
1

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

HANDS ON TRAINING COURSE

ON

HANDS ON TRAINING IN NS2

 Date: From 25-11-2021 to 31-12-21 (6 Week Course, Only on Saturdays)

COURSE CONTENTS

MODULE -1

Durations Topics Resource Person

Week 1

Introduction to NS2

 Dr. C.Kotteeswaran

Overview

Why TCL, Installation of NS-2

 Network Component

Node and Routing

Packet Flow

Assignment-1

Week 2

Overview of ns-2 simulation test bed

 Dr. C.Kotteeswaran

ns architecture

NS programming

TCL interpreter, characteristics, X Graph

Assignment-2

Week 3

Basic Linux and Ns2

 Dr. C.Kotteeswaran
 Node Commands

WIRELESS NETWORK PROGRAMS

Assignment-3
MODULE -2

Durations Topics Resource Person

WSN program

Creation of TCP

AODV routing protocol

Multicast

2

Week 4 Link Dr. C.Kotteeswaran

Assignment-4
MODULE -3

Durations Topics Resource Person

Week 5

Channel – Wireless Channel

Dr. C.Kotteeswaran

Propagation Two Ray Ground Propagation

Queue Type – Drop Tail

Assessment -1

Conclusion

1 NS 2 INTRODUCTION

 Network Simulation (version 2) is one of the object-oriented language based discrete

event-driven introduced at UC Berkely developed in two languages, namely C++ and OTcl

3

(Object Tool Command Language). Network Simulation is first and foremost used in the

simulation of LAN and WAN network.

1.1 Overview

 Network Simulation 2 is an event-driven simulator that simulates various kinds of IP

networks. It implements network protocols such as Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP), behavior of traffic source such as File Transfer Protocol (FTP),

Telnet, Web, Constant Bit Rate (CBR) and Variable Bit Rate (VBR), queue management

methods such as Drop Tail, RED and CBQ, and some of the routing algorithm are used. NS also

works with multicasting network oriented programs and some of the Medium Access Control

(MAC) layer protocols for local area network simulations. Network Simulation project is

currently working for the VINT project that introduce tools for simulation results display,

analysis and converters that convert network topologies generated by well-known generators to

NS formats. At present, Network Simulation (version 2) developed in C++ and OTcl is on hand.

This manual discusses briefly about the basic construction of NS, and explains detaily how to

make use of NS frequently by giving examples.

 As shown in Figure (Simplified user view of NS2), in a simplified user's view, Network

simulation is an Object-oriented tool script interpretered with simulation event scheduler and the

libraries of network component object, and the libraries of network setup (plumbing) module (in

fact it is the plumbing modules which are implemented as member functions of the base

simulator object). Otherwise to use NS, we have to program in OTcl script language.

 To create and run a simulation, OTcl script should be written by the user that creates an

event, initiate the network topology set up using the objects of the network and comment the

traffic sources and fix the transmission time and stop time of transmitting packets through the

event scheduler.

 OTcl: Tcl Interpreter with

OO extension

NS Simulator Library

Event Scheduler objects

http://www.isi.edu/nsnam/vint

4

 OTcl Script Analysis

 Simulation Program Simulation

 Results

 Network Animator

Figure Simplified User's View of NS

 One more imporant component of NS beside network objects is the event scheduler. An

event in NS is a packet ID that is unique for a packet with scheduled time and the pointer to an

object that handles the event. In NS, an event scheduler continuously tracking of simulation time

period and fires all the simulation events in the event queue programmed for the present time by

invoking suitable network components, which more often than not are the ones who issued the

events in the simulation, and let them perform the suitable action connected with packet pointed

by the event.

 Network components communicates with one another transitory packet, however this does

not devour real simulation time. Each and every network components that require spending a

little simulation time for handling a packet (i.e. essential delay) use the event scheduler by

providing an event for the packet and to come for the event to be fired to itself previous to doing

additional action handling the packet. For example, a network switch component that handles the

simulation which switch with 20 microseconds of switching delay issues an event for a data

packet to be switched to the scheduler as an event 20 microsecond afterward. The scheduler

following 20 microseconds handle the process of dequeue the event and fires it to the switch

component, which subsequently send the packet to a suitable output link component.

 One more work of an event scheduler is timer. For example, Transmission Control

Protocol (TCP) needs to make use of a timer to keep tracking transmission time of a packet out

for further transmission (transmission of a packet with similar TCP packet number but dissimilar

network packet identication). Timers will make use of the event schedulers in a same manner

that delay does. The one and only difference in that timer is, it measures a time linked with a

 NAM

5

packet and does a suitable action connected to that packet after a firm time goes by, and does not

simulate a time delay.

1.2 Why TCL

 A user inscribe an OTcl script that’s creates an event scheduler, sets up the topology of the

network by make use of an objects of the network and the libraries plumbing functions, and

control the traffic sources when to initiate and finalize the transmission of the packets through

the event scheduler. Here plumbing is defined as a network setup, for the reason that setting up a

network is plumbing possible paths for data transfer between network objects by locating the

"neighbor" pointer of an object to the address of a suitable object. When a user needs to create a

new network object, he or she with no trouble can make an object either by creating a fresh

object or by constructing a compound object from the object library, and plumb the path of the

data through the object. This may resonance like difficult job, but the plumbing OTcl modules in

reality make the job trouble-free. The influence of NS comes from this plumbing.

 NS is created not only in tool command language but in C++ also. For efficiency reason,

NS data path implementations are separated from control path implementations. Most

importantly the packet and event processing time has to be reduced, for that purpose the C++

language is used to write and compile the event scheduler and the component objects. These

compiled objects are ready accessible to the OTcl interpreter through an OTcl linkage that

creates a corresponding OTcl object for each and every C++ objects and makes the control

functions and the configurable variables specified by the C++ object take action as member

functions and member variables of the corresponding OTcl object. By the way, the controls of

the C++ objects are prearranged to OTcl. It is also probable to insert member functions and

variables to a C++ linked OTcl object.

1.2.1 Network Component

TclObject

Other Objects NS Object

6

Figure Class Hierarchies (Partial)

1.2.2 Node and Routing

 Node

 Entry Node Entry

 Unicast Node Multicast Node

Figure Nodes (Unicast and Multicast)

 A node of a network is one of a compound object composed by both the node entry object

and classifiers as shown in Figure (Unicast and Multicast). There are two important types of

nodes in network simulation. First is unicast node, it has an address classifier with it that does the

operation of unicast routing and a port classifier. Next is multicast node, in addition to routing

Connector

Snoop Queue

Classifier

Addr

Classifier

Queue Delay Trace Agent MCast

Classifier

IN OUT DRP Edrp Drop

Tail

RED

Reno SACK

TCP UDP Enq Drop Recv Deq

Link

Port Classifier

 Addr

Classifier

Addr Classifier Port

 Classifier

 Agent

Application

Link

Link

Link

Agent

Application

7

and port classification, it has a classifier which classify multicast packets from unicast packets

and a multicast classifier that performs multicast routing.

 In network simulation, Unicast nodes are in default condition. In order to create Multicast

nodes once the user must clearly notify in the input of the OTcl script, after the exact creation of

scheduler object, the nodes which are created that will be in the form of multicast nodes. Next

process is specification, once it get done then specify the node type, the user can also select a

exact routing protocol other than using a predifined one.

Unicast

- $ns rtproto type

- type: Static, Session, DV, cost, multi-path

Multicast

- $ns multicast (right after set $ns [new Scheduler])

1.2.3 Link

Simplex Link

 Link Entry

Figure Link

 First notify that a node’s output queue is actually implemented in the form of simplex

link object. Once after completing the process of dequeued packets from a queue are passed to

the Delay object that again simulates the link delay, and the dropped packets at a queue are

transferred to a Null Agent and are made freed there. Finally, the TTL object calculates Time To

Live (TTL) parameters for each received packets and updates.

n1 n0

 Queue Delay TTL

 Agent/Null

 Drop

8

1.2.4 Tracing

 In NS2, activities of the network are traced around simplex links. If the simulator is

intended for to the trace network activities (specifically make use of $ns trace-all file or $ns

namtrace-all file), the links created after this commands will be followed by the upcoming trace

objects inserted as shown in Figure (Inserting Trace Objects). Users creates a trace object of type

type between the given source and destination nodes using the create-trace {type file src dst}

command.

Link with Trace Objects

 RecvT

Link Entry DDdyy

Figure Inserting Trace Objects

1.2.5 Queue Monitor

On the whole, tracing objects are intended to trace packet arrival time at which the

localization is done. Even though a user gets sufficient information from the trace files, he or she

might be concerned with what is going inside the output queue. For example, a user paying

attention in RED queue behavior may want to calculate the dynamics of average and current

queue size of a exact RED queue (i.e. need for queue monitoring). Queue monitoring can be

successfully achieved using queue monitor objects and snoop queue objects as shown in Figure

(Monitoring Queues).

 EnqT Queue DeqT Delay TTL

 DrpT Agent/Null

 Drop

9

Link with Snoop Queue Objects

Link Entry

Figure Monitoring Queues

 When a data packet arrives, the queue monitor object is notified by the snoop queue

object of this event. Using this information the queue is monitored by the queue monitor. RED

Queue Monitor Example section shows some examples for RED queue monitoring. Note that

snoop queue objects can be second-hand in parallel with tracing objects although it is not shown

in the above figure (Figure Monitoring Queues).

1.2.6 Packet Flow Example

Until now, the examination of two most important network components (node and link) is

done. Figure (Packet Flow Examples) shows internals of an example simulation network setup

and packet flow. The number of nodes network is two which is node 0 (n0) and node 1 (n1) of

which the network addresses are 0 and 1 respectively. A TCP agent (sender agent) attached to n0

using port 0 communicates with a TCP sink object (destination agent) attached to n1 port 0.

Finally, an FTP application layer (or traffic source) is attached to the TCP agent (sender

application), asking to send some amount of data to the destination which is node 1.

 SnoopQ/In Queue SnoopQ/Out Delay TTL

 SnoopQ/Drop Agent/Null

 Drop

Queue Monitor

10

Figure Packet Flow Examples

1.3 Overview of ns-2 simulation test bed

NS-2 has many and expanding uses included.

 The performance of existing network protocols is evaluated.

 Before the usage the new network protocols are evaluated.

 To run large scale experiments and it is not possible in the real time environment.

 Various kinds of internet protocols IP are possible to simulate in network simulation 2.

NS-2 is an object oriented discrete event simulator which works to calculate the performance and

behavior of the network. Simulator maintains list of events in the queue and executes one event

after another event.

Features:

 Protocols mostly used

 Fast to run, with high network control

 Front end is OTCL – Object tool command language

 BACK end is C++ - Creating scenarios, extensions to C++ protocols

 fast to create and modify

1.3.1 Characteristics of NS-2

 NS-2 implementation consist of the following features

 Multicasting is employed here.

11

 Simulation of various kinds of wireless networks

 Terrestrial (cellular, Adhoc, GPRS, WLAN, BLUETOOTH), satellite network are used

 IEEE 802.11 standard can be simulated, Mobile Internet Protocols and Ad hoc protocols

such as DSR, TORA, DSDV and AODV Routing are simulated

1.3.2 Software Tools used with NS-2

In the simulation, there are the two tools are used.

 NAM(Network Animator)

 xGraph

1.3.3 NS ARCHITECTURE

 Object-oriented (C++, OTCL).

 Modular approach

 Fine –grained object composition

 Reusability

 Maintenance

 Perfomanace(speed and memory)

 Careful planning of modularity

1.3.4 NS PROGRAMMING

 Create the event scheduler

 Turn on tracing

 Create network

 Setup routing

 Insert errors

 Create transport connection

 Create traffic

 Transmit application-level data

12

1.3.5 TCL INTERPRETER

 TclCL is the language used to provide a linkage between C++ and OTcl. Toolkit

Command Language(Tcl/OTcl) scripts are written to set up/configure network topologies. TclCL

provides linkage for class hierarchy,object instantiation, variable binding and command

dispatching. OTcl is used for periodic or triggered events

The following is written and compiled with C++

1. Events Scheduler

2. NAM- The Network Animator

3. Xgraph- For plotting

4. Pre Processing- Traffic & Topology generator

5. Post Processing- Simple Trace Analysis often used TCL and Pearl

1.3.6 CHARACTERISTICS

NS-2 implements the following features

 1. Router queue Management Techniques Drop Tail, RED, CBQ,

 2. Multicasting

 3. Simulation of wireless networks

 4. Developed by Sun Microsystem + UC Berkeley (Daedalus project)

 5. Terrestrial (Cellular, Ad-hoc, GPRS, WLAN, BLUETOOTH), Satellite

1.3.7 NAM (Network Animator)

NAM provides a visual interpretation of the network topology created. The application was

developed as part of the VINT project. Its feature is as follows.

 Provides a visual interpretation of the network created

 Can be executed directly from a Tcl script

13

 Controls include play; stop fast forward, rewind, pause, a display speed controller button

and a packet monitor facility.

 Presented information such as throughput, number packets on each link

1.3.8 X Graph

 X- Graph is an X-Window application that includes:

Interactive plotting and graphing Animated and derivatives, to use Graph in NS-2 the

executable can be called within a TCL script. This will then load a graph displaying the

information visually displaying the information of the file produced from the simulation. The

output is a graph of size 800 x 400 displaying information on the traffic flow and time.

1.3.9 Simulation tool

 NS2 are often growing to include new protocols. LANs need to be updated for new

wired/wireless support. ns are an object oriented simulator, written in C++, with an OTcl

interpreter as a front-end. The simulator supports a class hierarchy in C++ and a similar class

hierarchy within the OTcl interpreter (also called the interpreted hierarchy). The two hierarchies

14

are closely related to each other; from the user’s perspective, there is a one-to-one

correspondence between classes in the interpreted.

2 Basic Linux and Ns2

2.1 Linux Commands

cd : change directory

 Syntax: cd directoryname

ls : list the files in current directory

 Syntax: ls

rm : Remove a file from directory

 Syntax: rm filename

cp : Copying file from one directory to another

 Syntax: cp filename directoryname

pwd: For checking current directory

 Syntax: pwd

ps: For viewing currently running processes on system

 Syntax: ps

kill: For killing a process

 Syntax: kill processid

cat: For viewing file contents on terminal

 Syntax: cat filename

clear: clear the contents on terminal

 Syntax: clear

gcc: For compliling c and c++ programs.

 Syntax: gcc programname.c

15

gedit: Create and open the file in text editor.

 Syntax: gedit filename

./ : For running object file.

 Syntax: ./ objectfilename

2.2 Simulation System Architecture

2.3 Installation of NS-2

2.3.1 Installation on Linux

Copy ns-allinone-2.34.tar_1.gz into /usr/local folder

Extract ns-allinone-2.34.tar_1.gz, you will get ns-allinone-2.34.tar_1.

Extract ns-allinone-2.34.tar_1, you will get ns-allinone-2.34 folder.

Go to ns-allinone-2.34 folder and say – (./install).

Go to ns-2.34 folder,

 Do (./configure)

Do make all.

Do make install.

2.3.2 Bash file setting (option 2)

16

Open Terminal

Type on terminal following command

gedit ~/.bashrc

Add the TCL library, LD library and ns library path in .bashrc file.

Save the changes

Type on terminal following comand

source ~/.bashrc

2.4 NS-2 Directory Structure

17

3 Scenarios

3.1 First Simulation Scenario

Simulation Script

18

19

Save the simulation script in specific folder.

Open the terminal and go up to specific folder.

Run the simulation script,

ns: command to run simulation script.

Syntax: ns filename.tcl

e.g. ns First_script_wired.tcl

Run the nam file,

nam: command to run animation file

Syntax: nam filename.nam

e.g. nam s1.nam

3.1.1 Flow of Simulation (NS-Node)

20

3.1.2 Flow of Simulation (Network Topology – Link)

3.1.3 Flow of Simulation (Routing)

21

3.1.4 Flow of Simulation (Transport)

3.1.5 Flow of Simulation (Application)

22

3.1.6 Flow of Simulation (Packet Flow)

3.2 Second Simulation Scenario

23

3.2.1 Simulation Script 2

24

25

3.3 Node Orientation

26

3.4 Node Commands

$ns node [<hier_addr_>]

$ns node-config -<config-parameters> <optional-val>

$node id

$node node-addr

$node reset

$node agent <port_num>

$node entry

$node attach <agent>

$node detach <agent>

$node neighbors

$node add-neighbor <neighbor_node>

$node add-route <destination_id> <target>

$node alloc-port <null_agent>

$node incr-rgtable-size

More Node Commands

 Check ~ns-2.34/tcl/lib/ns-node.tcl and ~tcl/lib/ns-mobilenode.tcl

3.5 Link Commands

$ns simplex-link <node1> <node2> <bw> <delay> <qtype> <args>

$ns duplex-link <node1> <node2> <bw> <delay> <qtype> args>

$ns simplex-link-op <n1> <n2> <op> <args>

$ns duplex-link-op <n1> <n2> <p> <args>

$ns lossmodel <lossobj> <from> <to>

$link head

$link link

27

$link add-to-head <connector>

$link queue

$link cost <c>

$link cost?

$link if-lable?

$link up

$link down

$link up?

$link all-connectors <op>

More Node Commands

 Check ~ns-2.34/tcl/lib (ns-lib.tcl,ns-link.tcl, ns-intserv.tcl, ns-namsupp.tcl, ns-queue.tcl)

and ~tcl/mcast (McastMonitor.tcl, ns-mcast.tcl), ~ns-2.34/tcl/session/session.tcl

3.6 Simulator Commands

set ns [new Simulator]

set now [$ns now]

$ns halt

$ns run

$ns at <time> <event>

$ns cancel <event>

$ns flush-trace

$ns use - scheduler <type>

$ns after <delay> <event>

$ns clearMemTrace

$ns is-started

$ns dumpq

28

More functions

Check ~ns-2.34/tcl/lib/ns-lib.tcl, ~ns-2.34/commnon/scheduler.{cc,h} and ~ns-

2.34/heap.h

3.7 Trace Related Commands

$ns trace-all <trace-file>

$ns namtrace-all <namtracefile>

$ns namtrace-all-wireless <namtracefile> <X> <Y>

$ns nam-end-wireless <stoptime>

$ns flush-trace

$ns create-trace <type> <file> <src> <dst> <optional:op>

$ns trace-queue <n1> <n2> <optional : file>

$ns namtrace-queue <n1> <n2> <optional : file>

$ns drop-trace <n1> <n2> <trace>

$ns monitor-queue <n1> <n2> <qtrace> <optional : sampleinterval>

$link trace-dynamics <ns> <fileID>

More Functions,

Check ~ns-2.34/trace.{cc,h}, ~ns-2.34/tcl/lib/ns-trace.tcl, ~ns/queue-monitor.

{cc,h}, ~ns-2.34/tcl/ns-link.tcl, ~ns-2.34/packet.h, ~ns-2.34/flowmon.cc and ~ns-

2.34/classifier-hash.cc

3.8 NAM Commands

$ns color <color-id>

$ns trace-annotate <annotation>

$ns set-animation-rate <timestep>

29

3.9 Third Simulation Scenario

3.9.1 Simulation Script 3

30

31

32

3.10 Wired file format

33

Event Time From-

Node

 To-

Node

 Pkt-

Type

Pkt-

Size

Flags

 Fid Src-

addr

Dest-

addr

Seq-

num

 Pkt-

id

- 1.06 0 2 tcp 1040 ------

-

1 0.0 3.0 2 124

r 1.07 1 2 cbr 1000 ------

-

2 1.0 3.1 120 122

+ 1.07 2 3 cbr 1000 ------

-

2 1.0 3.1 120 122

d 1.07 2 3 cbr 1000 ------

-

2 1.0 3.1 120 122

34

4 WIRELESS NETWORK PROGRAMS

4.1 SIMULATION PROGRAM FOR LAN NETWORK

35

36

37

OUTPUT

NETWORK FORMATION

DATA TRANSMISSION

38

4.2 UNICAST PROGRAM

39

OUTPUT

40

DATA TRANSFER

PATH CHANGE DUE TO LINK FAILURE

41

4.3 MULTICAST PROGRAM 1

42

43

OUTPUT

DATA TRANSMISSION

44

4.4 MULTICAST PROGRAM 2

45

46

OUTPUT

DATA TRANSMISSION

47

4.5 Mobile/Wireless Node Structure

48

4.6 WIRELESS PROGRAM 1

49

50

51

OUTPUT

DATA TRANSFER

52

4.7 WSN PROGRAM – 802.11

53

54

55

OUTPUT

DATA TRANSFER

56

4.8 WSN PROGRAM – 802.15.4

57

58

OUTPUT

59

5 Protocol Works

5.1 Procedure to construct Malicious Node in TCL Script and C++

 Modification in AODV PROTOCOL

 LOCATION – ns-allinone-2.33/ns2.33/aodv/aodv.cc

 LOCATION – ns-allinone-2.33/ns2.33/aodv/aodv.h

aodv.h file changes

Declare a boolean variable malicious as shown below in the protected scope in the class AODV

bool malicious;

aodv.cc file changes

1. Initialize the malicious variable with a value "false". Declare it inside the constructor as

shown below

AODV::AODV(nsaddr_t id):Agent(PT_AODV)...

{

.......

malicious = false;

}

2. Add the following statement to the aodv.cc file in the "if(argc==2)" statement.

if(strcmp(argv[1], "malicious") == 0) {

 desyn = true;

 return TCL_OK;

}

3. Implement the behavior of the malicious node by setting the following code in the

rt_resolve(Packet *p) function. The malicious s node will simply drop the packet as indicated

below.

60

if(malicious ==true)

{

drop(p,DROP_RTR_ROUTE_LOOP);

}

Once done, recompile ns2 as given below

Open Terminal -> Go to ~ns-2.33/ directory and type the command make to compile

$] cd /ns-allinone-2.33/ns-2.33/

$] make

Once the compilation is done, Check the malicious behavior using the Tcl Script by setting any

four node as malicious node. The command to set the malicious node is

$ns at 2.0 "[$n0 set ragent_] malicious "

$ns at 2.0 "[$n8 set ragent_] malicious "

$ns at 2.0 "[$n23 set ragent_] malicious "

$ns at 2.0 "[$n19 set ragent_] malicious "

5.2 How to generate random mobility in ns2?

Procedure

Open the new terminal

cd ns-allinone-2.34

cd ns-2.34

cd indep-utils

pwd

ls

cd cmu-scen-gen

ls

cd setdest

ls

./setdest

61

./setdest –v 2 –n 10 –s 1 –m 10 –M 50 –t 30 –P 1 –p 1 –x 500 –y 500

./setdest –v 2 –n 10 –s 1 –m 10 –M 50 –t 30 –P 1 –p 1 –x 500 –y 500 >usersetdest.tcl

gedit usersetdest.tcl

5.3 How to generate random agent and application creation in ns2?

Procedure

cd ns-allinone-2.34

cd ns-2.34

cdindep-utils

cdcmu-scen-gen

ls

nscbrgen.tcl

nscbrgen.tcl –type cbr –nn 10 –seed 1 –mc 5 –rate 5.0

nscbrgen.tcl –type cbr –nn 10 –seed 1 –mc 5 –rate 5.0 > cbr-10.tcl

gedit cbr-10.tcl

6. PROGRAMS

6.1 PROGRAMS 1 – Wireless Network Construction using TCL script

Program Description

 Basic wirless construction with number of nodes contained is three. The procedure to

create nam file and trace file is given in this program. Topology is created by giving the position

to the nodes and is specified by X, Y and Z coordinates. Here initial size of each and every nodes

are built using initial_node_pos.The routing protocol which is used in this program is AODV

(Adhoc On-demand Vector Routing Protocol). And simulation end time is 10ms.

File Name – program1.tcl

 Channel Type – Wireless Channel

 Propogation – Two Ray Ground Model

 X dimension – 500

 Y dimension – 400

62

63

Procedure to run the program in the terminal window - $ns program1.tcl

OUTPUT

64

6.2 PROGRAM 2 – Code for the construction of wireless nodes with fixed colors

Program Description:

 Number of nodes in the network is eight which are created and configured as mobile

wireless nodes. Procedure for the creation of nam file and trace file is given and is followed by

the topology creation. Localization of the network is specified by using the X, Y and Z

coordinates and the Z coordinates are always remains zero. Routing protocol is AODV and the

stop time of the simulation is 10ms. Here all the nodes are created in cyan color.

 Channel Type – Wireless Channel

 Propogation – Two Ray Ground Model

 Queue Type – DropTail

 Antenna Type – Omni Directional Antenna

 Number of nodes – 8

 Routing protocol - AODV

 X dimension – 500

 Y dimension – 400

 Stop time – 10ms

 Color – cyan color

File Name – program2.tcl

65

66

67

Procedure to run the program in the terminal window - $ns program2.tcl

OUTPUT

6.3 PROGRAM 3 – Dynamic node creation program using AODV protocol TCL script

Program Discription

 Number of nodes in the network is not static in this program. Number of nodes

construction is given during the run time of the program. The user should give the number of

nodes in the terminal window during the execution of the program. Procedure for the creation of

nam file and trace file is given and is followed by the topology creation. Localization of the

network is specified by using the X, Y and Z coordinates and the Z coordinates are always

remains zero. Routing protocol is AODV and the stop time of the simulation is 10ms. Here all

the nodes are created in yellow color.

File Name – program3.tcl

if {$argc != 1} {
 error "\nCommand: ns wireless1.tcl <no.of.mobile-nodes>\n\n "
}

68

69

70

Procedure to run the program in the terminal window - $ns program3.tcl

OUTPUT

71

6.4 PROGRAM 4 – Dynamic node creation program and its initial location using AODV

protocol TCL script

Program Discription

 Number of nodes in the network is not static in this program. Number of nodes

construction is given during the run time of the program. The user should give the number of

nodes in the terminal window during the execution of the program. Procedure for the creation of

nam file and trace file is given and is followed by the topology creation. Localization of the

network is specified by using the X, Y and Z coordinates and the Z coordinates are always

remains zero. Here initial size of each and every node is created by the use of the command

(initial_node_pos). Routing protocol is AODV and the stop time of the simulation is 10ms. Here

all the nodes are created in yellow color.

File Name – program4.tcl

 X dimension – 600

 Y dimension – 600

 Stop time – 10ms

 Color – Yellow color

 Initial Node Position - 30

if {$argc != 1} {
 error "\nCommand: ns wireless3.tcl <no.of.mobile-nodes>\n\n "
}

72

73

Procedure to run the program in the terminal window - $ns program4.tcl

OUTPUT

74

6.5 PROGRAM 5 – Dynamic color creation program and its initial location of nodes using

AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is static in this program. Nodes are configured in the

mobile wireless node format. Procedure for the creation of nam file and trace file is given and is

followed by the topology creation. Localization of the network is not static. X and Y coordinates

are randomly selected and the Z coordinates are always remains zero. Here initial size of each

and every node is created by the use of the command (initial_node_pos). Routing protocol is

AODV and the stop time of the simulation is 10ms. Here all the nodes colors will get modified

dynamically according to the time period

File Name – program5.tcl

 Number of nodes - 4

 X dimension – 750

 Y dimension – 550

 Stop time – 3.0ms

 Color – Yellow color

 Initial Node Position - 30

75

76

77

Procedure to run the program in the terminal window - $ns program5.tcl

OUTPUT

78

6.6 PROGRAM 6 – Node mobility construction program using DSR routing protocol TCL

script

Program Discription

 Number of nodes in the network is static. Nodes are configured in the mobile wireless

node format. Procedure for the creation of nam file and trace file is given and is followed by the

topology creation. Localization of the network is static. X and Y coordinates values are given in

the program and the Z coordinates are always remains zero. Movement for each and every node

is built with static speed and spectifed receiver address which is randomly generated and also the

mobility will get change accoding to the time period. Here initial size of each and every node is

created by the use of the command (initial_node_pos). Routing protocol is DSR and the stop

time of the simulation is 10ms.

File Name – program6.tcl

 X dimension – 750

 Y dimension – 550

 Stop time – 3.0ms

 Color – Yellow color

 Initial Node Position - 30

if {$argc != 1} {

 error "\nCommand: ns program6.tcl <no.of.mobile-nodes>\n\n "

}

79

80

81

82

Procedure to run the program in the terminal window - $ns program6.tcl

OUTPUT

83

6.7 PROGRAM 7 – Creation of TCP (Transmission Control Protocol) communication

between the nodes using AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as three in the network. Nodes

are configured in the mobile wireless node format. Procedure for the creation of nam file and

trace file is given and is followed by the topology creation. Localization of the network is static.

X and Y coordinates values are given in the program and the Z coordinates are always remains

zero. Movement for each and every node is built with static speed and spectifed receiver address

which is randomly generated and also the mobility will get change accoding to the time period.

Here initial size of each and every node is created by the use of the command (initial_node_pos).

Routing protocol is AODV and the stop time of the simulation is 150ms. Three nodes are created

which are node0, node 1 and node 2. Send TCP agent is created and attached to node0,

destination TCPsink agent is created and attached to node1. Then the TCP agent and the

TCPsink agent are connected. In the next level, FTP application is created and attached to the

sender TCP agent. Now the communication is initiated.

File Name – program7.tcl

 X dimension – 500

 Y dimension – 400

 Stop time – 150 ms

84

85

86

Procedure to run the program in the terminal window - $ns program7.tcl

OUTPUT

87

6.8 PROGRAM 8 – Creation of TCP (Transmission Control Protocol) communication

between the nodes using DSR routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as three in the network. Nodes

are configured in the mobile wireless node format. Procedure for the creation of nam file and

trace file is given and is followed by the topology creation. Localization of the network is static.

X and Y coordinates values are given in the program and the Z coordinates are always remains

zero. Movement for each and every node is built with static speed and spectifed receiver address

which is randomly generated and also the mobility will get change accoding to the time period.

Here initial size of each and every node is created by the use of the command (initial_node_pos).

Routing protocol is DSR and the stop time of the simulation is 150ms. Three nodes are created

which are node0, node 1 and node 2. Send TCP agent is created and attached to node0,

destination TCPsink agent is created and attached to node1. Then the TCP agent and the

TCPsink agent are connected. In the next level, FTP application is created and attached to the

sender TCP agent. Now the communication is initiated.

File Name – program8.tcl

 X dimension – 500

 Y dimension – 400

 Stop time – 150 ms

88

89

90

Procedure to run the program in the terminal window - $ns program8.tcl

OUTPUT

91

6.9 PROGRAM 9 – Creation of UDP (User Datagram Protocol) communication between

nodes with CBR traffic using AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as 22 in the network. Nodes are

configured in the mobile wireless node format. Procedure for the creation of nam file and trace

file is given and is followed by the topology creation. Localization of the network is static. X and

Y coordinates values are given in the program and the Z coordinates are always remains zero.

Movement for each and every node is built with static speed and spectifed receiver address

which is randomly generated and also the mobility will get change accoding to the time period.

Here initial size of each and every node is created by the use of the command (initial_node_pos).

Routing protocol is AODV and the stop time of the simulation is 150ms. Send UDP agent is

created and attached to sender node, destination UDPNull agent is created and attached to

destination node. Then the UDP agent and the UDPNull agent are connected. In the next level,

CBR application is created and attached to the sender UDP agent. Now the communication is

initiated.

File Name – program9.tcl

 Number or nodes - 22

 X dimension – 1800

 Y dimension – 840

 Stop time – 150 ms

92

93

94

95

96

97

98

99

100

Procedure to run the program in the terminal window - $ns program9.tcl

OUTPUT

101

6.10 PROGRAM 10 – Creation of TCP (Transmission Control Protocol) communication

between the nodes using DSDV routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as three in the network. Nodes

are configured in the mobile wireless node format. Procedure for the creation of nam file and

trace file is given and is followed by the topology creation. Localization of the network is static.

X and Y coordinates values are given in the program and the Z coordinates are always remains

zero. Movement for each and every node is built with static speed and spectifed receiver address

which is randomly generated and also the mobility will get change accoding to the time period.

Here initial size of each and every node is created by the use of the command

(initial_node_pos). Routing protocol is DSDV and the stop time of the simulation is 150ms.

Three nodes are created which are node0, node 1 and node 2. Send TCP agent is created and

attached to node0, destination TCPsink agent is created and attached to node1. Then the TCP

agent and the TCPsink agent are connected. In the next level, FTP application is created and

attached to the sender TCP agent. Now the communication is initiated.

File Name – program10.tcl

 Channel Type – Wireless Channel

 Propogation – Two Ray Ground Model

 Queue Type – DropTail

 Antenna Type – Omni Directional Antenna

 Number of nodes – 3

 Routing protocol - DSDV

 X dimension – 500

 Y dimension – 400

 Stop time – 150ms

 AGENT – TCP

 Application - FTP

102

103

104

Procedure to run the program in the terminal window - $ns program10.tcl

OUTPUT

105

6.11 PROGRAM 11 – Mobile node energy model construction TCL script

Program Discription

 Number of nodes in the network is static and is declared as six in the network. Nodes are

configured in the mobile wireless node format. Procedure for the creation of nam file and trace

file is given and is followed by the topology creation. Localization of the network is static. X and

Y coordinates values are given in the program and the Z coordinates are always remains zero.

Movement for each and every node is built with static speed and spectifed receiver

address which is randomly generated and also the mobility will get change accoding to the time

period. Here initial size of each and every node is created by the use of the command

(initial_node_pos). Routing protocol is DSR and the stop time of the simulation is 18ms.

File Name – program11.tcl

 Channel – Wireless Channel

 Propagation – Two Ray Ground Propagation

 Queue Type – Drop Tail

 Antenna – Omni Directional Antenna

 Initial Energy – 20 J

 Transmission Power – 0.9 J

 Receiver Power – 0.8 J

 Idle Power – 0.0 J

 Sense Power – 0.0175 J

 Routing Protocol – DSR

 Simulation Time – 18ms

 Number of nodes – 6 nodes

 X dimension – 750

 Y dimension – 550

 Initial Node Position - 30

106

107

108

109

110

Procedure to run the program in the terminal window - $ns program11.tcl

OUTPUT

111

6.12 PROGRAM 12 – Creation of nodes at random destination at particular time interval

using AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is not static and is declared as six in the network. Nodes

are configured in the mobile wireless node format. Number of nodes construction is given during

the run time of the program. The user should give the number of nodes in the terminal window

during the execution of the program. Procedure for the creation of nam file and trace file is given

and is followed by the topology creation. Localization of the network is static. X and Y

coordinates values are given in the program and the Z coordinates are always remains zero.

Movement for each and every node is built with static speed and spectifed receiver address

which is randomly generated and also the detination location will get change accoding to the

time period.

File Name – program12.tcl

112

113

114

Procedure to run the program in the terminal window - $ns program12.tcl

OUTPUT

6.13 PROGRAM 13 – Creation of nodes destination and random coloring using AODV

routing protocol TCL script

Program Discription

 Number of nodes in the network is not static and is declared as eight in the network.

Nodes are configured in the mobile wireless node format. Number of nodes construction is given

during the run time of the program. The user should give the number of nodes in the terminal

window during the execution of the program. Procedure for the creation of nam file and trace file

is given and is followed by the topology creation. Localization of the network is static. X and Y

coordinates values are given in the program and the Z coordinates are always remains zero.

Movement for each and every node is built with static speed and spectifed receiver address

which is randomly generated and also the detination location will get change accoding to the

time period. Here initial size of each and every node is created by the use of the command

(initial_node_pos). Routing protocol is AODV and the stop time of the simulation is 10ms. Here

each and every group of the nodes is constructed with different type of colors.

File Name – program13.tcl

115

116

117

Procedure to run the program in the terminal window - $ns program13.tcl

OUTPUT

118

6.14 PROGRAM 14 – Creation of nodes with the initial and destination position in random

manner using AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is not static and is declared as eight in the network.

Nodes are configured in the mobile wireless node format. Procedure for the creation of nam file

and trace file is given and is followed by the topology creation. Localization of the network is

static. X and Y coordinates values are given in the program and the Z coordinates are always

remains zero.

Movement for each and every node is built with static speed and spectifed receiver

address which is randomly generated and also the detination location will get change accoding to

the time period. Here initial size of each and every node is created by the use of the command

(initial_node_pos). Routing protocol is AODV and the stop time of the simulation is 10ms. Here

each and every group of the nodes is constructed with different type of colors.

File Name – program14.tcl

 Channel – Wireless Channel

 Propagation – Two Ray Ground Propagation

 Queue Type – Drop Tail

 Antenna – Omni Directional Antenna

 Routing Protocol –AODV

 Simulation Time – 18ms

 Number of nodes – 8 nodes

 X dimension – 500

 Y dimension – 400

 Initial Node Position - 30

119

120

121

Procedure to run the program in the terminal window - $ns program14.tcl

OUTPUT

122

6.15 PROGRAM 15 – Creation of graphs with X dimension and Y Dimension constructed

randomly using AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as three in the network.

Procedure for the creation of nam file and trace file is given and is followed by the topology

creation. Localization of the network is static. X and Y coordinates values are given in the

program and the Z coordinates are always remains zero. Graph is randomly generated using the

X and Y dimensions and is programmed to generate the trace file accordingly. Here the trace file

acts as a input file to plot the graph in the format of trace file. Routing protocol is AODV and the

stop time of the simulation is 10ms.

File Name – program15.tcl

 Channel – Wireless Channel

 Propagation – Two Ray Ground Propagation

 Queue Type – Drop Tail

 Antenna – Omni Directional Antenna

 Routing Protocol –AODV

 Simulation Time – 10ms

 Initial Node Position - 30

123

124

125

Procedure to run the program in the terminal window - $ns program15.tcl

OUTPUT

6.16 PROGRAM 16 – Creation of graphs with two parameters as inputs using AODV

routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as three in the network.

Procedure for the creation of nam file and trace file is given and is followed by the topology

creation. Localization of the network is static. X and Y coordinates values are given in the

program and the Z coordinates are always remains zero. Graph is randomly generated using the

X and Y dimensions and is programmed to generate the trace file accordingly. The trace file acts

as input file to plot the graph in the format of trace file. Here single plotted graph consist of two

trace file values. Different colors are given to each trace file during plotting. Routing protocol is

AODV and the stop time of the simulation is 10ms.

File Name – program16.tcl

126

127

128

Procedure to run the program in the terminal window - $ns program16.tcl

OUTPUT

6.17 PROGRAM 17 – Creation of graphs with more than two parameter files as inputs

using AODV routing protocol TCL script

Program Discription

 Number of nodes in the network is static and is declared as three in the network.

Procedure for the creation of nam file and trace file is given and is followed by the topology

creation. Localization of the network is static. X and Y coordinates values are given in the

program and the Z coordinates are always remains zero. Graph is randomly generated using the

X and Y dimensions and is programmed to generate the trace file accordingly. The trace file acts

as input file to plot the graph in the format of trace file. Here single plotted graph consist of more

than two trace file values. Different colors are given to each trace file during plotting. Routing

protocol is AODV and the stop time of the simulation is 10ms.

File Name – program17.tcl

129

130

131

Procedure to run the program in the terminal window - $ns program17.tcl

OUTPUT

