		1.0					18		10			
6	3	1	1.50	- 16 - J	3	1	100		-14	- 18 - I	- 30	2	2	ा	1
W.A	1.67	2.13	2.75	2.00	2.90	1.00	107/191	1.00	1011/01	1.00	1.00	1.50	2.00	1.60	1.00

SUBJECT HANDLER

 ATT
 OE
 SEE
 ACE

 CO1
 15
 3
 1.9
 2.33

 CO2
 16
 3
 1.9
 2.33

 CO3
 167
 3
 1.9
 2.33

 CO4
 170
 3
 1.9
 2.23

 CO5
 185
 3
 1.9
 2.23

 CO5
 18
 3
 1.9
 2.23

 CO5
 1.9
 2.1
 1.0
 4.23
 CO6 61 2.1 1.9 1.96

Exa.SEE=59%

PROGRAM OUTCOME AND PROGRAM SPECIFIC OUTCOME ATTAINMENT

 ibia is a state in the state in thestate in thestate in the state in thestate in the state

 OO
 Line
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V</th

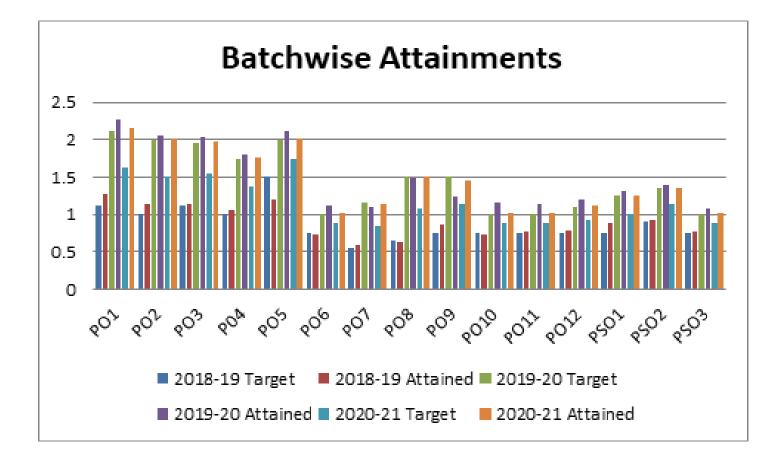
CO's		End	Exam	Internal A	ssessment	CO Atainenti	Overall Attainmen
	Target %	Attained %	Attained	Attained %	Attained		
COL		59%	1.9	88	3	2,45	
CO2	1	59%	1.9	86	3	2.45	
COJ	2	59%	19	87	3	2.45	2.37
CO4	2	59%	1.9	70	3	2.45	(Attained)
CO5	1	59%	1.9	88	3	2.45	
CO6	1	59%	1.9	61	2.1	2	

HEAD OF THE DEPARTMENT

PROGRAM COORDINATOR

Annexure: 3.2.1B Batch wise Rubric Chart

					2001	Ì		BA Ac	(An Au Recog	nized Appr	ous Ins under oved b	2(f) and y AIC	n unde d 12(B) FE and	r UGC of UG Perma	C Act 1 nently	Delhi) 1956 affiliat	ed to JNTUH d - 501 510	04 L8					
										DEPART	MENT	OF CON	IPUTER	SCIENC	CE AND	ENGINE	EERING						
5. No.	A.Y	Reg.	Batch	Year/ Sem	Sub. Code.	Sub. Name	Total no of Students	Pass	Pass Percen tagr	Fail (< 40%)	с	в	B+	A	A+	0+	Rubrics target for next sem	Students Secured > 60%	No of Students scored > class Average	Class Average	Class Average based on Total no. of Students	SEE	Previou Target
					R16CSE1110	PPL		220	96%	4%	10%	15%	19%	31%	19%	2%	L1=60-69%, L2=70 - 79%, L3->80%	71%	162.9516	68.09	0.7147	2.6	2.
					R16MTH1106	HVPE		226	99%	1%	2%	9%	17%	36%	29%	7%	L1=60-79%, L2=80 -89%, L3->90%	88%	200.9364	75.28	0.8813	2.8	2
				111/1	R16CSE1113	SE	228	222	97%	3%	17%	28%	31%	14%	6%	2%	L1=55-74%, L2=75 -84%, L3->85%	80%	182.97	61.22	0.8025	2.5	2
				III/1	R16CSE1118	CD	228	223	98%	2%	21%	21%	20%	24%	10%	3%	L1=60-69%, L2=70 - 79%, L3->80%	77%	175.9476	63.47	0.7717	2.7	2
					R16CSE1114	OS		220	96%	4%	7%	19%	22%	26%	17%	5%	L1=50-69%, L2=70 -79%, L3->80%	70%	159.8964	68.54	0.7013	2	
1	2019-	R16	2017-		R16CSE1139	CN		212	93%	7%	18%	21%	32%	16%	6%	NIL	L1=55-64%, L2=65 -84%, L3->85%	75%	170.9544	60.2	0.7498	2.5	
1	2020	N10	2021		R16CSE1143	DS		220	96%	4%	7%	9%	28%	26%	23%	4%	L1=55-64%, L2=65-84%, L3->85%	80%	183.7496	70	0.8024	2.7	
					R16CSE1117	IS		205	90%	10%	7%	24%	36%	17%	5%	NIL	L1=65-74%, L2=75-84%, L3->85%	82%	188.7876	60.25	0.8244	2.6	
				111/11	R16CSE1116	OOAD	229	213	93%	7%	4%	14%	27%	24%	17%	7%	L1=60-69%, L2=70 -79%, L3->80%	75%	171.7042	68.35	0.7498	2.5	
					R16CSE1121			214	93%	7%	5%	17%	27%	29%	14%	1%	L1=55-64%, L2=65 -74%, L3->75%	71%	162.6129	65.82	0.7101	2.6	
						MEFA		213	93%	7%	14%	25%	19%	20%	11%	5%	L1=60-69%, L2=70 -79%, L3->80%	78%	179.7192	62.64	0.7848	2.8	
					R16CSE1119	WT		209	91%	9%	9%	28%	27%	20%	7%	NILL	L1=65-74%, L2=75-84%, L3->85%	82%	187.78	61.35	0.82	2.7	
					R16CSE1110	PPL		213	93%	7%	14%	25%	22%	16%	14%	2%	L1=65-74%, L2=75-84%, L3->85%	79%	181.9405	62.47	0.7945	2.4	
						OR		195	85%	15%	12%	21%	24%	14%	12%	3%	L1=60-69%, L2=70 - 79%, L3->80%	73%	167.9715	60.03	0.7335	2.3	2
				111/1	COMPANY OF THE OWNER OF THE OWNER	SE	229	221	97%	3%	11%	17%	24%	22%	16%	5%	L1=50-59%, L2=60 -69%, L3->70%	67%	154.3918	66.66	0.6742	2.7	2
						CD		194	85%	15%	17%	21%	17%	16%	14%	0%	L1=55-64%, L2=65 - 74%, L3->75%	68%	154.9414	58.87	0.6766	2.3	2
						OS		212	93%	7%	10%	22%	24%	20%	12%	5%	L1=50-59%, L2=60 -69%, L3->70%	61%	138.9801	64.05	0.6069	2.1	
2	2018-	R16	2016 -			CN		218	95%	5%	9%	19%	24%	27%	14%	2%	L1=55-64%, L2=65 -74%, L3->75%	67%	152.9491	66.1	0.6679	2.3	
	2019		2020			DS		221	96%	4%	8%	13%	28%	30%	13%	4%	L1=60-69%, L2=70 -79%, L3->80%	75%	172.5	68.13	0.75	2.5	2
					R16CSE1117	15		224	97%	3%	14%	23%	22%	23%	12%	2%	L1=50-59%, L2=60 -69%, L3->70%	59%	135.7	64.54	0.59	1.9	
				111/11	R16CSE1116 R16CSE1121	OOAD STM	230	229	100%	0% 0%	7% 2%	15% 16%	22% 26%	25% 31%	22%	10%	L1=60-69%, L2=70 -79%, L3->80% L1=60-79%, L2=80 -89%, L3->90%	78%	178.802 187.933	72.43	0.7774	2.8	12
					R16CSE1121 R16HAS1103	MEFA		229	97%	3%	2%	22%	20%	23%	10%	3%	L1=60-79%, L2=80-89%, L3->90% L1=55-64%, L2=65-74%, L3->75%	63%	187.933	64.57	0.8171	2.2	1
					R16CSE1119	WEFA		223	90%	3%	8%	22%	33%	23%	3%	NILL%	L1=50-59%, L2=60 -69%, L3->70%	58%	133.952	60.4	0.5824	1.8	1
					(R14CSE1119)			207	92%	8%	15%	18%	24%	19%	10%	6%	L1=50-35%, L2=00-05%, L3=>70%	76%	173.4507	63.84	0.7641	2.1	-
				8	R14MTH1106			203	89%	11%	12%	14%	19%	18%	20%	6%	L1=55-74%, L2=75 -84%, L3->85%	77%	174,9489	64.69	0.7707	2.2	
						SE		203	92%	8%	16%	19%	22%	17%	15%	4%	L1=60-69%, L2=70 -79%, L3->80%	76%	172.6562	63.6	0.7606	2.6	
				111/1		CD	227	203	93%	7%	15%	23%	25%	19%	12%	NILL	L1=55-74%, L2=75 -84%, L3->85%	79%	178.195	61.77	0.785	2.3	
				3		OS		187	82%	18%	9%	17%	20%	18%	15%	3%	L1=60-69%, L2=70 -79%, L3->80%	73%	165.6192	60.8	0.7296	2.3	
	2017-		2015 -			CN		211	93%	7%	12%	23%	26%	23%	9%	NILL	L1=60-79%, L2=80 -89%, L3->90%	81%	184.1878	62.06	0.8114	2.1	
3	2018	R14	2019		Contraction and a second second second	DS		213	95%	5%	2%	10%	19%	28%	30%	6%	L1=60-79%, L2=80 -89%, L3->90%	83%	186.75	72.7	0.83	2.3	
					R14CSE1117	IS		200	89%	11%	14%	19%	21%	20%	11%	4%	L1=60-69%, L2=70 - 79%, L3->80%	75%	168.75	61.79	0.75	2.5	
					-	OOAD		207	92%	8%	15%	17%	28%	25%	7%	nil	L1=55-74%, L2=75 -84%, L3->85%	77%	173.25	61.48	0.77	2.2	1
				111/11	R14CSE1121	STM	225	210	93%	7%	10%	25%	26%	21%	8%	3%	L1=60-79%, L2=80 -89%, L3->90%	83%	186.75	63.84	0.83	2.3	1
					R14HAS1103	MEFA		217	96%	4%	16%	26%	27%	16%	8%	3%	L1=60-79%, L2=80 -89%, L3->90%	80%	180	62.86	0.8	2	2
				3	R14CSE1119	WT		201	89%	11%	11%	16%	25%	17%	15%	5%	L1=55-74%, L2=75 -84%, L3->85%	78%	175.5	63.48	0.78	2.3	


Annexure: 3.2.2 PAC Interaction Session Photos

S.No	Interaction Session	Date	Participant
1.	Programme Assessment Committee	20-02-2020 & 21-02-2020	PAC Committee
	interaction session		members and all the CSE
			faculty members.

Annexure 3.3 Batch wise attainment of PO and PSOs

A.Y	PO	PO1	PO2	PO3	P04	PO5	P06	PO 7	POS	PO9	PO10	POll	PO12	PSO1	PSO2	PSO3
	Target	2.30	2.10	2.20	1.90	2.20	1.20	1.20	1.50	1.30	1.20	1.30	1.20	1.40	1.50	1.20
2020-21	Attained	2.21	2.10	2,05	1.87	2.10	1.07	1.23	2.66	1.22	1.15	1.21	1.16	1,31	1.37	1.05
	Target	2.12	2.00	1.95	1.75	2.00	1.00	1.15	1.50	1.50	1.00	1.00	1.10	1.25	1.35	1.00
2019-20	Attained	2.26	2.05	2.03	1.80	2.11	1.11	1.10	1.48	1.24	1.15	1.13	1_20	1.31	1.40	1.08
	Target	1.12	1	1.12	1	1.5	0.75	1	0.65	1	1.2	1	1.5	1.1	1	1.5
2018-19	Attained	1.27	1.14	1.14	1.06	1.19	0.73	0.60	0.63	0.86	0.73	0.76	0.79	0.88	0.93	0.77

Annexure :3.3.1 Overall PO Direct and Indirect Attainment PO DIRECT ATTAINMENT

	II – I Semester															
C211 R16MTH1105 - Probability and Statistics	C211	1.38	1.71	1.7	1.46	0.83		-	-	-			0.83	-	0.27	0.27
C212 R16CSE1103 – Mathematical Foundations of Computer Science	C212	1.62	1.12	1.3	0.97	1.58	-	-	-	-	-	-	-	0.27	-	0.27
C213 R16CSE1104 - Data Structures through C++	C213	2.16	2.16	2.16	1.08	1.8	12	121	121	12	121	1.08	12	1.08	0.36	0.36
C214 R16ECE1136 – Digital Logic Design	C214	1.63	1.52	1.53	1.65	1.31	(2)	(2)	- 20	0.81	0.25	-	(2)	0.26	0.26	0.85
C215 R16ECE1102 – Electronic Devices and Circuits	C215	1.49	1.82	0.9	0.92	1.84	-	-	-	0.29	0.29	0.3	-	0.89	0.59	0.9
C216 R16EEE1130 – Basic Electrical Engineering	C216	1.31	1.43	0.83	0.87	1.65	-	-	-	-	0.27		-	0.53	0.53	0.87
C21L7 R16EEE1212-Basic Electrical Engineering Lab	C217L	3	2.5	2.5	1	2.5	12	20	20	12	2	2	2	1	1.5	0.33
C21L8 R16CSE1203 – Data Structures through C++ Lab	C21L8	2.5	1.5	1.5	3	2.5	(2)	120	120	120	- 20	1.5	120	3	3	1
					972	1.705	П	- II Seme	ster			-	/	1	676 6	
C221 R16CSE1105 - Computer Organization	C221	1.75	1.69	1.38	1.25	1.18	-	-	-	-	-	0.94	0.31	0.31	0.31	0.31
C222 R16CSE1106 - Database Management Systems	C222	2.65	2.26	2.22	2.24	1.3	12	121	121	0.89	1.3	0.89	0.86	0.9	2.07	0.78
C223 R16CSE1107 - Java Programming	C223	1.49	0.6	0.6	1.81	0.89	120	120	49	0.6	0.89	0.89	0.6	0.89	0.9	1.2
C224 R16HAS1102 - Environmental Studies	C224	1.48	1.46	0.9	1.32	1.7	0.54	0.59	-	-	0.83	0.87	0.6	0.89	0.86	0
C225 R16CSE1108 - Formal Languages and Automata Theory	C225	1.87	1.55	0.94	1.85	1.86	-	-	-	0.94	0.62	0.62	0.62	0.93	0.93	0.31
C226 R16CSE1109 - Design and Analysis of Algorithms	C216	0.98	1.02	1.02	0.74	-	2	-	-	-	-	2	0.74	0.96	0.62	0.55
C22L7 R16CSE1204 - Java Programming Lab	C22L7	1	1	-	2	1	(2)	120	120	(2)	1	(2)	20	1	0.5	1
C22L8 R16CSE1205 - Database Management Systems Lab	C22L8	2	1.5	1.5	-	2.5	-	-	-	-	1	0.5	0.5	2.5	2	2
i i							Ш	- I Seme	ster							
C311 R16CSE1110 - Principles of Programming Languages	C311	1.84	2.21	2.21	1.82	1.84	120	120	120	120	320	- 22	120	120	0.37	122
C312 R16MTH1106 - Human Values & Professional Ethics	C312	2.15	2.66	1.26	0.93	0.44	0.93	0.93	2.61	0.46	0.93	120	120	120	-	(20)
C313 R16CSE1113 - Software Engineering	C313	2.03	1.77	2.12	1.09	1.79	-	-	-	1.07	1.07	0.35	0.36	-	0.36	0.99
C314 R16CSE1118 - Compiler Design	C314	1.34	1.26	1.26	0.78	0.81					0.29	0.29		0.29		
C315 R16CSE1114 - Operating Systems	C315	2.17	1.8	1.74	12	1.77	120	120	120	0.37	0.37	120	120	0.37	120	0.37
C316 R16CSE1139 - Computer Networks	C316	2.06	2.51	2.51	1.29	2.09	(2)	20	20	(2)	20	(2)		120	0.43	0.4
C31L7 R16CSE1206 - Operating systems Lab	C31L7	2.5	1.5	1.5	1.5	3	-	-	-	-	-	-	-	1.5	-	1
C31L8 R16CSE1207- Compiler Design Lab	C31L8	2.5	1.5	1.5	3	2.5		1		1			0.5	0.5		253
		14 14	8	8)	N	A	III	– II Seme	ester	9	1		1	5	2	
C321 (R16CSE1143) - Distributed Systems	C321	1.68	1.74	2.13	1.29	2.12	120	-	1	- 22	0.53	120	- 20	0.36	- 22	(23)
C322 (R16CSE1117) - Information Security	C322	1.72	1.29	2.15		1.29	0.43	-	-		-		0.86	0.86		
C323 (R16CSE1116) - Object Oriented Analysis and Design	C323	1.82	0.73	0.73	1.11	1.83									0.37	
C324 (R16CSE1121) - Software Testing Methodologies	C324	1.54	0.61	0.6	1.01	1.61	120	2		0.67	0.67	0.67	1	12	0.27	122
C325 (R16CSE1103) - Managerial Economics Financial Analysis	C325	1.97	2.03	2,09	1.12	- 22	- 20			- 22	0.78	(2)		-	- 22	22
C326 R16CSE1119) - Web Technologies	C326	1.91	1.99	2.03	1.1	1. <mark>1</mark> 6				0.77	0.77	0.81		0.38		0.37
C32L7 (R16CSE1215) - Case Tools & Web Technologies LAB	C32L7	2.5	2.5	2.5	1.5	2.5				1	1	1	1	1		0.66
C32L8 (R16HAS1202) Advanced English language communication skills la	a C32L8	2.5	2.5	2.5	121	120	128	14	120	1	1	1.5	1.5	120	120	122
				1	2 10000012	in writer	IV	- I Seme	ster			1			1	
C411 (R16CSE1120) - Linux Programming	C411	1.56	1.56	1.56	1.25	1.88					-	0.31		0.94	0.94	-
C412 (R16CSE1128) - Design Patterns	C412	1.9	2.86	2.85	0.95	1.9				12		0.47		0.47	1.43	0.47
C413 (R16CSE1122) - Data Warehousing and Data Mining	C413	1.36	2.26	2.72	2.26	2.72	120	2	20	2	-	0.45	0.45	1.36	1.36	0.45
C414 (R16CSE1125) - Cloud Computing	C414	2.26	0.9	2.26	2.26	1.36	120	-	-	-	0.45	(2)	0.45	1.36	1.36	0.75
C415 (R16CSE1127) - Mobile Computing	C415	2.03	2.03	2.03	2.03	2.44	0.4	-	-	-	0.4	•	0.4	1.22	0.81	0.4
C416 (R16CSE1112) - COMPUTER FORENSICS	C416	0.93	1.39	2.3	1.84	0.93	0.46	-				171	12	0.91	1.37	0.46
C41L7 (R16CSE1208) - Linux Programming lab	C417L	1.29	1.29	1.29	2.58	1.72	121	- 22	- 22	120	120	1.29	1.29	1.29	1.29	0.86
C41L8 (R16CSE1216) - Data Warehousing and Mining LAB	C418L	3	2.5	2.5	2.5	3	140	-	-	- 14 J	-	- 20	1.5	1.5	1	0.33
		1 1						– II Seme	ster							
C421 (R16HAS1104) - Management Science	C421	35	2.86	1.4 3	2.86	12	1.43		-		-	12	13	13	12	0.47
C422 (R16CSE1135) - Multimedia & Rich Internet Applications	C422	2.79	2.32	2.79	0.93	2.32	120	- 20	- 20	120	1.39	12	12	0.46	1.39	0.46
C423 (R16CSE1136) - AD hoc and Sensor Networks	C423	2.86	2.86	2.38	1.43	2.86	920	- 220	- (2) (2)	920	- 920 ^{- 8}	920	0.47	920	1.43	0.47

PO INDIRECT ATTAINMENT

				S	RI INDU CO	LLEGE OF E	ENGINEERI	NG AND TE	CHNOLOG	Y					
							UTER SCIEF								
		-		Su	mmary of	PO Attain	nment bas	ed on Indi	rect meth	od					
ACADEMIC YEAR	2020-202	1													
	1	2	2				EDBACK :: 1	1	1	10	44	10	10	14	45
	1 PO1	PO2	3 PO3	4 PO4	5	6 PO6	7	8	9 PO9	10 PO10	11 PO11	12 PO12	13 PSO1	14 PSO2	15
1	28	22	19	29	PO5 39	51	PO7 26	PO8 18	23	35	23	47	32	12	PSO3 24
2	32	30	57	33	43	29	20	44	48	24	45	24	17	23	18
3	85	93	69	83	63	65	97	83	74	86	77	74	96	110	103
Total Score	347	361	340	344	314	304	361	355	341	341	344	317	354	388	369
Weighted Average	2.39	2.49	2.34	2.37	2.17	2.10	2.49	2.45	2.35	2.35	2.37	2.19	2.44	2.68	2.54
<u> </u>															1
					EXIT S	URVEY :: TO	OTAL NO.O	F STUDENT	S-195						
3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	53	38	49	67	39	48	89	52	43	32	44	93	55	20	28
2	48	82	51	60	51	86	49	72	56	93	64	45	68	82	90
3	94	75	95	68	105	61	57	71	96	70	87	57	72	93	77
Total Score	431	427	436	391	456	403	358	409	443	428	433	354	407	463	439
Weighted Average	2.21	2.19	2.24	2.01	2.34	2.07	1.84	2.10	2.27	2.19	2.22	1.82	2.09	2.37	2.25
					-										
			-			MPLOYER F		:: TOTAL -2	2			10	10		17
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1 2	15 7	10	14	9	13	8	11	10	5	8	14	3	12	4	7
3	3	15 0	3	11 5	10 2	10	10	7	11	13 4	2	10 12	8	12 9	9
Total Score	38	40	44	46	39	52	43	47	56	46	45	59	43	55	52
Weighted Average	1.27	1.33	1.47	1.53	1.30	1.73	1.43	1.57	1.87	1.53	1.50	1.97	1.43	1.83	1.73
Weighted Arenage	1.2.7	1.55	2.47	1.00	1.50	1.75	1.45	1.07	1.07	1.00	1.00	1.57	1.45	1.05	1.75
					-	ARENTS F	EEDBACK :	TOTAL -40							
8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	15	15	12	13	15	12	15	10	11	17	15	14	16	14	12
2	16	12	14	16	17	13	12	12	14	11	12	13	12	13	14
3	9	13	14	11	8	15	13	18	15	12	13	13	12	13	14
Total Score	74	78	82	78	73	83	78	88	84	75	78	79	76	79	82
Weighted Average	1.85	1.95	2.05	1.95	1.83	2.08	1.95	2.20	2.10	1.88	1.95	1.98	1.90	1.98	2.05
							MEMBERS			10		10	10		15
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	PO1 2	PO2 2	PO3 2	PO4 3	PO5	PO6	PO7 3	PO8	PO9 2	PO10 2	PO11 3	PO12	PSO1 2	PSO2 2	PSO3
2	3	4	3	2	4	1	2	7	6	4	4	3	3	4	1
3	5	4	5	5	2	8	5	2	2	4	3	6	5	4	7
Total Score	23	22	23	22	18	27	22	21	20	22	20	25	23	22	25
Weighted Average	2.30	2.20	2.30	2.20	1.80	2.70	2.20	2.10	2.00	2.20	2.00	2.50	2.30	2.20	2.50
0			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					·				· · · · · · · · · · · · · · · · · · ·		
					Summary	of attainm	ent based	on indire	ct method						
	2	3													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ASSESSMENT MODES	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ALUMNI FEEDBACK	2.39	2.49	2.34	2.37	2.17	2.10	2.49	2.45	2.35	2.35	2.37	2.19	2.44	2.68	2.54
EXIT SURVEY	2.21	2.19	2.24	2.01	2.34	2.07	1.84	2.10	2.27	2.19	2.22	1.82	2.09	2.37	2.25
EMPLOYER FEEDBAC	1.27	1.33	1.47	1.53	1.30	1.73	1.43	1.57	1.87	1.53	1.50	1.97	1.43	1.83	1.73
PARENTS FEEDBACK	1.85	1.95	2.05	1.95	1.83	2.08	1.95	2.20	2.10	1.88	1.95	1.98	1.90	1.98	2.05
					14.02			121111111							
PROFESSIONAL SOCIETY AVERAGE	2.30	2.20	2.30 2.08	2.20 2.01	1.80 1.89	2.70 2.13	2.20 1.98	2.10 2.08	2.00 2.12	2.20 2.03	2.00 2.01	2.50 2.09	2.30 2.03	2.20	2.50 2.22

PO Overall Attainment (Batch 2017-2021)

A.Y	PO	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	Target	2.30	2.10	2.20	1.90	2.20	1.20	1.20	1.50	1.30	1.20	1.30	1.20	1.40	1.50	1.20
2020-21	Attained	2.21	2.10	2.05	1.87	2.10	1.07	1.23	2.66	1.22	1.15	1.21	1.16	1.31	1.37	1.05