
 SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 HANDS ON TRAINING COURSE

 ON

 BASICS OF PYTHON PROGRAMMING

 Date: From 05.01.2022 To 18-02-2022 (6 Week Course, Only on Saturdays)

 COURSE CONTENTS

MODULE -1

Durations Topics Resource Person

Week 1

Basics of python programming

Mr.K.Raju

What is python programming?

Installation and Execution

Assignment -1

Week 2

Applications of python programming

Mr.K.Raju

An Introduction to Python

Installing Python

Python – Understanding Data with

Visualization

Peppering Data

Week 3

Python 2.x or Python 3.x ?

Mr.K.Raju

Python interactive:

using Python as a calculator

Using variables

MODULE -2

Durations Topics Resource Person

Week 4

Mathematical functions

Mr.K.Raju

Python scripts (programs)

Variables and objects

User input, Iterating with indexing

Assignment 3

MODULE -3

Durations Topics Resource Person

Week 5

Understanding Data with Statistics

Mr.K.Raju Methods for python programming

W when to use closures?

Basics of python programming

1. Python installation

On Linux systems, Python 2.x is already installed. To download Python for Windows and OSx, and for

documentation see http://python.org/ It might be a good idea to install the Bethought distribution Canopy that

contains already the very useful modules Numpy, Scipy and Matplotlib: https://www.enthought.com/downloads/

2. Python 2.x or Python 3.x ?

The current version is 3.x Some libraries may not yet be available for version 3, and Linux Ubuntu comes with 2.x

as a standard. Many improvements from 3 have been back ported to 2.7. The main differences for basic

programming are in the print and input function We will use Python 2.x in this tutorial.

3. Python interactive: using Python as a calculator

Start Python (or IDLE, the Python IDE). A
prompt is showing up:

>>>Display version:>>>help()
Welcome to Python 2.7! This is the online help utility.help>

Help commands:
modules: available modules
keywords: list of reserved Python keywords
quit: leave help

To get help on a keyword, just enter it's name in help.

http://python.org/
https://www.enthought.com/downloads/

Simple calculations in Python

>>> 3.14*5

15.700000000000001

Supported operators:

Operator Example Explication

+, -
*, /

add, substract,
multiply, divide

% modulo 25 % 5 = 0
84 % 5 = 4

25/5 = 5, remainder = 0
84/5 = 16, remainder = 4

** exponent 2**10 = 1024

// floor division 84//5 = 16 84/5 = 16, remainder = 4

Take care in Python 2.x if you divide two numbers:
Isn't this strange:
>>> 35/6 5

Obviously the result is wrong!
But:
>>> 35.0/6

5.833333333333333

>>> 35/6.0

5.833333333333333

In the first example, 35 and 6 are interpreted as integer numbers, so integer division is used and
the result is an integer.
This uncanny behavior has been abolished in Python 3, where 35/6 gives 5.833333333333333.

In Python 2.x, use floating point numbers (like 3.14, 3.0 etc ...) to force floating point division!

Another workaround would be to import the Python 3 like division at the beginning:
>>> from future import division
>>> 3/4

0.75

Builtin functions:

>>> hex(1024)

'0x400'

>>> bin(1024)

'0b10000000000'

Expressions:
>>> (20.0+4)/6 4

>>> (2+3)*5 25

4. Using variables

To simplify calculations, values can be stored in variables, and and these can be used as in
normal mathematics.

>>> a=2.0

>>> b = 3.36
>>> a+b

5.359999999999999

>>> a-b

-1.3599999999999999
>>> a**2 + b**2 15.289599999999998

>>> a>b

False

The name of a variable must not be a Python keyword!

Keywords are:

and elif if print
as else import raise

assert except in return
break exec is try

class finally lambda while
continue for not with

def from or yield

del global pass

5. Mathematical functions

Mathematical functions like square root, sine, cosine and constants like pi etc. are available in
Python. To use them it is necessary to import them from the math module:

>>> from math import *

>>> sqrt(2)

1.4142135623730951

Note:
There is more than one way to import functions from modules. Our simple method imports all functions available in
the math module. For more details see appendix.

Other examples using math:

Calculate the perimeter of a circle
>>> from math import *

>>> diameter = 5
>>> perimeter = 2 * pi * diameter
>>> perimeter

31.41592653589793

Calculate the amplitude of a sine wave:
>>> from math import *
>>> Ueff = 230
>>> amplitude = Ueff * sqrt(2)
>>> amplitude

325.2691193458119

from math import *

d = 10.0

A = pi * d**2 / 4

print "diameter =", d

print "area = ", A

diameter

6. Python scripts (programs)

If you have to do more than a small calculation, it is better to write a script (a program in
Python).

This can be done in IDLE, the Python editor.
A good choice is also Geany, a small freeware editor with syntax colouring, from which you can directly start your
script.

To write and run a program in IDLE:

• Menu File – New Window

• Write script
• File – Save (name with extension .py, for example myprogram.py)

• Run program: <F5> or Menu Run – Run Module

Take care:
• In Python white spaces are important!

The indentation of a source code is important!
A program that is not correctly indented shows either errors or does not what you
want!

• Python is case sensitive!
For example x and X are two different variables.

7. A simple program

This small program calculates the area of a circle:

Note: everything behind a "#" is a comment.
Comments are important for others to understand what the program does (and for yourself if you
look at your program a long time after you wrote it).

8. User input

In the above program the diameter is hard coded in the program.
If the program is started from IDLE or an editor like Geany, this is not really a problem, as it is
easy to edit the value if necessary.

In a bigger program this method is not very practical.

This little program in Python 2.7 asks the user for his name and greets him:

What is your name?Tom

HELLO Tom

s = raw_input("What is your name?")

print "HELLO ", s

x = int(raw_input("Input an integer: "))

y = float(raw_input("Input a float: "))

print x, y

""" Calculate area of a circle"""

from math import *

d = float(raw_input("Diameter: "))

A = pi * d** 2 / 4

print "Area = ", A

Take care:
The raw_input function gives back a string, that means a list of characters. If the input will be
used as a number, it must be converted.

9. Variables and objects

In Python, values are stored in objects.
If we do
d = 10.0

a new object d is created. As we have given it a floating point value (10.0) the object is of type
floating point. If we had defined d = 10, d would have been an integer object.

In other programming languages, values are stored in variables. This is not exactly the same as an object, as an
object has "methods", that means functions that belong to the object.
For our beginning examples the difference is not important.

There are many object types in Python.

The most important to begin with are:

Object type Type class name Description Example

Integer int Signed integer, 32 bit a = 5

Float float Double precision floating
point number, 64 bit

b = 3.14

Complex complex Complex number c = 3 + 5j
c= complex(3,5)

Character chr Single byte character d = chr(65)
d = 'A'

d = "A"

String str List of characters, text string e = 'LTAM'
e = "LTAM"

10. Input with data conversion

If we use the raw_input function in Python 2.x or the input function in Python 3, the result is
always a string. So if we want to input a number, we have to convert from string to number.

Now we can modify our program to calculate the area of a circle, so we can input the diameter:

Diameter: 25

Area = 490.873852123

while <condition> :

<....

block of statements

...>

i = 0

while i<= 5 :

print i

Note:
The text at the beginning of the program is a description of what it does. It is a special comment
enclosed in triple quote marks that can spread over several lines.
Every program should have a short description of what it does.

11. While loops

We can use the computer to do tedious tasks, like calculating the square roots of all integers
between 0 and 100. In this case we use a while loop:aa

0 0.0
1 1.0

2 1.41421356237
3 1.73205080757

.....

98 9.89949493661

99 9.94987437107
100 10.0
READY!

The syntax is :

The block of statements is executed as long as <condition> is True, in our example as long as i
<= 100.

Take care:

• Don't forget the ":" at the end of the while statement

• Don't forget to indent the block that should be executed inside the while loop!

The indentation can be any number of spaces (4 are standard), but it must be consistent for the
whole block.

Avoid endless loops!

In the following example the loop runs infinitely, as the condition is always true:

s = raw_input ("Input your name: ")

if s == "Tom":

print "HELLO ", s

s = raw_input ("Input your name: ")

if s == "Tom":

print "Hello ", s

else :

print "Hello unknown"

s = raw_input ("Input your name: ")

if s == "Tom":

print "Hello ", s

elif s == "Carmen":

print "I'm so glad to see you ", s

elif s == "Sonia":

print "I didn't expect you ",s

else :

print "Hello unknown"

The only way to stop it is by pressing <Ctrl>-C.

Examples of conditions:

Example

x == 3 True if x = 3

x != 5 True if x is not equal to 5

x < 5

x > 5

x <= 5

x >= 5

Note:

i = i +1 can be written in a shorter and more "Pythonic" way as i += 1

12. Testing conditions: if, elif, else

Sometimes it is necessary to test a condition and to do different things, depending on the
condition.
Examples: avoiding division by zero, branching in a menu structure etc.

The following program greets the user with "Hello Tom", if the name he inputs is Tom:

Note the indentation and the ":" behind the if statement!

The above program can be extended to do something if the testing condition is not true:

It is possible to test more than one condition using the elif statement:

Note the indentation and the ":" behind the if, elif and else statements!

(x,y) = (5, 3)

coordinates = (x,y)

print coordinates

dimensions = (8, 5.0, 3.14)

print dimensions

print dimensions[0]

print dimensions[1]

print dimensions[2]

nameslist = ["Sam", "Lisy", "Pit"]

numberslist = [1, 2, 3.14]

mixedlist = ["ham", 'eggs', 3.14, 5]

x=[]

13. Tuples

In Python, variables can be grouped together under one name. There are different ways to do this,
and one is to use tuples.

Tuples make sense for small collections of data, e.g. for coordinates:

(5, 3)

(8, 5.0, 3.14)
8

5.0
3.14

Note:
The brackets may be omitted, so it doesn't matter if you write x, y or (x, y)

14. Lists (arrays)

Lists are ordered sequences of objects.
It can for example be very practical to put many measured values, or names of an address book,
into a list, so they can be accessed by one common name.

Note:
Unlike other programming languages Python's arrays may contain different types of objects in one list.

New elements can be appended to a list:

[0, 1, 2]

[0, 1, 2, 5, 'Zapzoo']

An empty list can be created this way:

Sometimes we need an array that is initialized with zero values.

This is done with:

y= [0]*10

z = [0.0]*20

array of integers with 10 zero elements

array of floats with 20 zero elements

a= [0,1,2]

print a

a.append(5)

a.append("Zapzoo")

print a

a= [0,1,2]

print len(a)

mylist = ["black", "red", "orange"]

print mylist[0]

print mylist[1]

print mylist[2]

range (<startvalue>, <endvalue>, <stepsize>)

The number of elements can be determined with the len (length) function:

3

The elements of a list can be accessed one by one using an index:

black

red

orange

15. Range: producing lists of integer numbers

Often you need a regularly spread list of numbers from a beginning value to an end value.

This is done by the range function:

The general syntax is

Take care:

• A strange (and somewhat illogical) detail of the range function is that the end value is
excluded from the resulting list!

• The range function only works for integers!

16. Producing lists of floating point numbers

If you need floating point numbers, use linspace from the Numpy module, a package that is very
useful for technical and scientific applications. This package must be installed first, it is available
at http://www.numpy.org/
Don't forget to import the module in your script!

Note:
Here we use a slightly different method of import that avoids confusion between names of
variables and numpy funtions. There are 3 ways to import functions from a module, see
appendix.

"""" range gives a list of int numbers

note that end value is NOT included! """

r1 = range(11)

print r1

0...10

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

r2 = range(5,16)

print r2

5...15

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

r3 = range(4,21,2)

print r3

4...20 step 2

[4, 6, 8, 10, 12, 14, 16, 18, 20]

r4 = range(15, 4, -5) # 15....5 step -5

print r4 # [15, 10, 5]

http://www.numpy.org/

linspace (<startvalue>, <stopvalue>, <number_of_values>)

r6 = np.logspace(2, 3, 9)

print r6

mynames = ["Sam", "Pit", "Misch"]

for n in mynames:

print "HELLO ", n

from math import *

for i in range (0, 5):

print i, "\t", sqrt(i)

[0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2.]

The syntax for linspace is

The next example gives 9 logarithmically spaced values between 100 = 102 and 1000 = 103:

[100. 133.35214322 177.827941 237.13737057 316.22776602

421.69650343 562.34132519 749.89420933 1000.]

17. Iterating through a list: the for loop

If we have to do something with all the elements of a list (or another sequence like a tuple etc.)
one after the other, we use a for loop.

The example uses the names of a list of names, one after one:

HELLO Sam

HELLO Pit
HELLO Misch

This can also be done with numbers:

0 0.0

1 1.0
2 1.41421356237
3 1.73205080757

4 2.0

Notes:

• Python's for loop is somewhat different of the for ... next loops of other programming
languages. in principle it can iterate through anything that can be cut into slices. So it can be
used on lists of numbers, lists of text, mixed lists, strings, tuples etc.

• In Python the for ... next construction is often not to be missed, if we think in a
"Pythonic" way. Example: if we need to calculate a lot of values, it is not a good idea to use a
for loop, as this is very time consuming. It is better to use the Numpy module that provides
array functions that can calculate a lot of values in one bunch (see below).

""" for floating point numbers use linspace and logspace from numpy!"""

import numpy as np

r5 = np.linspace(0,2,9)

print r5

""" Dispay resistor colour code values"""

colours = ["black", "brown", "red", "orange", "yellow",

"green", "blue", "violet", "grey","white"]

cv = list (enumerate (colours))

for c in cv:

print c[0], "\t", c[1]

function definitions

def area(b, h):

""" calculate area of a rectangle"""

A = b * h return A

def perimeter(b, h):

""" calulates perimeter of a rectangle"""

P = 2 * (b+ h) return P

main program using defined functions

width = 5

height = 3

print "Area = ", area(width, height)

print "Perimeter = ", perimeter(width, height)

18. Iterating with indexing

Sometimes you want to iterate through a list and have access to the index (the numbering) of the
items of the list.

The following example uses a list of colour codes for electronic parts and prints their index and
the colour. As the colours list is well ordered, the index is also the colour value.

The list(enumerate (. ..)) function gives back a list of tuples cv that contain each an index (the
numbering) and the color value as text. If we print this we see

[(0, 'black'), (1, 'brown'), (2, 'red'), (3, 'orange'), (4, 'yellow'), (5,

'green'), (6, 'blue'), (7, 'violet'), (8, 'grey'), (9, 'white')]

Now we iterate on this, so we get the different tuples one after the other.

From these tuples we print c[0], the index and c[1], the colour text, separated by a tab.

So as a result we get:

0 black
1 brown
2 red
...
8 grey
9 white

19. Functions

It is a good idea to put pieces of code that do a clearly defined task into separate blocks that are
called functions. Functions must be defined before they are used.

Once they are defined, they can be used like native Python statements.

A very simple example calculates area and perimeter of a rectangle:

def <function_name(<argument1>, <argument2>,):

<statements>

....

return <returnvalue(s)>

function definition

def area_and_perimeter (b, h):

A = b * h

P = 2 * (b+ h)

return A, P

main program using defined function

ar, per = area_and_perimeter (4, 3)

print ar

print per

function definition

def greeting():

print "HELLO"

main program using defined functions

greeting()

The syntax of a function definition is:

The arguments are the values passed to the function.

the return value is the value that the function gives back to the calling program statement.

Dont't forget the ":" and the indentation !

A function can return more than one value:

Here the return values are returned as a tuple.

If the function doesn't need to return a value, the return statement can simply be omitted.

Example:

One good thing about functions is that they can be easily reused in another program.

Notes:

• Functions that are used often can be placed in a separate file called a module. Once this
module is imported the functions can be used in the program.

• It is possible to pass a variable number of arguments to a function.
For details see here: http://en.wikibooks.org/wiki/Python_Programming/Functions

• It is possible to pass named variables to a function

http://en.wikibooks.org/wiki/Python_Programming/Functions

import numpy as np

calculate 100 values for x and y without a for loop

x = np.linspace(0, 2* np.pi, 100)

y = np.sin(x)

print x

print y

from numpy import linspace, sin, exp, pi

import matplotlib.pyplot as mp

calculate 500 values for x and y without a for loop

x = linspace(0, 10*pi, 500)

y = sin(x) * exp(- x/10)

make diagram

mp.plot(x,y)

mp.show()

20. Avoiding for loops: vector functions

For loops tend to get slow if there are many iterations to do.

They are not necessary for calculations on numbers, if the Numpy module is used. It can be found
here http://www.numpy.org/ and must be installed before using it.

In this example we get 100 values of a sine function in one line of code:

21. Diagrams

Once you have calculated the many function values, it would be nice to display them in a diagram. This
is very simple if you use Matplotlib, the standard Python plotting library.

Matplotlib can be found here: http://matplotlib.org/downloads

The following program calculates the values of a function and draws a diagram:

http://www.numpy.org/
http://matplotlib.org/downloads

Notes:

• Matplotlib offers much more than this, see online documentation.

• There are two ways to use Matplotlib: a simple functional way that we have just
used, and a more complicated object oriented way, that allows for example to
embed a diagram into a GUI.

22. What next?

This tutorial covered just a minimal part of the Python basics. There are many, many interesting
possibilities to discover:

Object oriented programming, programs with a graphical user interface (GUI), connecting to
hardware, signal processing, image and sound processing etc. etc.

The Python package index is a good place to look for interesting modules:

https://pypi.python.org/pypi

https://pypi.python.org/pypi

from numpy import *

print sin(pi/4)

With this import method the following would give an error:

#sin = 5 # naming conflict!

#print sin(pi/4)

import numpy as np

print np.sin(np.pi/4)

from numpy import linspace, sin,

exp, pi print sin(pi/4)

Appendix

Importing functions from a module

Three ways to import functions:

1.the simplest way: import everything from a module advantage: simple usage e.g. of math functions

disadvantage: risk of naming conflicts when a variable has the same name as a module function

2.import module under an alias name that is short enough to enhance code clarity advantage: it is

clear to see which function belongs to which module

3.import only the functions that are needed advantage: simple usage e.g. of math functions naming

conflict possible, but less probable than with

1.disadvantage: you must keep track of all the used functions and adapt the import statement if a new

function is used

Python Directory

If there are a large number of files to handle in our Python program, we can arrange our code within

different directories to make things more manageable. A directory or folder is a collection of files and

subdirectories. Python has the os module that provides us with many useful methods to work with

directories (and files as well).

Get Current Directory

We can get the present working directory using the getcwd() method of the os module.

This method returns the current working directory in the form of a string. We can also use

the getcwdb() method to get it as bytes object.

>>> import os

>>> os.getcwd()

'C:\\Program Files\\PyScripter'

>>> os.getcwdb()

b'C:\\Program Files\\PyScripter'

The extra backslash implies an escape sequence. The print() function will render this properly.

>>> print(os.getcwd())

https://www.programiz.com/python-programming/file-operation
https://www.programiz.com/python-programming/modules

C:\Program Files\PyScripter

Changing Directory

We can change the current working directory by using the chdir() method.

The new path that we want to change into must be supplied as a string to this method. We can use both

the forward-slash / or the backward-slash \ to separate the path elements.

It is safer to use an escape sequence when using the backward slash.

>>> os.chdir('C:\\Python33')

>>> print(os.getcwd())

C:\Python33

List Directories and Files

All files and sub-directories inside a directory can be retrieved using the listdir() method.

This method takes in a path and returns a list of subdirectories and files in that path. If no path is specified, it

returns the list of subdirectories and files from the current working directory.

>>> print(os.getcwd())

C:\Python33

>>> os.listdir()

['DLLs',

'Doc',

'include',

'Lib',

'libs',

'LICENSE.txt',

'NEWS.txt',

'python.exe',

'pythonw.exe',

'README.txt',

'Scripts',

'tcl',

'Tools']

>>> os.listdir('G:\\')

['$RECYCLE.BIN',

'Movies',

'Music',

'Photos',

'Series',

'System Volume Information']

Exceptions in Python

Python has many built-in exceptions that are raised when your program encounters an error (something

in the program goes wrong).

When these exceptions occur, the Python interpreter stops the current process and passes it to the

calling process until it is handled. If not handled, the program will crash.

For example, let us consider a program where we have a function A that calls function B, which in turn

calls function C. If an exception occurs in function C but is not handled in C, the exception passes

to B and then to A.

If never handled, an error message is displayed and our program comes to a sudden unexpected halt.

https://www.programiz.com/python-programming/exceptions
https://www.programiz.com/python-programming/function

Catching Exceptions in Python

In Python, exceptions can be handled using a try statement.

The critical operation which can raise an exception is placed inside the try clause. The code that handles the

exceptions is written in the except clause.

We can thus choose what operations to perform once we have caught the exception. Here is a simple example.

import module sys to get the type of exception

import sys

randomList = ['a', 0, 2]

for entry in randomList:

 try:

 print("The entry is", entry)

 r = 1/int(entry)

 break

 except:

 print("Oops!", sys.exc_info()[0], "occurred.")

 print("Next entry.")

 print()

print("The reciprocal of", entry, "is", r)

Output

The entry is a

Oops! <class 'ValueError'> occurred.

Next entry.

The entry is 0

Oops! <class 'ZeroDivisionError'> occured.

Next entry.

The entry is 2

The reciprocal of 2 is 0.5

In this program, we loop through the values of the randomList list. As previously mentioned, the

portion that can cause an exception is placed inside the try block.

If no exception occurs, the except block is skipped and normal flow continues(for last value). But if

any exception occurs, it is caught by the except block (first and second values).

Here, we print the name of the exception using the exc_info() function inside sys module. We can see

that a causes ValueError and 0 causes ZeroDivisionError.

Catching Specific Exceptions in Python

In the above example, we did not mention any specific exception in the except clause.

This is not a good programming practice as it will catch all exceptions and handle every case in the same way.

We can specify which exceptions an except clause should catch.

A try clause can have any number of except clauses to handle different exceptions, however, only one will be

executed in case an exception occurs.

We can use a tuple of values to specify multiple exceptions in an except clause. Here is an example pseudo code.

try:

 # do something

 pass

except ValueError:

 # handle ValueError exception

 pass

except (TypeError, ZeroDivisionError):

 # handle multiple exceptions

 # TypeError and ZeroDivisionError

 pass

except:

 # handle all other exceptions

 pass

Object Oriented Programming

Python is a multi-paradigm programming language. It supports different programming approaches.

One of the popular approaches to solve a programming problem is by creating objects. This is known as Object-

Oriented Programming (OOP).

An object has two characteristics:

 attributes

 behavior

Let's take an example:

A parrot is an object, as it has the following properties:

 name, age, color as attributes

 singing, dancing as behavior

The concept of OOP in Python focuses on creating reusable code. This concept is also known as DRY (Don't

Repeat Yourself).

In Python, the concept of OOP follows some basic principles:

Class

A class is a blueprint for the object.

We can think of class as a sketch of a parrot with labels. It contains all the details about the name, colors, size

etc. Based on these descriptions, we can study about the parrot. Here, a parrot is an object.

The example for class of parrot can be :

class Parrot:

 pass

Here, we use the class keyword to define an empty class Parrot. From class, we construct instances. An instance

is a specific object created from a particular class.

Object

An object (instance) is an instantiation of a class. When class is defined, only the description for the object is

defined. Therefore, no memory or storage is allocated.

The example for object of parrot class can be:

obj = Parrot()

Here, obj is an object of class Parrot.

Suppose we have details of parrots. Now, we are going to show how to build the class and objects of parrots.

Example 1: Creating Class and Object in Python

class Parrot:

 # class attribute

 species = "bird"

 # instance attribute

 def __init__(self, name, age):

 self.name = name

 self.age = age

instantiate the Parrot class

blu = Parrot("Blu", 10)

woo = Parrot("Woo", 15)

access the class attributes

print("Blu is a {}".format(blu.__class__.species))

print("Woo is also a {}".format(woo.__class__.species))

access the instance attributes

print("{} is {} years old".format(blu.name, blu.age))

print("{} is {} years old".format(woo.name, woo.age))

Output
Blu is a bird

Woo is also a bird

Blu is 10 years old

Woo is 15 years old

In the above program, we created a class with the name Parrot. Then, we define attributes. The attributes are a

characteristic of an object.

These attributes are defined inside the __init__ method of the class. It is the initializer method that is first run as

soon as the object is created.

Then, we create instances of the Parrot class. Here, blu and woo are references (value) to our new objects.

We can access the class attribute using class__.species. Class attributes are the same for all instances of a class.

Similarly, we access the instance attributes using blu.name and blu.age. However, instance attributes are

different for every instance of a class.

To learn more about classes and objects, go to Python Classes and Objects

Methods

Methods are functions defined inside the body of a class. They are used to define the behaviors of an object.

Example 2 : Creating Methods in Python

class Parrot:

 # instance attributes

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # instance method

 def sing(self, song):

 return "{} sings {}".format(self.name, song)

 def dance(self):

 return "{} is now dancing".format(self.name)

instantiate the object

blu = Parrot("Blu", 10)

call our instance methods

print(blu.sing("'Happy'"))

print(blu.dance())

Output
Blu sings 'Happy'

Blu is now dancing

In the above program, we define two methods i.e sing() and dance(). These are called instance methods

because they are called on an instance object i.e blu.

Inheritance

Inheritance is a way of creating a new class for using details of an existing class without modifying it. The newly

formed class is a derived class (or child class). Similarly, the existing class is a base class (or parent class).

Example 3: Use of Inheritance in Python

parent class

class Bird:

 def __init__(self):

 print("Bird is ready")

https://www.programiz.com/python-programming/class

 def whoisThis(self):

 print("Bird")

 def swim(self):

 print("Swim faster")

child class

class Penguin(Bird):

 def __init__(self):

 # call super() function

 super().__init__()

 print("Penguin is ready")

 def whoisThis(self):

 print("Penguin")

 def run(self):

 print("Run faster")

peggy = Penguin()

peggy.whoisThis()

peggy.swim()

peggy.run()

Output
Bird is ready

Penguin is ready

Penguin

Swim faster

Run faster

In the above program, we created two classes i.e. Bird (parent class) and Penguin (child class). The child class

inherits the functions of parent class. We can see this from the swim() method.

Again, the child class modified the behavior of the parent class. We can see this from the whoisThis() method.

Furthermore, we extend the functions of the parent class, by creating a new run() method.

Additionally, we use the super() function inside the __init__() method. This allows us to run

the __init__() method of the parent class inside the child clas

Encapsulation

Using OOP in Python, we can restrict access to methods and variables. This prevents data from direct

modification which is called encapsulation. In Python, we denote private attributes using underscore as the

prefix i.e single _ or double __.

Example 4: Data Encapsulation in Python

class Computer:

 def __init__(self):

 self.__maxprice = 900

 def sell(self):

 print("Selling Price: {}".format(self.__maxprice))

 def setMaxPrice(self, price):

 self.__maxprice = price

c = Computer()

c.sell()

change the price

c.__maxprice = 1000

c.sell()

using setter function

c.setMaxPrice(1000)

c.sell()

Output
Selling Price: 900

Selling Price: 900

Selling Price: 1000

In the above program, we defined a Computer class.

We used __init__() method to store the maximum selling price of Computer. Here, notice the code

c.__maxprice = 1000

Here, we have tried to modify the value of __maxprice outside of the class. However, since __maxprice is a

private variable, this modification is not seen on the output.

As shown, to change the value, we have to use a setter function i.e setMaxPrice() which takes price as a

parameter.

Polymorphism

Polymorphism is an ability (in OOP) to use a common interface for multiple forms (data types).

Suppose, we need to color a shape, there are multiple shape options (rectangle, square, circle). However we

could use the same method to color any shape. This concept is called Polymorphism.

Example 5: Using Polymorphism in Python

k

#instantiate objects

blu = Parrot()

peggy = Penguin()

passing the object

flying_test(blu)

flying_test(peggy)

Output
Parrot can fly

Penguin can't fly

In the above program, we defined two classes Parrot and Penguin. Each of them have a common fly() method.

However, their functions are different.

To use polymorphism, we created a common interface i.e flying_test() function that takes any object and calls

the object's fly() method. Thus, when we passed the blu and peggy objects in the flying_test() function, it ran

effectively.

Iterators in Python

Iterators are everywhere in Python. They are elegantly implemented within for loops, comprehensions,

generators etc. but are hidden in plain sight.

Iterator in Python is simply an object that can be iterated upon. An object which will return data, one element at

a time.

https://www.programiz.com/python-programming/class

Technically speaking, a Python iterator object must implement two special

methods, __iter__() and __next__(), collectively called the iterator protocol.

An object is called iterable if we can get an iterator from it. Most built-in containers in Python

like: list, tuple, string etc. are iterables.

The iter() function (which in turn calls the __iter__() method) returns an iterator from them.

Iterating Through an Iterator

We use the next() function to manually iterate through all the items of an iterator. When we reach the end and

there is no more data to be returned, it will raise the StopIteration Exception. Following is an example.

define a list

my_list = [4, 7, 0, 3]

get an iterator using iter()

my_iter = iter(my_list)

iterate through it using next()

Output: 4

print(next(my_iter))

Output: 7

print(next(my_iter))

next(obj) is same as obj.__next__()

Output: 0

print(my_iter.__next__())

Output: 3

print(my_iter.__next__())

This will raise error, no items left

next(my_iter)

Output
4

7

0

3

Traceback (most recent call last):

 File "<string>", line 24, in <module>

 next(my_iter)

StopIteration

A more elegant way of automatically iterating is by using the for loop. Using this, we can iterate over any object

that can return an iterator, for example list, string, file etc.

>>> for element in my_list:

... print(element)

...

4

7

0

3

https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/for-loop

Generators in Python

There is a lot of work in building an iterator in Python. We have to implement a class

with __iter__() and __next__() method, keep track of internal states, and raise StopIteration when there are no

values to be returned.

This is both lengthy and counterintuitive. Generator comes to the rescue in such situations.

Python generators are a simple way of creating iterators. All the work we mentioned above are automatically

handled by generators in Python.

Simply speaking, a generator is a function that returns an object (iterator) which we can iterate over (one value at

a time).

Create Generators in Python

It is fairly simple to create a generator in Python. It is as easy as defining a normal function, but with

a yield statement instead of a return statement. If a function contains at least one yield statement (it may contain

other yield or return statements), it becomes a generator function. Both yield and return will return some value

from a function. The difference is that while a return statement terminates a function entirely, yield statement

pauses the function saving all its states and later continues from there on successive calls.

Differences between Generator function and Normal function

Here is how a generator function differs from a normal function.

 Generator function contains one or more yield statements.

 When called, it returns an object (iterator) but does not start execution immediately.

 Methods like __iter__() and __next__() are implemented automatically. So we can iterate through the items

using next().

 Once the function yields, the function is paused and the control is transferred to the caller.

 Local variables and their states are remembered between successive calls.

 Finally, when the function terminates, StopIteration is raised automatically on further calls.

Here is an example to illustrate all of the points stated above. We have a generator function

named my_gen() with several yield statements.

A simple generator function

def my_gen():

 n = 1

 print('This is printed first')

 # Generator function contains yield statements

 yield n

 n += 1

 print('This is printed second')

 yield n

 n += 1

 print('This is printed at last')

 yield n

An interactive run in the interpreter is given below. Run these in the Python shell to see the output.

https://www.programiz.com/python-programming/iterator
https://www.programiz.com/python-programming/function

>>> # It returns an object but does not start execution immediately.

>>> a = my_gen()

>>> # We can iterate through the items using next().

>>> next(a)

This is printed first

1 >>> # Once the function yields, the function is paused and the control is transferred to the caller.

>>> # Local variables and theirs states are remembered between successive calls.

>>> next(a)

This is printed second

2 >>> next(a)

This is printed at last

3 >>> # Finally, when the function terminates, StopIteration is raised automatically on further calls.

>>> next(a)

Traceback (most recent call last):

...

StopIteration

>>> next(a)

Traceback (most recent call last):

...

StopIteration

One interesting thing to note in the above example is that the value of variable n is remembered between each

call.

Unlike normal functions, the local variables are not destroyed when the function yields. Furthermore, the

generator object can be iterated only once.

To restart the process we need to create another generator object using something like a = my_gen().

One final thing to note is that we can use generators with for loops directly.

This is because a for loop takes an iterator and iterates over it using next() function. It automatically ends

when StopIteration is raised. Check here to know how a for loop is actually implemented in Python.

A simple generator function

def my_gen():

 n = 1

 print('This is printed first')

 # Generator function contains yield statements

 yield n

 n += 1

 print('This is printed second')

 yield n

 n += 1

 print('This is printed at last')

 yield n

Using for loop

for item in my_gen():

 print(item)

Python Closures

Nonlocal variable in a nested function

Before getting into what a closure is, we have to first understand what a nested function and nonlocal variable is.

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/iterator#for-loop-working

A function defined inside another function is called a nested function. Nested functions can access variables of

the enclosing scope.

In Python, these non-local variables are read-only by default and we must declare them explicitly as non-local

(using nonlocal keyword) in order to modify them.

Following is an example of a nested function accessing a non-local variable.

def print_msg(msg):

 # This is the outer enclosing function

 def printer():

 # This is the nested function

 print(msg)

 printer()

We execute the function

Output: Hello

print_msg("Hello")

Output
Hello

We can see that the nested printer() function was able to access the non-local msg variable of the enclosing

function.

Defining a Closure Function

In the example above, what would happen if the last line of the function print_msg() returned

the printer() function instead of calling it? This means the function was defined as follows:

def print_msg(msg):

 # This is the outer enclosing function

 def printer():

 # This is the nested function

 print(msg)

 return printer # returns the nested function

Now let's try calling this function.

Output: Hello

another = print_msg("Hello")

another()

Output
Hello

That's unusual.

The print_msg() function was called with the string "Hello" and the returned function was bound to the

name another. On calling another(), the message was still remembered although we had already finished

executing the print_msg() function.

This technique by which some data ("Hello in this case) gets attached to the code is called closure in Python.

https://www.programiz.com/python-programming/keyword-list#nonlocal

This value in the enclosing scope is remembered even when the variable goes out of scope or the function itself

is removed from the current namespace.

Try running the following in the Python shell to see the output.

>>> del print_msg

>>> another()

Hello

>>> print_msg("Hello")

Traceback (most recent call last):

...

NameError: name 'print_msg' is not defined

Here, the returned function still works even when the original function was deleted.

When do we have closures?

As seen from the above example, we have a closure in Python when a nested function references a value in

its enclosing scope.

The criteria that must be met to create closure in Python are summarized in the following points.

 We must have a nested function (function inside a function).

 The nested function must refer to a value defined in the enclosing function.

 The enclosing function must return the nested function.

 When to use closures?

So what are closures good for?

Closures can avoid the use of global values and provides some form of data hiding. It can also provide an object

oriented solution to the problem.

When there are few methods (one method in most cases) to be implemented in a class, closures can provide an

alternate and more elegant solution. But when the number of attributes and methods get larger, it's better to

implement a class.

Python RegEx

In this tutorial, you will learn about regular expressions (RegEx), and use Python's re module to work with

RegEx (with the help of examples).

A Regular Expression (RegEx) is a sequence of characters that defines a search pattern. For example,

^a...s$

The above code defines a RegEx pattern. The pattern is: any five letter string starting with a and ending

with s.

A pattern defined using RegEx can be used to match against a string.

Expression String Matched?

^a...s$

abs No match

alias Match

abyss Match

Alias No match

An abacus No match

Python has a module named re to work with RegEx. Here's an example:
import re

pattern = '^a...s$'

test_string = 'abyss'

result = re.match(pattern, test_string)

if result:

 print("Search successful.")

else:

 print("Search unsuccessful.")

Here, we used re.match() function to search pattern within the test_string. The method returns a match object if

the search is successful. If not, it returns None.

There are other several functions defined in the re module to work with RegEx. Before we explore that, let's

learn about regular expressions themselves.

