
UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list

implementation, insertion, deletion and searching operations on linear list, Stacks-

Operations, array and linked representations of stacks, stack applications, Queues-

operations, array and linked representations.

Data Structure

Introduction

Data Structure can be defined as the group of data elements which provides an efficient way of

storing and organizing data in the computer so that it can be used efficiently. Some examples of

Data Structures are arrays, Linked List, Stack, Queue, etc. Data Structures are widely used in

almost every aspect of Computer Science i.e. Operating System, Compiler Design, Artificial

intelligence, Graphics and many more.

Data Structures are the main part of many computer science algorithms as they enable the

programmers to handle the data in an efficient way. It plays a vital role in enhancing the

performance of a software or a program as the main function of the software is to store and

retrieve the user's data as fast as possible.

Basic Terminology

Data structures are the building blocks of any program or the software. Choosing the appropriate

data structure for a program is the most difficult task for a programmer. Following terminology

is used as far as data structures are concerned.

Data: Data can be defined as an elementary value or the collection of values, for example,

student's name and its id are the data about the student.

Group Items: Data items which have subordinate data items are called Group item, for example,

name of a student can have first name and the last name.

Record: Record can be defined as the collection of various data items, for example, if we talk

about the student entity, then its name, address, course and marks can be grouped together to

form the record for the student.

File: A File is a collection of various records of one type of entity, for example, if there are 60

employees in the class, then there will be 20 records in the related file where each record

contains the data about each employee.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Attribute and Entity: An entity represents the class of certain objects. it contains various

attributes. Each attribute represents the particular property of that entity.

Field: Field is a single elementary unit of information representing the attribute of an entity.

Need of Data Structures

As applications are getting complex and amount of data is increasing day by day, there may arise

the following problems:

Processor speed: To handle very large amount of data, high speed processing is required, but as

the data is growing day by day to the billions of files per entity, processor may fail to deal with

that much amount of data.

Data Search: Consider an inventory size of 106 items in a store, If our application needs to

search for a particular item, it needs to traverse 106 items every time, results in slowing down the

search process.

Multiple requests: If thousands of users are searching the data simultaneously on a web server,

then there are the chances that a very large server can be failed during that process

in order to solve the above problems, data structures are used. Data is organized to form a data

structure in such a way that all items are not required to be searched and required data can be

searched instantly.

Advantages of Data Structures

Efficiency: Efficiency of a program depends upon the choice of data structures. For example:

suppose, we have some data and we need to perform the search for a particular record. In that

case, if we organize our data in an array, we will have to search sequentially element by element.

hence, using array may not be very efficient here. There are better data structures which can

make the search process efficient like ordered array, binary search tree or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data

structure, we can use it at any other place. Implementation of data structures can be compiled

into libraries which can be used by different clients.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The

client program uses the data structure through interface only, without getting into the

implementation details.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Data Structure Classification

Linear Data Structures: A data structure is called linear if all of its elements are arranged in the

linear order. In linear data structures, the elements are stored in non-hierarchical way where each

element has the successors and predecessors except the first and last element.

Linear Data Structures

If a data structure organizes the data in sequential order, then that data structure is called

a Linear DataStructure.

Example

1. Arrays

2. List (Linked List)

3. Stack

4. Queue

Types of Linear Data Structures are given below:

Arrays: An array is a collection of similar type of data items and each data item is called an

element of the array. The data type of the element may be any valid data type like char, int, float

or double.

The elements of array share the same variable name but each one carries a different index

number known as subscript. The array can be one dimensional, two dimensional or

multidimensional.

The individual elements of the array age are:

age[0], age[1], age[2], age[3],......... age[98], age[99].

Linked List: Linked list is a linear data structure which is used to maintain a list in the memory.

It can be seen as the collection of nodes stored at non-contiguous memory locations. Each node

of the list contains a pointer to its adjacent node.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Stack: Stack is a linear list in which insertion and deletions are allowed only at one end,

called top.

A stack is an abstract data type (ADT), can be implemented in most of the programming

languages. It is named as stack because it behaves like a real-world stack, for example: - piles of

plates or deck of cards etc.

Queue: Queue is a linear list in which elements can be inserted only at one end called rear and

deleted only at the other end called front.

It is an abstract data structure, similar to stack. Queue is opened at both end therefore it follows

First-In-First-Out (FIFO) methodology for storing the data items.

Non Linear Data Structures:

This data structure does not form a sequence i.e. each item or element is connected with two or

more other items in a non-linear arrangement. The data elements are not arranged in sequential

structure.

Non - Linear Data Structures

If a data structure organizes the data in random order, then that data structure is called as

Non-Linear Data Structure.

Example

1. Tree

2. Graph

3. Dictionaries

4. Heaps

5. Tries, Etc.,

Types of Non Linear Data Structures are given below:

Trees: Trees are multilevel data structures with a hierarchical relationship among its elements

known as nodes. The bottommost nodes in the herierchy are called leaf node while the topmost

node is called root node. Each node contains pointers to point adjacent nodes.

Tree data structure is based on the parent-child relationship among the nodes. Each node in the

tree can have more than one children except the leaf nodes whereas each node can have atmost

one parent except the root node. Trees can be classfied into many categories which will be

discussed later in this tutorial.

Graphs: Graphs can be defined as the pictorial representation of the set of elements (represented

by vertices) connected by the links known as edges. A graph is different from tree in the sense

that a graph can have cycle while the tree can not have the one.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Operations on data structure

1) Traversing: Every data structure contains the set of data elements. Traversing the data

structure means visiting each element of the data structure in order to perform some specific

operation like searching or sorting.

Example: If we need to calculate the average of the marks obtained by a student in 6 different

subject, we need to traverse the complete array of marks and calculate the total sum, then we will

devide that sum by the number of subjects i.e. 6, in order to find the average.

2) Insertion: Insertion can be defined as the process of adding the elements to the data structure

at any location.

If the size of data structure is n then we can only insert n-1 data elements into it.

3) Deletion:The process of removing an element from the data structure is called Deletion. We

can delete an element from the data structure at any random location.

If we try to delete an element from an empty data structure then underflow occurs.

4) Searching: The process of finding the location of an element within the data structure is

called Searching. There are two algorithms to perform searching, Linear Search and Binary

Search. We will discuss each one of them later in this tutorial.

5) Sorting: The process of arranging the data structure in a specific order is known as Sorting.

There are many algorithms that can be used to perform sorting, for example, insertion sort,

selection sort, bubble sort, etc.

6) Merging: When two lists List A and List B of size M and N respectively, of similar type of

elements, clubbed or joined to produce the third list, List C of size (M+N), then this process is

called merging

Abstract Data Type:

An abstract data type, sometimes abbreviated ADT, is a logical description of how we view the

data and the operations that are allowed without regard to how they will be implemented. This

means that we are concerned only with what data is representing and not with how it will

eventually be constructed. By providing this level of abstraction, we are creating an

encapsulation around the data. The idea is that by encapsulating the details of the

implementation, we are hiding them from the user’s view. This is called information hiding. The
implementation of an abstract data type, often referred to as a data structure, will require that we

provide a physical view of the data using some collection of programming constructs and

primitive data types.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Stack

A Stack is linear data structure. A stack is a list of elements in which an element may be inserted or deleted

only at one end, called the top of the stack. Stack principle is LIFO (last in, first out). Which element

inserted last on to the stack that element deleted first from the stack.

As the items can be added or removed only from the top i.e. the last item to be added to a stack is the first

item to be removed.

Real life examples of stacks are:

Operations on stack:

The two basic operations associated with stacks are:

1. Push

2. Pop

While performing push and pop operations the following test must be conducted on the stack.

a) Stack is empty or not b) stack is full or not

1. Push: Push operation is used to add new elements in to the stack. At the time of addition first check

the stack is full or not. If the stack is full it generates an error message "stack overflow".

2. Pop: Pop operation is used to delete elements from the stack. At the time of deletion first check the

stack is empty or not. If the stack is empty it generates an error message "stack underflow".

All insertions and deletions take place at the same end, so the last element added to the stack will be the

first element removed from the stack. When a stack is created, the stack base remains fixed while the stack

top changes as elements are added and removed. The most accessible element is the top and the least

accessible element is the bottom of the stack.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Representation of Stack (or) Implementation of stack:

The stack should be represented in two ways:

1. Stack using array

2. Stack using linked list

1. Stack using array:

Let us consider a stack with 6 elements capacity. This is called as the size of the stack. The number of

elements to be added should not exceed the maximum size of the stack. If we attempt to add new element

beyond the maximum size, we will encounter a stack overflow condition. Similarly, you cannot remove

elements beyond the base of the stack. If such is the case, we will reach a stack underflow condition.

1. push():When an element is added to a stack, the operation is performed by push(). Below Figure

shows the creation of a stack and addition of elements using push().

Initially top=-1, we can insert an element in to the stack, increment the top value i.e top=top+1. We can

insert an element in to the stack first check the condition is stack is full or not. i.e top>=size-1. Otherwise

add the element in to the stack.

Algorithm: Procedure for push():

Step 1: START

Step 2: if top>=size-1 then

 Write “ Stack is Overflow”
Step 3: Otherwise

 3.1: read data value ‘x’
 3.2: top=top+1;

 3.3: stack[top]=x;

Step 4: END

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

2. Pop(): When an element is taken off from the stack, the operation is performed by pop(). Below

figure shows a stack initially with three elements and shows the deletion of elements using pop().

We can insert an element from the stack, decrement the top value i.e top=top-1.

We can delete an element from the stack first check the condition is stack is empty or not.

i.e top==-1. Otherwise remove the element from the stack.

Algorithm: procedure pop():

Step 1: START

Step 2: if top==-1 then

 Write “Stack is Underflow”
Step 3: otherwise

 3.1: print “deleted element”
 3.2: top=top-1;

Step 4: END

3. display(): This operation performed display the elements in the stack. We display the element in the

stack check the condition is stack is empty or not i.e top==-1.Otherwise display the list of elements in

the stack.

Algorithm: procedure pop():

Step 1: START

Step 2: if top==-1 then

 Write “Stack is Underflow”
Step 3: otherwise

 3.1: print “Display elements are”
 3.2: for top to 0

 Print ‘stack[i]’
Step 4: END

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Stack Implementation Using Arrays

#include <stdio.h>

int stack[100],i,j,choice=0,n,top=-1;

void push();

void pop();

void display();

void main ()

{

 printf("Enter the number of elements in the stack ");

 scanf("%d",&n);

 printf("*********Stack operations using array\n*********");

 while(choice != 4)

 {

 printf("Chose one from the below options...\n");

 printf("\n1.Push\n2.Pop\n3.Show\n4.Exit");

 printf("\n Enter your choice \n");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 {

 push();

 break;

 }

 case 2:

 {

 pop();

 break;

 }

 case 3:

 {

 display();

 break;

 }

 case 4:

 {

 printf("Exiting....");

 break;

 }

 default:

 {

 printf("Please Enter valid choice ");

 }

 };

 }

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

}

 void push ()

{

 int val;

 if (top == n)

 printf("\n Stack Overflow");

 else

 {

 printf("Enter the value?");

 scanf("%d",&val);

 top = top +1;

 stack[top] = val;

 }

}

 void pop ()

{

 if(top == -1)

 printf("Stack Underflow");

 else

 top = top -1;

}

void display()

{

 if(top == -1)

 {

 printf("Stack is empty");

 }

 printf("stack elements are\n ")

 for (i=top;i>=0;i--)

 {

 printf(" %d ",stack[i]);

 }

}

OUTPUT:

Enter the number of elements in the stack 5

*********Stack operations using array*********

--

Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

5

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Please Enter valid choice Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

1

Enter the value?12

Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

3

stack elements are

 12

Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

1

Enter the value?12

Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

3

stack elements are

 12

12

Chose one from the below options...

1.Push

2.Pop

3.Show

4.Exit

 Enter your choice

4

Exiting....

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Applications of STACK:

Application of Stack :

• Recursive Function.

• Expression Evaluation.

• Expression Conversion.

➢ Infix to postfix

➢ Infix to prefix

➢ Postfix to infix

➢ Postfix to prefix

➢ Prefix to infix

➢ Prefix to postfix

• Reverse a Data

• Processing Function Calls

Expressions:

• An expression is a collection of operators and operands that represents a specific value.

• Operator is a symbol which performs a particular task like arithmetic operation or logical

operation or conditional operation etc.,

• Operands are the values on which the operators can perform the task. Here operand can

be a direct value or variable or address of memory location

Expression types:

Based on the operator position, expressions are divided into THREE types. They are as follows.

• Infix Expression

• In infix expression, operator is used in between operands.

• Syntax : operand1 operator operand2

• Example

• Postfix Expression

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

• In postfix expression, operator is used after operands. We can say that "Operator

follows the Operands".

• Syntax : operand1 operand2 operator

• Example:

• Prefix Expression

• In prefix expression, operator is used before operands. We can say that "Operands

follows the Operator".

• Syntax : operator operand1 operand2

• Example:

Infix to postfix conversion using stack:

• Procedure to convert from infix expression to postfix expression is as follows:

• Scan the infix expression from left to right.

• If the scanned symbol is left parenthesis, push it onto the stack.

• If the scanned symbol is an operand, then place directly in the postfix expression

(output).

• If the symbol scanned is a right parenthesis, then go on popping all the items from the

stack and place them in the postfix expression till we get the matching left parenthesis.

• If the scanned symbol is an operator, then go on removing all the operators from the stack

and place them in the postfix expression, if and only if the precedence of the operator

which is on the top of the stack is greater than (or greater than or equal) to the precedence

of the scanned operator and push the scanned operator onto the stack otherwise, push the

scanned operator onto the stack.

Example-1

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Example2:

Convert ((A – (B + C)) * D) ↑ (E + F) infix expression to postfix form:

SYMBOL POSTFIX STRING STACK REMARKS

((

(((

A A ((

- A ((-

(A ((- (

B A B ((- (

+ A B ((- (+

C A B C ((- (+

) A B C + ((-

) A B C + - (

* A B C + - (*

D A B C + - D (*

) A B C + - D *

↑ A B C + - D * ↑

(A B C + - D * ↑ (

E A B C + - D * E ↑ (

+ A B C + - D * E ↑ (+

F A B C + - D * E F ↑ (+

) A B C + - D * E F + ↑

End of

string

A B C + - D * E F + ↑

The input is now empty. Pop the output symbols

from the stack until it is empty.

Example3

Convert a + b * c + (d * e + f) * g the infix expression into postfix form.

SYMBOL POSTFIX STRING STACK REMARKS

a a

+ a +

b a b +

* a b + *

c a b c + *

+ a b c * + +

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

(a b c * + + (

d a b c * + d + (

* a b c * + d + (*

e a b c * + d e + (*

+ a b c * + d e * + (+

f a b c * + d e * f + (+

) a b c * + d e * f + +

* a b c * + d e * f + + *

g a b c * + d e * f + g + *

End of

string
a b c * + d e * f + g * +

The input is now empty. Pop the output symbols

from the stack until it is empty.

Example 3:

Convert the following infix expression A + B * C – D / E * H into its equivalent postfix

expression.

SYMBOL POSTFIX STRING STACK REMARKS

A A

+ A +

B A B +

* A B + *

C A B C + *

- A B C * + -

D A B C * + D -

/ A B C * + D - /

E A B C * + D E - /

* A B C * + D E / - *

H A B C * + D E / H - *

End of

string

A B C * + D E / H * -

The input is now empty. Pop the output symbols

from the stack until it is empty.

Example 4:

Convert the following infix expression A+(B *C–(D/E↑F)*G)*H into its equivalent postfix expression.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

SYMBOL POSTFIX STRING STACK REMARKS

A A

+ A +

(A + (

B A B + (

* A B + (*

C A B C + (*

- A B C * + (-

(A B C * + (- (

D A B C * D + (- (

/ A B C * D + (- (/

E A B C * D E + (- (/

↑ A B C * D E + (- (/ ↑

F A B C * D E F + (- (/ ↑

) A B C * D E F ↑ / + (-

* A B C * D E F ↑ / + (- *

G A B C * D E F ↑ / G + (- *

) A B C * D E F ↑ / G * - +

* A B C * D E F ↑ / G * - + *

H A B C * D E F ↑ / G * - H + *

End of

string
A B C * D E F ↑ / G * - H * +

The input is now empty. Pop the output symbols

from the stack until it is empty.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Evaluation of postfix expression:

• The postfix expression is evaluated easily by the use of a stack.

• When a number is seen, it is pushed onto the stack;

• when an operator is seen, the operator is applied to the two numbers that are popped from

the stack and the result is pushed onto the stack.

• When an expression is given in postfix notation, there is no need to know any

precedence rules.

Example 1:

 Evaluate the postfix expression: 6 5 2 3 + 8 * + 3 + *

SYMBOL

OPERAND

1

OPERAND 2 VALUE STACK REMARKS

6 6

5 6, 5

2 6, 5, 2

3 6, 5, 2, 3
The first four symbols are placed

on the stack.

+ 2 3 5 6, 5, 5

Next a ‘+’ is read, so 3 and 2 are
popped from the stack and their

sum 5, is pushed

8 2 3 5 6, 5, 5, 8 Next 8 is pushed

* 5 8 40 6, 5, 40
Now a ‘*’ is seen, so 8 and 5 are
popped as 8 * 5 = 40 is pushed

+ 5 40 45 6, 45
Next, a ‘+’ is seen, so 40 and 5 are
popped and 40 + 5 = 45 is pushed

3 5 40 45 6, 45, 3 Now, 3 is pushed

+ 45 3 48 6, 48
Next, ‘+’ pops 3 and 45 and
pushes 45 + 3 = 48 is pushed

* 6 48 288 288

Finally, a ‘*’ is seen and 48 and 6
are popped, the result 6 * 48 =

288 is pushed

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Example2

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Example 3:

 Evaluate the following postfix expression: 6 2 3 + - 3 8 2 / + * 2 ↑ 3 +

SYMBOL OPERAND 1 OPERAND 2 VALUE STACK

6 6

2 6, 2

3 6, 2, 3

+ 2 3 5 6, 5

- 6 5 1 1

3 6 5 1 1, 3

8 6 5 1 1, 3, 8

2 6 5 1 1, 3, 8, 2

/ 8 2 4 1, 3, 4

+ 3 4 7 1, 7

* 1 7 7 7

2 1 7 7 7, 2

↑ 7 2 49 49

3 7 2 49 49, 3

+ 49 3 52 52

 Reverse a Data:

To reverse a given set of data, we need to reorder the data so that the first and last elements are

exchanged, the second and second last element are exchanged, and so on for all other elements.

Example: Suppose we have a string Welcome, then on reversing it would be Emoclew.

There are different reversing applications:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

o Reversing a string

o Converting Decimal to Binary

Reverse a String

A Stack can be used to reverse the characters of a string. This can be achieved by simply pushing

one by one each character onto the Stack, which later can be popped from the Stack one by one.

Because of the last in first out property of the Stack, the first character of the Stack is on the

bottom of the Stack and the last character of the String is on the Top of the Stack and after

performing the pop operation in the Stack, the Stack returns the String in Reverse order.

Processing Function Calls:

Stack plays an important role in programs that call several functions in succession. Suppose we

have a program containing three functions: A, B, and C. function A invokes function B, which

invokes the function C.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

When we invoke function A, which contains a call to function B, then its processing will not be

completed until function B has completed its execution and returned. Similarly for function B

and C. So we observe that function A will only be completed after function B is completed and

function B will only be completed after function C is completed. Therefore, function A is first to

be started and last to be completed. To conclude, the above function activity matches the last in

first out behavior and can easily be handled using Stack.

Consider addrA, addrB, addrC be the addresses of the statements to which control is returned

after completing the function A, B, and C, respectively.

The above figure shows that return addresses appear in the Stack in the reverse order in which

the functions were called. After each function is completed, the pop operation is performed, and

execution continues at the address removed from the Stack. Thus the program that calls several

functions in succession can be handled optimally by the stack data structure. Control returns to

each function at a correct place, which is the reverse order of the calling sequence.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

QUEUE

A queue is linear data structure and collection of elements. A queue is another special kind of list, where

items are inserted at one end called the rear and deleted at the other end called the front. The principle of

queue is a “FIFO” or “First-in-first-out”.

Queue is an abstract data structure. A queue is a useful data structure in programming. It is similar to the

ticket queue outside a cinema hall, where the first person entering the queue is the first person who gets the

ticket.

A real-world example of queue can be a single-lane one-way road, where the vehicle enters first, exits first.

More real-world examples can be seen as queues at the ticket windows and bus-stops and our college

library.

The operations for a queue are analogues to those for a stack; the difference is that the insertions go at the

end of the list, rather than the beginning.

Operations on QUEUE:

A queue is an object or more specifically an abstract data structure (ADT) that allows the following

operations:

• Enqueue or insertion: which inserts an element at the end of the queue.

• Dequeue or deletion: which deletes an element at the start of the queue.

Representation of Queue (or) Implementation of Queue:

The queue can be represented in two ways:

1. Queue using Array

2. Queue using Linked List

1. Queue using Array:

Let us consider a queue, which can hold maximum of five elements. Initially the queue is empty.

Now, insert 11 to the queue. Then queue status will be:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Next, insert 22 to the queue. Then the queue status is:

Again insert another element 33 to the queue. The status of the queue is:

Now, delete an element. The element deleted is the element at the front of the queue.So the status of

the queue is:

Again, delete an element. The element to be deleted is always pointed to by the FRONT pointer. So,

22 is deleted. The queue status is as follows:

Now, insert new elements 44 and 55 into the queue. The queue status is:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Next insert another element, say 66 to the queue. We cannot insert 66 to the queue as the

rear crossed the maximum size of the queue (i.e., 5). There will be queue full signal. The

queue status is as follows:

Now it is not possible to insert an element 66 even though there are two vacant positions in

the linear queue. To overcome this problem the elements of the queue are to be shifted

towards the beginning of the queue so that it creates vacant position at the rear end. Then

the FRONT and REAR are to be adjusted properly. The element 66 can be inserted at the

rear end. After this operation, the queue status is as follows:

This difficulty can overcome if we treat queue position with index 0 as a position that comes

after position with index 4 i.e., we treat the queue as a circular queue.

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return an overflow

error

If the item is to be inserted as the first element in the list, in that case set the value of front and

rear to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having rear as

the index.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear , write an underflow message and

exit.

Otherwise, keep increasing the value of front and return the item stored at the front end of the

queue at each time.

display() - Displays the elements of a Queue

We can use the following steps to display the elements of a queue...

• Step 1 - Check whether queue is EMPTY.

• Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

function.

• Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

• Step 4 - Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same

until 'i' value reaches to rear (i <= rear)

Queue Implementation using Arrays

#include<stdio.h>

#include<stdlib.h>

#define maxsize 5

void insert();

void delete();

void display();

int front = -1, rear = -1;

int queue[maxsize];

void main ()

{

 int choice;

 while(choice != 4)

 {

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 printf("\n*************************Main

Menu*****************************\n");

printf("\n==

===\n");

 printf("\n1.insert an element\n2.Delete an element\n3.Display the queue\n4.Exit\n");

 printf("\nEnter your choice ?");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 insert();

 break;

 case 2:

 delete();

 break;

 case 3:

 display();

 break;

 case 4:

 exit(0);

 break;

 default:

 printf("\nEnter valid choice??\n");

 }

 }

}

void insert()

{

 int item;

 printf("\nEnter the element\n");

 scanf("\n%d",&item);

 if(rear == maxsize-1)

 {

 printf("\nOVERFLOW\n");

 return;

 }

 if(front == -1 && rear == -1)

 {

 front = 0;

 rear = 0;

 }

 else

 {

 rear = rear+1;

 }

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 queue[rear] = item;

 printf("\nValue inserted ");

}

void delete()

{

 int item;

 if (front == -1 || front > rear)

 {

 printf("\nUNDERFLOW\n");

 return;

 }

 else

 {

 item = queue[front];

 if(front == rear)

 {

 front = -1;

 rear = -1 ;

 }

 else

 {

 front = front + 1;

 }

 printf("\nvalue deleted ");

 }

}

void display()

{

 int i;

 if(rear == -1)

 {

 printf("\nEmpty queue\n");

 }

 else

 { printf("\nprinting values\n");

 for(i=front;i<=rear;i++)

 {

 printf("\n%d\n",queue[i]);

 }

 }

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Drawback of array implementation of Queue

Although, the technique of creating a queue is easy, but there are some drawbacks of using this

technique to implement a queue.

o Memory wastage : The space of the array, which is used to store queue elements, can

never be reused to store the elements of that queue because the elements can only be

inserted at front end and the value of front might be so high so that, all the space before

that, can never be filled.

The above figure shows how the memory space is wasted in the array representation of queue. In

the above figure, a queue of size 10 having 3 elements, is shown. The value of the front variable

is 5, therefore, we can not reinsert the values in the place of already deleted element before the

position of front. That much space of the array is wasted and can not be used in the future (for

this queue).

o Deciding the array size

One of the most common problem with array implementation is the size of the array which

requires to be declared in advance. Due to the fact that, the queue can be extended at runtime

depending upon the problem, the extension in the array size is a time taking process and almost

impossible to be performed at runtime since a lot of reallocations take place. Due to this reason,

we can declare the array large enough so that we can store queue elements as enough as possible

but the main problem with this declaration is that, most of the array slots (nearly half) can never

be reused. It will again lead to memory wastage.

Types of Queues

There are four types of Queues:

1. Linear Queue

2. Circular Queue

3. Priority Queue

4. Deque

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

1. Linear Queue

In Linear Queue, an insertion takes place from one end while the deletion occurs from another

end. The end at which the insertion takes place is known as the rear end, and the end at which the

deletion takes place is known as front end. It strictly follows the FIFO rule. The linear Queue can

be represented, as shown in the below

 figure:

The above figure shows that the elements are inserted from the rear end, and if we insert more

elements in a Queue, then the rear value gets incremented on every insertion. If we want to show

the deletion, then it can be represented as:

In the above figure, we can observe that the front pointer points to the next element, and the

element which was previously pointed by the front pointer was deleted.

The major drawback of using a linear Queue is that insertion is done only from the rear end. If

the first three elements are deleted from the Queue, we cannot insert more elements even though

the space is available in a Linear Queue. In this case, the linear Queue shows

the overflow condition as the rear is pointing to the last element of the Queue.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

2. Circular Queue

In Circular Queue, all the nodes are represented as circular. It is similar to the linear Queue

except that the last element of the queue is connected to the first element. It is also known

as Ring Buffer as all the ends are connected to another end. The circular queue can be

represented as:

 he drawback that occurs in a linear queue is overcome by using the circular queue. If the empty

space is available in a circular queue, the new element can be added in an empty space by simply

incrementing the value of rear.

3. Priority Queue

A priority queue is another special type of Queue data structure in which each element has some

priority associated with it. Based on the priority of the element, the elements are arranged in a

priority queue. If the elements occur with the same priority, then they are served according to the

FIFO principle.

In priority Queue, the insertion takes place based on the arrival while the deletion occurs based

on the priority. The priority Queue can be shown as:

The above figure shows that the highest priority element comes first and the elements of the

same priority are arranged based on FIFO structure.

4. Deque

Both the Linear Queue and Deque are different as the linear queue follows the FIFO principle

whereas, deque does not follow the FIFO principle. In Deque, the insertion and deletion can occur

from both ends.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

1

Linked List

o Linked List can be defined as collection of objects called nodes that are randomly stored

in the memory.

o A node contains two fields i.e. data stored at that particular address and the pointer which

contains the address of the next node in the memory.

o The last node of the list contains pointer to the null

Uses of Linked List

o The list is not required to be contiguously present in the memory. The node can reside

anywhere in the memory and linked together to make a list. This achieves optimized

utilization of space.

o list size is limited to the memory size and doesn't need to be declared in advance.

o Empty node can’t be present in the linked list.

o We can store values of primitive types or objects in the singly linked list.

Why use linked list over array?

Till now, we were using array data structure to organize the group of elements that are to be

stored individually in the memory. However, Array has several advantages and disadvantages

which must be known in order to decide the data structure which will be used throughout the

program.

Array contains following limitations:

1. The size of array must be known in advance before using it in the program.

2. Increasing size of the array is a time taking process. It is almost impossible to expand the

size of the array at run time.

3. All the elements in the array need to be contiguously stored in the memory. Inserting any

element in the array needs shifting of all its predecessors.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

2

Linked list is the data structure which can overcome all the limitations of an array. Using linked

list is useful because,

1. It allocates the memory dynamically. All the nodes of linked list are non-contiguously

stored in the memory and linked together with the help of pointers.

2. Sizing is no longer a problem since we do not need to define its size at the time of

declaration. List grows as per the program's demand and limited to the available memory

space.

Differences between the array and linked list in a tabular form.

ARRAYS LINKED LISTS

An array is a collection of elements of a

similar data type.

A linked list is a collection of objects known as

a node where node consists of two parts, i.e.,

data and address

Array elements store in a contiguous memory

location

Linked list elements can be stored anywhere in

the memory or randomly stored

Array works with a static memory. Here static

memory means that the memory size is fixed

and cannot be changed at the run time.

The Linked list works with dynamic memory.

Here, dynamic memory means that the memory

size can be changed at the run time according to

our requirements.

Array elements are independent of each other. Linked list elements are dependent on each

other. As each node contains the address of the

next node so to access the next node, we need

to access its previous node.

Array takes more time while performing any

operation like insertion, deletion, etc.

Linked list elements are dependent on each

other. As each node contains the address of the

next node so to access the next node, we need

to access its previous node.

Accessing any element in an array is faster as

the element in an array can be directly

accessed through the index

Accessing an element in a linked list is slower

as it starts traversing from the first element of

the linked list.

In the case of an array, memory is allocated at

compile-time

In the case of a linked list, memory is allocated

at run time

Memory utilization is inefficient in the array.

For example, if the size of the array is 6, and

array consists of 3 elements only then the rest

of the space will be unused.

Memory utilization is efficient in the case of a

linked list as the memory can be allocated or

deallocated at the run time according to our

requirement

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

3

Types of Linked List

The following are the types of linked list:

1. Singly linked list

2. Doubly linked list

3. Circular linked list

Singly Linked list

It is the commonly used linked list in programs. If we are talking about the linked list, it means it

is a singly linked list. The singly linked list is a data structure that contains two parts, i.e., one is

the data part, and the other one is the address part, which contains the address of the next or the

successor node. The address part in a node is also known as a pointer.

Suppose we have three nodes, and the addresses of these three nodes are 100, 200 and 300

respectively. The representation of three nodes as a linked list is shown in the below figure:

We can observe in the above figure that there are three different nodes having address 100, 200

and 300 respectively. The first node contains the address of the next node, i.e., 200, the second

node contains the address of the last node, i.e., 300, and the third node contains the NULL value

in its address part as it does not point to any node. The pointer that holds the address of the initial

node is known as a head pointer.

The linked list, which is shown in the above diagram, is known as a singly linked list as it

contains only a single link. In this list, only forward traversal is possible; we cannot traverse in

the backward direction as it has only one link in the list.

Representation of the node in a singly linked list

struct node

{

 int data;

 struct node *next;

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

4

In the above representation, we have defined a user-defined structure named a node containing

two members, the first one is data of integer type, and the other one is the pointer (next) of the

node type.

Doubly linked list

As the name suggests, the doubly linked list contains two pointers. We can define the doubly

linked list as a linear data structure with three parts: the data part and the other two address part.

In other words, a doubly linked list is a list that has three parts in a single node, includes one data

part, a pointer to its previous node, and a pointer to the next node.

Suppose we have three nodes, and the address of these nodes are 100, 200 and 300, respectively.

The representation of these nodes in a doubly-linked list is shown below

As we can observe in the above figure, the node in a doubly-linked list has two address parts;

one part stores the address of the next while the other part of the node stores the previous node's

address. The initial node in the doubly linked list has the NULL value in the address part, which

provides the address of the previous node.

Representation of the node in a doubly linked list

struct node

{

 int data;

 struct node *next;

 struct node *prev;

}

In the above representation, we have defined a user-defined structure named a node with three

members, one is data of integer type, and the other two are the pointers, i.e., next and prev of

the node type. The next pointer variable holds the address of the next node, and the prev

pointer holds the address of the previous node. The type of both the pointers, i.e., next and

prev is struct node as both the pointers are storing the address of the node of the struct

node type.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

5

Circular linked list

A circular linked list is a variation of a singly linked list. The only difference between the singly

linked list and a circular linked list is that the last node does not point to any node in a singly

linked list, so its link part contains a NULL value. On the other hand, the circular linked list is a

list in which the last node connects to the first node, so the link part of the last node holds the

first node's address. The circular linked list has no starting and ending node. We can traverse in

any direction, i.e., either backward or forward. The diagrammatic representation of the circular

linked list is shown below:

struct node

{

 int data;

 struct node *next;

}

A circular linked list is a sequence of elements in which each node has a link to the next node,

and the last node is having a link to the first node. The representation of the circular linked list

will be similar to the singly linked list, as shown below:

Singly linked list

Singly linked list can be defined as the collection of ordered set of elements. The number of

elements may vary according to need of the program. A node in the singly linked list consist of

two parts: data part and link part. Data part of the node stores actual information that is to be

represented by the node while the link part of the node stores the address of its immediate

successor.

One way chain or singly linked list can be traversed only in one direction. In other words, we can

say that each node contains only next pointer, therefore we can not traverse the list in the reverse

direction.

Consider an example where the marks obtained by the student in three subjects are stored in a

linked list as shown in the figure.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

6

In the above figure, the arrow represents the links. The data part of every node contains the

marks obtained by the student in the different subject. The last node in the list is identified by the

null pointer which is present in the address part of the last node. We can have as many elements

we require, in the data part of the list.

Operations on Singly Linked List

There are various operations which can be performed on singly linked list. A list of all such

operations is given below.

Node Creation

struct node

{

 int data;

 struct node *next;

};

struct node *head, *ptr;

ptr = (struct node *)malloc(sizeof(struct node *));

Insertion

The insertion into a singly linked list can be performed at different positions. Based on the

position of the new node being inserted, the insertion is categorized into the following categories.

1. Inserting at Beginning

2. Inserting at the End of the LIst

3. Inserting after specified node

Insertion in singly linked list at beginning

Inserting a new element into a singly linked list at beginning is quite simple. We just need to

make a few adjustments in the node links. There are the following steps which need to be

followed in order to inser a new node in the list at beginning.

1. Allocate the space for the new node and store data into the data part of the node. This will

be done by the following statements.

 ptr = (struct node *) malloc(sizeof(struct node *));

 ptr → data = item

2. Make the link part of the new node pointing to the existing first node of the list. This will

be done by using the following statement.

 ptr->next = head

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

7

3. At the last, we need to make the new node as the first node of the list this will be done by

using the following statement.

 head = ptr;

Algorithm
o Step 1: IF PTR = NULL

Write OVERFLOW

 Go to Step 7

 [END OF IF]

o Step 2: SET NEW_NODE = PTR

o Step 3: SET PTR = PTR → NEXT

o Step 4: SET NEW_NODE → DATA = VAL

o Step 5: SET NEW_NODE → NEXT = HEAD

o Step 6: SET HEAD = NEW_NODE

o Step 7: EXIT

Function for inserting element at beginning of the list

void beginsert()

{

 struct node *ptr;

 int item;

 ptr = (struct node *) malloc(sizeof(struct node *));

 if(ptr == NULL)

 {

 printf("\n memory insufficient to allocate");

 }

 else

 {

 printf("\nEnter value\n");

 scanf("%d",&item);

 ptr->data = item;

 ptr->next = head; head = ptr;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

8

 printf("\nNode inserted");

 }

 }

2.Inserting at the End of the List

In order to insert a node at the last, there are two following scenarios which need to be

mentioned.

1. The node is being added to an empty list(CASE 1)

2. The node is being added to the end of the linked list(CASE2)

in the first case,(CASE1)

o The condition (head == NULL) gets satisfied. Hence, we just need to allocate the space

for the node by using malloc statement in C. Data and the link part of the node are set up

by using the following statements.

ptr->data = item;

 ptr -> next = NULL;

o Since, ptr is the only node that will be inserted in the list hence, we need to make this

node pointed by the head pointer of the list. This will be done by using the following

Statements.

Head = ptr

In the second case: CASE(2):

o The condition Head = NULL would fail, since Head is not null. Now, we need to declare

a temporary pointer temp in order to traverse through the list. temp is made to point the

first node of the list.

Temp = head

o Then, traverse through the entire linked list using the statements:

while (temp→ next != NULL)

 temp = temp → next;

o At the end of the loop, the temp will be pointing to the last node of the list. Now, allocate

the space for the new node, and assign the item to its data part. Since, the new node is

going to be the last node of the list hence, the next part of this node needs to be pointing

to the null. We need to make the next part o

o If the temp node (which is currently the last node of the list) point to the new node (ptr)

.temp = head;

 while (temp -> next != NULL)

 {

 temp = temp -> next;

 }

 temp->next = ptr;

 ptr->next = NULL;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

9

Algorithm

Step 1: IF PTR = NULL Write OVERFLOW

 Go to Step 1

 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR - > NEXT

Step 4: SET NEW_NODE - > DATA = VAL

Step 5: SET NEW_NODE - > NEXT = NULL

Step 6: SET PTR = HEAD

Step 7: Repeat Step 8 while PTR - > NEXT != NULL

Step 8: SET PTR = PTR - > NEXT

[END OF LOOP]

Step 9: SET PTR - > NEXT = NEW_NODE

Step 10: EXIT

Function for inserting element at the end of the list

void lastinsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node*)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter value?\n"); scanf("%d",&item);

 ptr->data = item;

 if(head == NULL)

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

10

 {

 ptr -> next = NULL;

 head = ptr;

 printf("\nNode inserted");

 }

 else

 {

 temp = head;

 while (temp -> next != NULL)

 {

 temp = temp -> next;

 }

 temp->next = ptr;

 ptr->next = NULL;

 printf("\nNode inserted");

 }

 }

}

Insertion in singly linked list after specified Node

o In order to insert an element after the specified number of nodes into the linked list, we

need to skip the desired number of elements in the list to move the pointer at the position

after which the node will be inserted. This will be done by using the following

statements.

emp=head;

 for(i=0;i<loc;i++)

 {

 temp = temp->next;

 if(temp == NULL)

 {

 return;

 }

 }

o Allocate the space for the new node and add the item to the data part of it. This will be

done by using the following statements.

 ptr = (struct node *) malloc (sizeof(struct node));

 ptr->data = item;

o Now, we just need to make a few more link adjustments and our node at will be inserted

at the specified position. Since, at the end of the loop, the loop pointer temp would be

pointing to the node after which the new node will be inserted. Therefore, the next part of

the new node ptr must contain the address of the next part of the temp (since, ptr will be

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

11

in between temp and the next of the temp). This will be done by using the following

statements.

 ptr→ next = temp → next

now, we just need to make the next part of the temp, point to the new node ptr. This will insert

the new node ptr, at the specified position.

 temp ->next = ptr;

Algorithm

o STEP 1: IF PTR = NULL

WRITE OVERFLOW

 GOTO STEP 12

 END OF IF

o STEP 2: SET NEW_NODE = PTR

o STEP 3: NEW_NODE → DATA = VAL

o STEP 4: SET TEMP = HEAD

o STEP 5: SET I = 0

o STEP 6: REPEAT STEP 5 AND 6 UNTIL I<loc< li=""></loc<>

o STEP 7: TEMP = TEMP → NEXT

o STEP 8: IF TEMP = NULL

WRITE "DESIRED NODE NOT PRESENT"

 GOTO STEP 12

 END OF IF

 END OF LOOP

o STEP 9: PTR → NEXT = TEMP → NEXT

o STEP 10: TEMP → NEXT = PTR

o STEP 11: SET PTR = NEW_NODE

o STEP 12: EXIT

C Function

void randominsert()

{

 int i,loc,item;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

12

 struct node *ptr, *temp;

 ptr = (struct node *) malloc (sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter element value");

 scanf("%d",&item);

 ptr->data = item;

 printf("\nEnter the location after which you want to insert ");

 scanf("\n%d",&loc);

 temp=head;

 for(i=1;i<loc;i++)

 {

 temp = temp->next;

 if(temp == NULL)

 {

 printf("\ncan't insert\n");

 return;

 }

 }

 ptr ->next = temp ->next;

 temp ->next = ptr;

 printf("\nNode inserted");

 }

}

Deletion

The Deletion of a node from a singly linked list can be performed at different positions. Based on

the position of the node being deleted, the operation is categorized into the following categories.

1. Deleting at Beginning

2. Deleting at the End of the List

3. Deleting after specified node

Deletion in singly linked list at beginning

Deleting a node from the beginning of the list is the simplest operation of all. It just need a few

adjustments in the node pointers. Since the first node of the list is to be deleted, therefore, we just

need to make the head, point to the next of the head. This will be done by using the following

statements

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

https://www.javatpoint.com/deletion-in-singly-linked-list-at-beginning

13

ptr = head;

head = ptr->next;

Now, free the pointer ptr which was pointing to the head node of the list. This will be done by

using the following statement.

free(ptr)

Algorithm
o Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 5

 [END OF IF]

o Step 2: SET PTR = HEAD

o Step 3: SET HEAD = HEAD -> NEXT

o Step 4: FREE PTR

o Step 5: EXIT

C function

void begdelete()

 {

 struct node *ptr;

 if(head == NULL)

 {

 printf("\nList is empty");

 }

 else

 {

 ptr = head;

 head = ptr->next;

 free(ptr);

 printf("\n Node deleted from the begining ...");

 }

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

14

 }

Deletion in singly linked list at the end

Here are two scenarios in which, a node is deleted from the end of the linked list.

1. There is only one node in the list and that needs to be deleted.

2. There are more than one node in the list and the last node of the list will be deleted.

In the first scenario,

the condition head → next = NULL will survive and therefore, the only node head of the

list will be assigned to null. This will be done by using the following statements.

 ptr = head

 head = NULL

 free(ptr)

In the second scenario,

The condition head → next = NULL would fail and therefore, we have to traverse the

node in order to reach the last node of the list.

For this purpose, just declare a temporary pointer temp and assign it to head of the list.

We also need to keep track of the second last node of the list. For this purpose, two

pointers ptr and ptr1 will be used where ptr will point to the last node and ptr1 will point

to the second last node of the list.

this all will be done by using the following statements.

ptr = head;

 while(ptr->next != NULL)

 {

 ptr1 = ptr;

 ptr = ptr ->next;

 }

Now, we just need to make the pointer ptr1 point to the NULL and the last node of the

list that is pointed by ptr will become free. It will be done by using the following

statements.

 ptr1->next = NULL;

 free(ptr);

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

15

Algorithm
o Step 1: IF HEAD = NULL

Write UNDERFLOW

 Go to Step 8

 [END OF IF]

o Step 2: SET PTR = HEAD

o Step 3: Repeat Steps 4 and 5 while PTR -> NEXT!= NULL

o Step 4: SET PREPTR = PTR

o Step 5: SET PTR = PTR -> NEXT

 [END OF LOOP]

o Step 6: SET PREPTR -> NEXT = NULL

o Step 7: FREE PTR

o Step 8: EXIT

C Function

void end_delete()

 {

 struct node *ptr,*ptr1;

 if(head == NULL)

 {

 printf("\nlist is empty");

 }

 else if(head -> next == NULL)

 {

 head = NULL;

 free(head);

 printf("\nOnly node of the list deleted ...");

 }

 else

 {

 ptr = head;

 while(ptr->next != NULL)

 {

 ptr1 = ptr;

 ptr = ptr ->next;

 }

 ptr1->next = NULL;

 free(ptr);

 printf("\n Deleted Node from the last ...");

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

16

 }

 }

}

Deletion in singly linked list after the specified node

In order to delete the node, which is present after the specified node, we need to skip the desired

number of nodes to reach the node after which the node will be deleted. We need to keep track of

the two nodes. The one which is to be deleted the other one if the node which is present before

that node. For this purpose, two pointers are used: ptr and ptr1.

Use the following statements to do so.

ptr=head;

 for(i=0;i<loc;i++)

 {

 ptr1 = ptr;

 ptr = ptr->next;

 if(ptr == NULL)

 {

 printf("\nThere are less than %d elements in the list..",loc);

 return;

 }

 }

Now, our task is almost done, we just need to make a few pointer adjustments. Make the next of

ptr1 (points to the specified node) point to the next of ptr (the node which is to be deleted).

This will be done by using the following statements.

Algorithm
o STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

 GOTO STEP 10

 END OF IF

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

17

o STEP 2: SET TEMP = HEAD

o STEP 3: SET I = 0

o STEP 4: REPEAT STEP 5 TO 8 UNTIL I<loc< li=""></loc<>

o STEP 5: TEMP1 = TEMP

o STEP 6: TEMP = TEMP → NEXT

o STEP 7: IF TEMP = NULL

 WRITE "DESIRED NODE NOT PRESENT"

 GOTO STEP 12

 END OF IF

o STEP 8: I = I+1

 END OF LOOP

o STEP 9: TEMP1 → NEXT = TEMP → NEXT

o STEP 10: FREE TEMP

o STEP 11: EXIT

Searching in singly linked list

Searching is performed in order to find the location of a particular element in the list. Searching

any element in the list needs traversing through the list and make the comparison of every

element of the list with the specified element. If the element is matched with any of the list

element then the location of the element is returned from the function.

Algorithm
o Step 1: SET PTR = HEAD

o Step 2: Set I = 0

o STEP 3: IF PTR = NULL

 WRITE "EMPTY LIST"

 GOTO STEP 8

 END OF IF

o STEP 4: REPEAT STEP 5 TO 7 UNTIL PTR != NULL

o STEP 5: if ptr → data = item

 write i+1

 End of IF

o STEP 6: I = I + 1

o STEP 7: PTR = PTR → NEXT

[END OF LOOP]

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

18

o STEP 8: EXIT

C Function

void search()

{

 struct node *ptr;

 int item,i=0,flag;

 ptr = head;

 if(ptr == NULL)

 {

 printf("\nEmpty List\n");

 }

 else

 {

 printf("\nEnter item which you want to search?\n");

 scanf("%d",&item);

 while (ptr!=NULL)

 {

 if(ptr->data == item)

 {

 printf("item found at location %d ",i+1);

 flag=0;

 }

 else

 {

 flag=1;

 }

 i++;

 ptr = ptr -> next;

 }

 if(flag==1)

 {

 printf("Item not found\n");

 }

 }

 Traversing in singly linked list

Traversing is the most common operation that is performed in almost every scenario of singly

linked list. Traversing means visiting each node of the list once in order to perform some operation

on that. This will be done by using the following statements.

ptr = head;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

19

 while (ptr!=NULL)

 {

 ptr = ptr -> next;

 }

Algorithm
o STEP 1: SET PTR = HEAD

o STEP 2: IF PTR = NULL

 WRITE "EMPTY LIST"

 GOTO STEP 7

 END OF IF

o STEP 4: REPEAT STEP 5 AND 6 UNTIL PTR != NULL

o STEP 5: PRINT PTR→ DATA

o STEP 6: PTR = PTR → NEXT

[END OF LOOP]

o STEP 7: EXIT

SINGLY LINKED LIST ADVANTAGE

1) Insertions and Deletions can be done easily.

2) It does not need movement of elements for insertion and deletion.

3) It space is not wasted as we can get space according to our requirements.

4) Its size is not fixed.

5) It can be extended or reduced according to requirements.

6) Elements may or may not be stored in consecutive memory available

7) It is less expensive.

DISADVANTAGE

1) It requires more space as pointers are also stored with information.

2) Different amount of time is required to access each element.

3) If we have to go to a particular element then we have to go through all those elements that

come before that element.

4) we can not traverse it from last & only from the beginning.

5) It is not easy to sort the elements stored in the linear linked list.

Applications of Linked Lists

Graphs, queues, and stacks can be implemented by using Linked List.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

DOUBLE LINKED LIST

Doubly linked list is a complex type of linked list in which a node contains a pointer to the

previous as well as the next node in the sequence. Therefore, in a doubly linked list, a node

consists of three parts: node data, pointer to the next node in sequence (next pointer) , pointer to

the previous node (previous pointer). A sample node in a doubly linked list is shown in the

figure.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is

shown in the following image.

In C, structure of a node in doubly linked list can be given as :

struct node

{

 struct node *prev;

 int data;

 struct node *next;

}

The prev part of the first node and the next part of the last node will always contain null

indicating end in each direction.

In a singly linked list, we could traverse only in one direction, because each node contains

address of the next node and it doesn't have any record of its previous nodes. However, doubly

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

linked list overcome this limitation of singly linked list. Due to the fact that, each node of the list

contains the address of its previous node, we can find all the details about the previous node as

well by using the previous address stored inside the previous part of each node.

Memory Representation of a doubly linked list

Memory Representation of a doubly linked list is shown in the following image. Generally,

doubly linked list consumes more space for every node and therefore, causes more expansive

basic operations such as insertion and deletion. However, we can easily manipulate the elements

of the list since the list maintains pointers in both the directions (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address 1. The head

pointer points to the starting address 1. Since this is the first element being added to the list

therefore the prev of the list contains null. The next node of the list resides at address 4

therefore the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1 in its next part.

Operations on doubly linked list

The following operations are performed on double linked list

1) Insertion

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

• Insertion at beginning

• Insertion at End

• Insertion at specified position

1) Deletion

• Deletion from the Beginning

• Deletion from the End

• Deletion of the node having specified data

2) Searching

3) Traversing

Node Creation

struct node

{

 struct node *prev;

 int data;

 struct node *next;

};

struct node *head;

INSERTION

Insertion in doubly linked list at beginning

As in doubly linked list, each node of the list contain double pointers therefore we have to

maintain more number of pointers in doubly linked list as compare to singly linked list.

There are two scenarios of inserting any element into doubly linked list. Either the list is empty

or it contains at least one element. Perform the following steps to insert a node in doubly linked

list at beginning.

o Allocate the space for the new node in the memory. This will be done by using the

following statement.

 ptr = (struct node *)malloc(sizeof(struct node));

o Check whether the list is empty or not. The list is empty if the condition head == NULL

holds. In that case, the node will be inserted as the only node of the list and therefore the

prev and the next pointer of the node will point to NULL and the head pointer will point

to this node.

 ptr->next = NULL;

 ptr->prev=NULL;

 ptr->data=item;

 head=ptr;

o In the second scenario, the condition head == NULL become false and the node will be

inserted in beginning. The next pointer of the node will point to the existing head pointer

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

of the node. The prev pointer of the existing head will point to the new node being

inserted.

o This will be done by using the following statements.

 ptr->next = head;

 head→prev=ptr;
 Since, the node being inserted is the first node of the list and therefore it must contain

 NULL in its prev pointer. Hence assign null to its previous part and make the head point

 to this node.

 ptr→prev =NULL

 head = ptr

Algorithm :

o Step 1: IF ptr = NULL

 Write OVERFLOW

 Go to Step 9

 [END OF IF]

o Step 2: SET NEW_NODE = ptr

o Step 3: SET ptr = ptr -> NEXT

o Step 4: SET NEW_NODE -> DATA = VAL

o Step 5: SET NEW_NODE -> PREV = NULL

o Step 6: SET NEW_NODE -> NEXT = START

o Step 7: SET head -> PREV = NEW_NODE

o Step 8: SET head = NEW_NODE

o Step 9: EXIT

C Function

void insertbeginning()

{

 struct node *ptr = (struct node *)malloc(sizeof(struct node));

 int item;

 printf(“enter the value”);

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 scanf(“%d”,&item);
 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 if(head==NULL)

 {

 ptr->next = NULL;

 ptr->prev=NULL;

 ptr->data=item;

 head=ptr;

 }

 else

 {

 ptr->data=item;

 ptr->prev=NULL;

 ptr->next = head;

 head->prev=ptr;

 head=ptr;

 }

}

Insertion in doubly linked list at the end

In order to insert a node in doubly linked list at the end, we must make sure whether the list is

empty or it contains any element. Use the following steps in order to insert the node in doubly

linked list at the end.

o Allocate the memory for the new node. Make the pointer ptr point to the new node being

inserted.

 ptr = (struct node *) malloc(sizeof(struct node));

o Check whether the list is empty or not. The list is empty if the condition head ==

NULL holds. In that case, the node will be inserted as the only node of the list and

therefore the prev and the next pointer of the node will point to NULL and the head

pointer will point to this node.

 ptr->next = NULL;

 ptr->prev=NULL;

 ptr->data=item;

 head=ptr;

o In the second scenario, the condition head == NULL become false. The new node will be

inserted as the last node of the list. For this purpose, we have to traverse the whole list in

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

order to reach the last node of the list. Initialize the pointer temp to head and traverse the

list by using this pointer.

 Temp = head;

 while (temp != NULL)

 {

 temp = temp → next;

 }

the pointer temp point to the last node at the end of this while loop. Now, we just need to make a

few pointer adjustments to insert the new node ptr to the list. First, make the next pointer of temp

point to the new node being inserted i.e. ptr.

 temp→next =ptr;

make the previous pointer of the node ptr point to the existing last node of the list i.e. temp.

 ptr → prev = temp;

make the next pointer of the node ptr point to the null as it will be the new last node of the list.

 ptr → next = NULL

Algorithm

o Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

o Step 2: SET NEW_NODE = PTR

o Step 3: SET PTR = PTR -> NEXT

o Step 4: SET NEW_NODE -> DATA = VAL

o Step 5: SET NEW_NODE -> NEXT = NULL

o Step 6: SET TEMP = START

o Step 7: Repeat Step 8 while TEMP -> NEXT != NULL

o Step 8: SET TEMP = TEMP -> NEXT

 [END OF LOOP]

o Step 9: SET TEMP -> NEXT = NEW_NODE

o Step 10C: SET NEW_NODE -> PREV = TEMP

o Step 11: EXIT

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

C Program

void insertlast()

{

 struct node *ptr = (struct node *) malloc(sizeof(struct node));

 int item;

 printf(“enter the value”);
 scanf(“%d”,&item);
 struct node *temp;

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 ptr->data=item;

 if(head == NULL)

 {

 ptr->next = NULL;

 ptr->prev = NULL;

 head = ptr;

 }

 else

 {

 temp = head;

 while(temp->next!=NULL)

 {

 temp = temp->next;

 }

 temp->next = ptr;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 ptr ->prev=temp;

 ptr->next = NULL;

 }

printf("\nNode Inserted\n");

 }

}

Insertion in doubly linked list after Specified node

In order to insert a node after the specified node in the list, we need to skip the required number

of nodes in order to reach the mentioned node and then make the pointer adjustments as required.

Use the following steps for this purpose.

o Allocate the memory for the new node. Use the following statements for this.

 ptr = (struct node *)malloc(sizeof(struct node));

o Traverse the list by using the pointer temp to skip the required number of nodes in order

to reach the specified node.

 temp=head;

 for(i=0;i<loc;i++)

 {

 temp = temp->next;

 if(temp == NULL) // the temp will be //null if the list doesn't last long //up to mentio

 ned location

 {

 return;

 }

 }

o The temp would point to the specified node at the end of the for loop. The new node

needs to be inserted after this node therefore we need to make a fer pointer adjustments

here. Make the next pointer of ptr point to the next node of temp.

 ptr → next = temp → next;

 make the prev of the new node ptr point to temp.

 ptr → prev = temp;

 make the next pointer of temp point to the new node ptr.

 temp → next = ptr;

 make the previous pointer of the next node of temp point to the new node.

 temp → next → prev = ptr;

Algorithm

o Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 15

 [END OF IF]

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

o Step 2: SET NEW_NODE = PTR

o Step 3: SET PTR = PTR -> NEXT

o Step 4: SET NEW_NODE -> DATA = VAL

o Step 5: SET TEMP = START

o Step 6: SET I = 0

o Step 7: REPEAT 8 to 10 until I<="" li="">

o Step 8: SET TEMP = TEMP -> NEXT

o STEP 9: IF TEMP = NULL

o STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

 GOTO STEP 15

 [END OF IF]

 [END OF LOOP]

o Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

o Step 12: SET NEW_NODE -> PREV = TEMP

o Step 13 : SET TEMP -> NEXT = NEW_NODE

o Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

o Step 15: EXIT

C Function

void insert_specified(int item)
{

 struct node *ptr = (struct node *)malloc(sizeof(struct node));

 struct node *temp;

 int i, loc;

 if(ptr == NULL)

 {

 printf("\n OVERFLOW");

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 }

 else

 {

 printf("\nEnter the location\n");

 scanf("%d",&loc);

 temp=head;

 for(i=0;i<loc;i++)

 {

 temp = temp->next;

 if(temp == NULL)

 {

 printf("\ncan't insert\n");

 return;

 }

 }

 ptr->data = item;

 ptr->next = temp->next;

 ptr -> prev = temp;

 temp->next = ptr;

 temp->next->prev=ptr;

 printf("Node Inserted\n");

 }

}

DELETION OPERATION

Deletion at beginning

Deletion in doubly linked list at the beginning is the simplest operation. We just need to copy the

head pointer to pointer ptr and shift the head pointer to its next.

 Ptr = head;

 head = head → next;

now make the prev of this new head node point to NULL. This will be done by using the

following statements.

 head → prev = NULL

Now free the pointer ptr by using the free function.

 free(ptr)

Algorithm
o STEP 1: IF HEAD = NULL

 WRITE UNDERFLOW

 GOTO STEP 6

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

o STEP 2: SET PTR = HEAD

o STEP 3: SET HEAD = HEAD → NEXT

o STEP 4: SET HEAD → PREV = NULL

o STEP 5: FREE PTR

o STEP 6: EXIT

C FUNCTION

void beginning_delete()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\n UNDERFLOW\n");

 }

 else if(head->next == NULL)

 {

 head = NULL;

 free(head);

 printf("\nNode Deleted\n");

 }

 else

 {

 ptr = head;

 head = head -> next;

 head -> prev = NULL;

 free(ptr);

 printf("\nNode Deleted\n");

 }

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Deletion in doubly linked list at the end

Deletion of the last node in a doubly linked list needs traversing the list in order to reach the last

node of the list and then make pointer adjustments at that position.

In order to delete the last node of the list, we need to follow the following steps.

o If the list is already empty then the condition head == NULL will become true and

therefore the operation can not be carried on.

o If there is only one node in the list then the condition head → next == NULL become
true. In this case, we just need to assign the head of the list to NULL and free head in

order to completely delete the list.

o Otherwise, just traverse the list to reach the last node of the list. This will be done by

using the following statements.

 ptr = head;

 if(ptr->next != NULL)

 {

 ptr = ptr -> next;

 }

o The ptr would point to the last node of the ist at the end of the for loop. Just make the

next pointer of the previous node of ptr to NULL.

 ptr → prev → next = NULL

 free the pointer as this the node which is to be deleted.

 free(ptr)

ALGORITHM

o Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 7

[END OF IF]

o Step 2: SET TEMP = HEAD

o Step 3: REPEAT STEP 4 WHILE TEMP->NEXT != NULL

o Step 4: SET TEMP = TEMP->NEXT

[END OF LOOP]

o Step 5: SET TEMP ->PREV-> NEXT = NULL

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

o Step 6: FREE TEMP

o Step 7: EXIT

C PROGRAM

void last_delete()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\n UNDERFLOW\n");

 }

 else if(head->next == NULL)

 {

 head = NULL;

 free(head);

 printf("\nNode Deleted\n");

 }

 else

 {

 ptr = head;

 if(ptr->next != NULL)

 {

 ptr = ptr -> next;

 }

 ptr -> prev -> next = NULL;

 free(ptr);

 printf("\nNode Deleted\n");

 }

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Deletion in doubly linked list after the specified node

In order to delete the node after the specified data, we need to perform the following steps.

o Copy the head pointer into a temporary pointer temp.

 temp = head

o Traverse the list until we find the desired data value.

 while(temp -> data != val)

 temp = temp -> next;

o Check if this is the last node of the list. If it is so then we can't perform deletion.

 if(temp -> next == NULL)

 {

 return;

 }

o Check if the node which is to be deleted, is the last node of the list, if it so then we have

to make the next pointer of this node point to null so that it can be the new last node of

the list.

 if(temp -> next -> next == NULL)

 {

 temp ->next = NULL;

 }

o Otherwise, make the pointer ptr point to the node which is to be deleted. Make the next of

temp point to the next of ptr. Make the previous of next node of ptr point to temp. free the

ptr.

 ptr = temp -> next;

 temp -> next = ptr -> next;

 ptr -> next -> prev = temp;

 free(ptr);

Algorithm

o Step 1: IF HEAD = NULL

 Write UNDERFLOW

 Go to Step 9

 [END OF IF]

o Step 2: SET TEMP = HEAD

o Step 3: Repeat Step 4 while TEMP -> DATA != ITEM

o Step 4: SET TEMP = TEMP -> NEXT

 [END OF LOOP]

o Step 5: SET PTR = TEMP -> NEXT

o Step 6: SET TEMP -> NEXT = PTR -> NEXT

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

o Step 7: SET PTR -> NEXT -> PREV = TEMP

o Step 8: FREE PTR

o Step 9: EXIT

C FUNCTION

void delete_specified()

{

 struct node *ptr, *temp;

 int val;

 printf("Enter the value");

 scanf("%d",&val);

 temp = head;

 while(temp -> data != val)

 temp = temp -> next;

 if(temp -> next == NULL)

 {

 printf("\nCan't delete\n");

 }

 else if(temp -> next -> next == NULL)

 {

 temp ->next = NULL;

 printf("\nNode Deleted\n");

 }

 else

 {

 ptr = temp -> next;

 temp -> next = ptr -> next;

 ptr -> next -> prev = temp;

 free(ptr);

 printf("\nNode Deleted\n");

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 }

 }

Searching for a specific node in Doubly Linked List

We just need traverse the list in order to search for a specific element in the list. Perform

following operations in order to search a specific operation.

o Copy head pointer into a temporary pointer variable ptr.

 ptr = head

o declare a local variable I and assign it to 0.

 i=0

o Traverse the list until the pointer ptr becomes null. Keep shifting pointer to its next and

increasing i by +1.

o Compare each element of the list with the item which is to be searched.

o If the item matched with any node value then the location of that value I will be returned

from the function else NULL is returned.

Algorithm
o Step 1: IF HEAD == NULL

 WRITE "UNDERFLOW"

 GOTO STEP 8

 [END OF IF]

o Step 2: Set PTR = HEAD

o Step 3: Set i = 0

o Step 4: Repeat step 5 to 7 while PTR != NULL

o Step 5: IF PTR → data = item

return i

[END OF IF]

o Step 6: i = i + 1

o Step 7: PTR = PTR → next
o Step 8: Exit

C FUNCTION

void search()

{

 struct node *ptr;

 int item,i=0,flag;

 ptr = head;

 if(ptr == NULL)

 {

 printf("\nEmpty List\n");

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 }

 else

 {

 printf("\nEnter item which you want to search?\n");

 scanf("%d",&item);

 while (ptr!=NULL)

 {

 if(ptr->data == item)

 {

 printf("\nitem found at location %d ",i+1);

 flag=0;

 break;

 }

 else

 {

 flag=1;

 }

 i++;

 ptr = ptr -> next;

 }

 if(flag==1)

 {

 printf("\nItem not found\n");

 }

 }

Traversing in doubly linked list

Traversing is the most common operation in case of each data structure. For this purpose, copy

the head pointer in any of the temporary pointer ptr.

 Ptr = head

then, traverse through the list by using while loop. Keep shifting value of pointer

variable ptr until we find the last node. The last node contains null in its next part.

 while(ptr != NULL)

 {

 printf("%d\n",ptr->data);

 ptr=ptr->next;

 }

Although, traversing means visiting each node of the list once to perform some specific

operation. Here, we are printing the data associated with each node of the list.

Algorithm

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

o Step 1: IF HEAD == NULL

 WRITE "UNDERFLOW"

 GOTO STEP 6

 [END OF IF]

o Step 2: Set PTR = HEAD

o Step 3: Repeat step 4 and 5 while PTR != NULL

o Step 4: Write PTR → data

o Step 5: PTR = PTR → next
o Step 6: Exit

C Function

int traverse()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\nEmpty List\n");

 }

 else

 {

 ptr = head;

 while(ptr != NULL)

 {

 printf("%d\n",ptr->data);

 ptr=ptr->next;

 }

 }

}

Differences between Singly linked list and Doubly linked list

Singly linked list (SLL) Doubly linked list (DLL)

SLL nodes contains 2 field -data field

and next link field.

DLL nodes contains 3 fields -data field, a previous

link field and a next link field.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Singly linked list (SLL) Doubly linked list (DLL)

In SLL, the traversal can be done

using the next node link only. Thus

traversal is possible in one direction

only.

In DLL, the traversal can be done using the

previous node link or the next node link. Thus

traversal is possible in both directions (forward and

backward).

The SLL occupies less memory than

DLL as it has only 2 fields.

The DLL occupies more memory than SLL as it

has 3 fields.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

3.Write a program that uses functions to perform the following operations on circular linked list:

i) Creation ii) Insertion iii) Deletion iv) Traversal

Circular Singly Linked List

In a circular Singly linked list, the last node of the list contains a pointer to the first node of the list.

We traverse a circular singly linked list until we reach the same node where we started. The circular

singly liked list has no beginning and no ending. There is no null value present in the next part of any of

the nodes.

The following image shows a circular singly linked list.

Circular linked list are mostly used in task maintenance in operating systems. There are many examples

where circular linked list are being used in computer science including browser surfing where a record of

pages visited in the past by the user, is maintained in the form of circular linked lists and can be accessed

again on clicking the previous button.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Write a program that uses functions to perform the following operations on circular linked list:

i) Creation ii) Insertion iii) Deletion iv) Traversal

i)Creation

#include<stdio.h>

#include<stdlib.h>

void create(int);

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void main ()

{

 int choice,item;

 do

 {

 printf("1.Append List\n2.Exit\n3.Enter your choice?");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 printf("\nEnter the item\n");

 scanf("%d",&item);

 create(item);

 break;

 case 2:

 exit(0);

 break;

 default:

 printf("\nPlease enter valid choice\n");

 }

 }while(choice != 3);

}

void create(int item)

{

 struct node *ptr = (struct node *)malloc(sizeof(struct node));

 struct node *temp;

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 ptr -> data = item;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp->next != head)

 temp = temp->next;

 ptr->next = head;

 temp -> next = ptr;

 head = ptr;

 }

 printf("\nNode Inserted\n");

 }

}

ii)Insertion

Insertion into circular singly linked list at beginning

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Insertion into circular singly linked list at the end

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void display();

void main ()

{

 int choice =0;

 while(choice != 4)

 {

 printf("\n*********Main Menu*********\n");

 printf("\nChoose one option from the following list ...\n");

 printf("\n===\n");

 printf("\n1.Insert in begining\n2.Insert at last\n3.display\n4.Exit\n");

 printf("\nEnter your choice?\n");

 scanf("\n%d",&choice);

 switch(choice)

 {

 case 1:

 beginsert();

 break;

 case 2:

 lastinsert();

 break;

 case 3:

 display();

 case 4:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 exit(0);

 break;

 default:

 printf("Please enter valid choice..");

 }

 }

}

void beginsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter the node data?");

 scanf("%d",&item);

 ptr -> data = item;

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp->next != head)

 temp = temp->next;

 ptr->next = head;

 temp -> next = ptr;

 head = ptr;

 }

 printf("\nnode inserted\n");

 }

}

void lastinsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 }

 else

 {

 printf("\nEnter Data?");

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 scanf("%d",&item);

 ptr->data = item;

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp -> next != head)

 {

 temp = temp -> next;

 }

 temp -> next = ptr;

 ptr -> next = head;

 }

 printf("\nnode inserted\n");

 }

}

void display()

{

 struct node *ptr;

 ptr=head;

 if(head == NULL)

 {

 printf("\nnothing to print");

 }

 else

 {

 printf("\n printing values ... \n");

 while(ptr -> next != head)

 {

 printf("%d\n", ptr -> data);

 ptr = ptr -> next;

 }

 printf("%d\n", ptr -> data);

 }

 }

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Deletion in circular singly linked list at beginning

Deletion in Circular singly linked list at the end

iii) Deletion

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void create();

void begin_delete();

void last_delete();

void display();

void main ()

{

 int choice =0;

 while(choice != 5)

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 {

 printf("\n*********Main Menu*********\n");

 printf("\nChoose one option from the following list ...\n");

 printf("\n===\n");

 printf("\n1.create\n2.Delete from Beginning\n3.Delete from last\n4.Show\n5.Exit\n");

 printf("\nEnter your choice?\n");

 scanf("\n%d",&choice);

 switch(choice)

 {

 case 1:

 create();

 break;

 case 2:

 begin_delete();

 break;

 case 3:

 last_delete();

 break;

 case 4:

 display();

 break;

 case 5:

 exit(0);

 break;

 default:

 printf("Please enter valid choice..");

 }

 }

}

void create()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 }

 else

 {

 printf("\nEnter Data?");

 scanf("%d",&item);

 ptr->data = item;

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 {

 temp = head;

 while(temp -> next != head)

 {

 temp = temp -> next;

 }

 temp -> next = ptr;

 ptr -> next = head;

 }

 printf("\nnode inserted\n");

 }

}

void begin_delete()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\nUNDERFLOW");

 }

 else if(head->next == head)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 else

 { ptr = head;

 while(ptr -> next != head)

 ptr = ptr -> next;

 ptr->next = head->next;

 free(head);

 head = ptr->next;

 printf("\nnode deleted\n");

 }

}

void last_delete()

{

 struct node *ptr, *preptr;

 if(head==NULL)

 {

 printf("\nUNDERFLOW");

 }

 else if (head ->next == head)

 {

 head = NULL;

 free(head);

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 printf("\nnode deleted\n");

 }

 else

 {

 ptr = head;

 while(ptr ->next != head)

 {

 preptr=ptr;

 ptr = ptr->next;

 }

 preptr->next = ptr -> next;

 free(ptr);

 printf("\nnode deleted\n");

 }

}

void display()

{

 struct node *ptr;

 ptr=head;

 if(head == NULL)

 {

 printf("\nnothing to print");

 }

 else

 {

 printf("\n printing values ... \n");

 while(ptr -> next != head)

 {

 printf("%d\n", ptr -> data);

 ptr = ptr -> next;

 }

 printf("%d\n", ptr -> data);

 }

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

iv) Traversal

#include<stdio.h>

#include<stdlib.h>

void create(int);

void traverse();

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void main ()

{

 int choice,item;

 do

 {

 printf("1.Append List\n2.Traverse\n3.Exit\n4.Enter your choice?");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 printf("\nEnter the item\n");

 scanf("%d",&item);

 create(item);

 break;

 case 2:

 traverse();

 break;

 case 3:

 exit(0);

 break;

 default:

 printf("\nPlease enter valid choice\n");

 }

 }while(choice != 3);

}

void create(int item)

{

 struct node *ptr = (struct node *)malloc(sizeof(struct node));

 struct node *temp;

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 ptr -> data = item;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp->next != head)

 temp = temp->next;

 ptr->next = head;

 temp -> next = ptr;

 head = ptr;

 }

 printf("\nNode Inserted\n");

 }

}

void traverse()

{

 struct node *ptr;

 ptr=head;

 if(head == NULL)

 {

 printf("\nnothing to print");

 }

 else

 {

 printf("\n printing values ... \n");

 while(ptr -> next != head)

 {

 printf("%d\n", ptr -> data);

 ptr = ptr -> next;

 }

 printf("%d\n", ptr -> data);

 }

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Page 1

DICTIONARIES:

Linear List Representation

The dictionary can be represented as a linear list. The linear list is a collection of pair and value.

There are two method of representing linear list.

1. Sorted Array- An array data structure is used to implement the dictionary.

2. Sorted Chain- A linked list data structure is used to implement the dictionary

Structure of linear list for dictionary:

class dictionary

{

private:

int k,data;

struct node

{

public: int key;

int value;

struct node *next;

} *head;

public:

};

dictionary();

void insert_d();

void delete_d();

void display_d();

void length();

Insertion of new node in the dictionary:

Consider that initially dictionary is empty then

head = NULL

We will create a new node with some key and value contained in it.

Dictionaries:- linear list representation, skip list representation, operations insertion, deletion and

searching, hash table representation, hash functions, collision resolution-separate chaining, open addressing-

linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

94

 UNIT - 2

Dictionary is a collection of pairs of key and value where every value is associated with the

corresponding key.

Basic operations that can be performed on dictionary are:

1. Insertion of value in the dictionary

2. Deletion of particular value from dictionary

3. Searching of a specific value with the help of key

Page 2

Now as head is NULL, this new node becomes head. Hence the dictionary contains only one

record. this node will be ‘curr’ and ‘prev’ as well. The ‘cuur’ node will always point to current

visiting node and ‘prev’ will always point to the node previous to ‘curr’ node. As now there is

only one node in the list mark as ‘curr’ node as ‘prev’ node.

New/head/curr/prev

1 10 NULL

Insert a record, key=4 and value=20,

New

4 20 NULL

Compare the key value of ‘curr’ and ‘New’ node. If New->key > Curr->key then attach New node

to ‘curr’ node.

prev/head New curr->next=New

prev=curr

4 20 NULL

Add a new node <7,80> then

head/prev curr New

7 80 NULL

If we insert <3,15> then we have to search for it proper position by comparing key value.

(curr->key < New->key) is false. Hence else part will get executed.

7 80 NULL

void dictionary::insert_d()

{

node *p,*curr,*prev;

cout<<"Enter an key and value to be inserted:";

cin>>k;

cin>>data;

10 1

20 4 10 1

15 3

20 4 10 1

95

Page 3

p=new node;

p->key=k;

p->value=data;

p->next=NULL;

if(head==NULL)

head=p;

else

{

curr=head;

while((curr->key<p->key)&&(curr->next!=NULL))

{

prev=curr;

curr=curr->next;

}

if(curr->next==NULL)

{

if(curr->key<p->key)

{

}

else

{

}

else

{

}

curr->next=p;

prev=curr;

p- >next=prev->next;

prev->next=p;

p->next=prev->next;
prev->next=p;

}

cout<<"\nInserted into dictionary Sucesfully \n";

}

}

The delete operation:

Case 1: Initially assign ‘head’ node as ‘curr’ node.Then ask for a key value of the node which is

to be deleted. Then starting from head node key value of each jode is cked and compared with the

desired node’s key value. We will get node which is to be deleted in variable ‘curr’. The node

given by variable ‘prev’ keeps track of previous node of ‘cuu’ node. For eg, delete node with key

value 4 then

cur

7 80 NULL 15 3 20 4 10 1

96

Page 4

Case 2:

If the node to be deleted is head node

i.e.. if(curr==head)

Then, simply make ‘head’ node as next node and delete ‘curr’

7 80 NULL

Hence the list becomes

head

7 80 NULL

void dictionary::delete_d()

{

node*curr,*prev;

cout<<"Enter key value that you want to delete...";

cin>>k;

if(head==NULL)

cout<<"\ndictionary is Underflow";

else

{ curr=head;

while(curr!=NULL)

{

if(curr->key==k)

break;

prev=curr;

curr=curr->next;

}

}

if(curr==NULL)

cout<<"Node not found...";

else

{

if(curr==head)

1

curr

10

head

3 15 4 20

20 4 15 3

97

Page 5

else

head=curr->next;

prev->next=curr->next;

delete curr;

cout<<"Item deleted from dictionary...";

}

}

The length operation:

int dictionary::length()

{

struct node *curr;

int count;

count=0;

curr=head;

if(curr==NULL)

{

cout<<”The list is empty”;

return 0;

}

while(curr!=NULL)

{

}

return count;

}

count++;
cur=curr->next;

SKIP LIST REPRESENTATION
Skip list is a variant list for the linked list. Skip lists are made up of a

series of nodes connected one after the other. Each node contains a key and value pair as well as

one or more references, or pointers, to nodes further along in the list. The number of references

each node contains is determined randomly. This gives skip lists their probabilistic nature, and the

number of references a node contains is called its node level.

There are two special nodes in the skip list one is head node which is the starting node of the list

and tail node is the last node of the list

1 2 3 4 5 6 7

head tail

node node

The skip list is an efficient implementation of dictionary using sorted chain. This is because in

skip list each node consists of forward references of more than one node at a time.

98

Page 6

Eg:

Now to search any node from above given sorted chain we have to search the sorted chain from

head node by visiting each node. But this searching time can be reduced if we add one level in

every alternate node. This extra level contains the forward pointer of some node. That means in

sorted chain come nodes can holds pointers to more than one node.

If we want to search node 40 from above chain there we will require comparatively less time. This

search again can be made efficient if we add few more pointers forward references.

skip list

Node structure of skip list:

template <class K, class E>

struct skipnode

{

typedef pair<const K,E> pair_type;

pair_type element;

skipnode<K,E> **next;

skipnode(const pair_type &New_pair, int MAX):element(New_pair)

{

next=new skipnode<K,E>*[MAX];

}

};

null

NULL

NULL

99

Page 7

The individual node looks like this:

Key value array of pointer

Element *next

Searching:

The desired node is searched with the help of a key value.

Searching for a key within a skip list begins with starting at header at the overall list level and

moving forward in the list comparing node keys to the key_val. If the node key is less than the

key_val, the search continues moving forward at the same level. If o the other hand, the node key

is equal to or greater than the key_val, the search drops one level and continues forward. This

process continues until the desired key_val has been found if it is present in the skip list. If it is

not, the search will either continue at the end of the list or until the first key with a value greater

than the search key is found.

Insertion:

There are two tasks that should be done before insertion operation:

1. Before insertion of any node the place for this new node in the skip list is searched. Hence

before any insertion to take place the search routine executes. The last[] array in the search

routine is used to keep track of the references to the nodes where the search, drops down

one level.

2. The level for the new node is retrieved by the routine randomelevel()

template<class K,class E>

void skipLst<K,E>::insert(pair<K,E>& New_pair)

{

if(New_pair.key >= tailkey)

{

cout<<”Key is too large”;

}

skipNode<K,E>* temp = search(New_pair.key);
if(temp->element.key == New_pair.key)

template<class K, class E>

skipnode<K,E>* skipLst<K,E>::search(K& Key_val)

{

skipnode<K,E>* Forward_Node = header;

for(int i=level;i>=0;i--)

{

while (Forward_Node->next[i]->element.key < key_val)

Forward_Node = Forward_Node->next[i];

last[i] = Forward_Node;

}

return Forward_Node->next[0];

}

100

Page 8

{

temp->element.value=New_pair.value;

return;

}

if*New_Level > levels)

{

New_Level = ++levels;

last[New_Level] = header;

}

skipNode<K,E> *newNode = new skipNode<K,E>(New_pair, New_Level+1);

for(int i=0;i<=New_Level;i++)

{

newNode->next[i] = last[i]->next[i];

last[i]->next[i] = newNode;

}

len++;

return;

}

Determining the level of each node:

Deletion:

First of all, the deletion makes use of search algorithm and searches the node that is to be deleted.

If the key to be deleted is found, the node containing the key is removed.

template<class K, class E>

void skipLst<K,E>::delet(K& Key_val)

{

if(key_val>=tailKey)

return;

skipNode<K,E>* temp = search(Key_val);

if(temp->elemnt.key != Key_val)

return;

for(int i=0;i<=levels;i++)

template <class K, class E>

int skipLst<K,E>::randomlevel()

{

int lvl=0;

while(rand() <= Lvl_No)

lvl=lvl+1;

if(lvl<=MaxLvl)

return lvl;

else

return MaxLvl;

}

101

Page 9

{

if(last[i]->next[i] == temp)

last[i]=>next[i] = temp->next[i];

}

while(level>0 && header->next[level] == tail)

levels--;

delete temp;

len--;

}

HASH TABLE REPRESENTATION
 Hash table is a data structure used for storing and retrieving data very quickly. Insertion of

data in the hash table is based on the key value. Hence every entry in the hash table is

associated with some key.

 Using the hash key the required piece of data can be searched in the hash table by few or

more key comparisons. The searching time is then dependent upon the size of the hash

table.

 The effective representation of dictionary can be done using hash table. We can place the

dictionary entries in the hash table using hash function.

HASH FUNCTION

 Hash function is a function which is used to put the data in the hash table. Hence one can

use the same hash function to retrieve the data from the hash table. Thus hash function is

used to implement the hash table.

 The integer returned by the hash function is called hash key.

For example: Consider that we want place some employee records in the hash table The record of

employee is placed with the help of key: employee ID. The employee ID is a 7 digit number for

placing the record in the hash table. To place the record 7 digit number is converted into 3 digits

by taking only last three digits of the key.

If the key is 496700 it can be stored at 0th position. The second key 8421002, the record of those

key is placed at 2nd position in the array.

Hence the hash function will be- H(key) = key%1000

Where key%1000 is a hash function and key obtained by hash function is called hash key.

 Bucket and Home bucket: The hash function H(key) is used to map several dictionary

entries in the hash table. Each position of the hash table is called bucket.

The function H(key) is home bucket for the dictionary with pair whose value is key.

TYPES OF HASH FUNCTION

There are various types of hash functions that are used to place the record in the hash table-

1. Division Method: The hash function depends upon the remainder of division.

Typically the divisor is table length.

For eg; If the record 54, 72, 89, 37 is placed in the hash table and if the table size is 10 then

102

Page 10

h(key) = record % table size 0
1

54%10=4 2

72%10=2 3

89%10=9 4

37%10=7 5

6

7

8

9
2. Mid Square:
In the mid square method, the key is squared and the middle or mid part of the result is used as the

index. If the key is a string, it has to be preprocessed to produce a number.

Consider that if we want to place a record 3111 then

31112 = 9678321

for the hash table of size 1000

H(3111) = 783 (the middle 3 digits)

3. Multiplicative hash function:

The given record is multiplied by some constant value. The formula for computing the hash key

is-

H(key) = floor(p *(fractional part of key*A)) where p is integer constant and A is constant real

number.

Donald Knuth suggested to use constant A = 0.61803398987

If key 107 and p=50 then

H(key) = floor(50*(107*0.61803398987))

= floor(3306.4818458045)

= 3306

At 3306 location in the hash table the record 107 will be placed.

4. Digit Folding:

The key is divided into separate parts and using some simple operation these parts are

combined to produce the hash key.

For eg; consider a record 12365412 then it is divided into separate parts as 123 654 12 and these

are added together

H(key) = 123+654+12

= 789

The record will be placed at location 789

5. Digit Analysis:

The digit analysis is used in a situation when all the identifiers are known in advance. We

first transform the identifiers into numbers using some radix, r. Then examine the digits of each

identifier. Some digits having most skewed distributions are deleted. This deleting of digits is

continued until the number of remaining digits is small enough to give an address in the range of

the hash table. Then these digits are used to calculate the hash address.

72

54

37

89

103

Page 11

COLLISION

the hash function is a function that returns the key value using which the record can be placed in

the hash table. Thus this function helps us in placing the record in the hash table at appropriate

position and due to this we can retrieve the record directly from that location. This function need

to be designed very carefully and it should not return the same hash key address for two different

records. This is an undesirable situation in hashing.

Similarly when there is no room for a new pair in the hash table then such a situation is

called overflow. Sometimes when we handle collision it may lead to overflow conditions.

Collision and overflow show the poor hash functions.

For example, 0
1

Consider a hash function. 2
3

H(key) = recordkey%10 having the hash table size of 10 4
5

The record keys to be placed are 6

7

131, 44, 43, 78, 19, 36, 57 and 77 8

131%10=1 9

44%10=4

43%10=3

78%10=8

19%10=9

36%10=6

57%10=7

77%10=7

Now if we try to place 77 in the hash table then we get the hash key to be 7 and at index 7 already

the record key 57 is placed. This situation is called collision. From the index 7 if we look for next

vacant position at subsequent indices 8.9 then we find that there is no room to place 77 in the hash

table. This situation is called overflow.

COLLISION RESOLUTION TECHNIQUES
If collision occurs then it should be handled by applying some techniques. Such a

technique is called collision handling technique.

1. Chaining

2. Open addressing (linear probing)

3.Quadratic probing

4. Double hashing

5. Double hashing

6.Rehashing

Definition: The situation in which the hash function returns the same hash key (home bucket) for
more than one record is called collision and two same hash keys returned for different records is

called synonym.

131

43

44

36

57

78

19

104

Page 12

CHAINING

In collision handling method chaining is a concept which introduces an additional field with data

i.e. chain. A separate chain table is maintained for colliding data. When collision occurs then a

linked list(chain) is maintained at the home bucket.

For eg;

Consider the keys to be placed in their home buckets are

131, 3, 4, 21, 61, 7, 97, 8, 9

then we will apply a hash function as H(key) = key % D

Where D is the size of table. The hash table will be-

Here D = 10

0

1

A chain is maintained for colliding elements. for instance 131 has a home bucket (key) 1.

similarly key 21 and 61 demand for home bucket 1. Hence a chain is maintained at index 1.

OPEN ADDRESSING – LINEAR PROBING

This is the easiest method of handling collision. When collision occurs i.e. when two records

demand for the same home bucket in the hash table then collision can be solved by placing the

second record linearly down whenever the empty bucket is found. When use linear probing (open

addressing), the hash table is represented as a one-dimensional array with indices that range from

0 to the desired table size-1. Before inserting any elements into this table, we must initialize the

table to represent the situation where all slots are empty. This allows us to detect overflows and

collisions when we inset elements into the table. Then using some suitable hash function the

element can be inserted into the hash table.

For example:

Consider that following keys are to be inserted in the hash table

131, 4, 8, 7, 21, 5, 31, 61, 9, 29

7
NULL 97

131 NULL 61

NULL 3

61 21 131 NULL

105

Page 13

Initially, we will put the following keys in the hash table.

We will use Division hash function. That means the keys are placed using the formula

H(key) = key % tablesize

H(key) = key % 10

For instance the element 131 can be placed at

H(key) = 131 % 10

= 1

Index 1 will be the home bucket for 131. Continuing in this fashion we will place 4, 8, 7.

Now the next key to be inserted is 21. According to the hash function

H(key)=21%10

H(key) = 1

But the index 1 location is already occupied by 131 i.e. collision occurs. To resolve this collision

we will linearly move down and at the next empty location we will prob the element. Therefore

21 will be placed at the index 2. If the next element is 5 then we get the home bucket for 5 as

index 5 and this bucket is empty so we will put the element 5 at index 5.

Index

0

1

2

3

4

5

6

7

8

9

after placing keys 31, 61

Key

NULL

131

NULL

NULL

4

NULL

NULL

7

8

NULL

Key

NULL

131

21

NULL

4

5

NULL

7

8

NULL

Key

NULL

131

21

31

4

5

61

7

8

NULL

106

Page 14

The next record key is 9. According to decision hash function it demands for the home bucket 9.

Hence we will place 9 at index 9. Now the next final record key 29 and it hashes a key 9. But

home bucket 9 is already occupied. And there is no next empty bucket as the table size is limited

to index 9. The overflow occurs. To handle it we move back to bucket 0 and is the location over

there is empty 29 will be placed at 0th index.

Problem with linear probing:

One major problem with linear probing is primary clustering. Primary clustering is a process in

which a block of data is formed in the hash table when collision is resolved.

19%10 = 9 cluster is formed

18%10 = 8

39%10 = 9

29%10 = 9

8%10 = 8

rest of the table is empty

this cluster problem can be solved by quadratic probing.

QUADRATIC PROBING:

Quadratic probing operates by taking the original hash value and adding successive values of an
arbitrary quadratic polynomial to the starting value. This method uses following formula.

where m can be table size or any prime number.

for eg; If we have to insert following elements in the hash table with table size 10:

37, 90, 55, 22, 17, 49, 87 0

1

37 % 10 = 7 2

90 % 10 = 0 3

55 % 10 = 5 4

22 % 10 = 2 5

11 % 10 = 1 6

7

Now if we want to place 17 a collision will occur as 17%10 = 7 and 8
bucket 7 has already an element 37. Hence we will apply 9

quadratic probing to insert this record in the hash table.

Hi (key) = (Hash(key) + i2) % m

Consider i = 0 then

(17 + 02) % 10 = 7

H(key) = (Hash(key) + i2) % m)

Key

39

29

8

18

19

90

11

22

55

37

107

Page 15

(17 + 12) % 10 = 8, when i =1

The bucket 8 is empty hence we will place the element at index 8. 0
Then comes 49 which will be placed at index 9. 1

2
49 % 10 = 9 3

4

5

6

7

8

9

Now to place 87 we will use quadratic probing.

0
(87 + 0) % 10 = 7 1
(87 + 1) % 10 = 8… but already occupied 2
(87 + 22) % 10 = 1.. already occupied 3

(87 + 32) % 10 = 6 4

It is observed that if we want place all the necessary elements in
5

the hash table the size of divisor (m) should be twice as large as
6

total number of elements.
7

8

DOUBLE HASHING
9

Double hashing is technique in which a second hash function is applied to the key when a

collision occurs. By applying the second hash function we will get the number of positions from

the point of collision to insert.

There are two important rules to be followed for the second function:

 it must never evaluate to zero.

 must make sure that all cells can be probed.
The formula to be used for double hashing is

where M is a prime number smaller than the size of the table.

Consider the following elements to be placed in the hash table of size 10

37, 90, 45, 22, 17, 49, 55

Initially insert the elements using the formula for H1(key).

Insert 37, 90, 45, 22

H1(37) = 37 % 10 = 7

H1(90) = 90 % 10 = 0

H1(45) = 45 % 10 = 5

H1(22) = 22 % 10 = 2

H1(49) = 49 % 10 = 9

H1(key) = key mod tablesize

H2(key) = M – (key mod M)

90

11

22

55

37

49

90

11

22

55

87

37

49

Key

90

22

45

37

49

108

Page 16

ve to take 4

Now if 17 to be inserted then

H1(17) = 17 % 10 = 7

H2(key) = M – (key % M)

Here M is prime number smaller than the size of the table. Prime number

smaller than table size 10 is 7

Hence M = 7

H2(17) = 7-(17 % 7)

= 7 – 3 = 4

That means we have to insert the element 17 at 4 places from 37. In short we ha

jumps. Therefore the 17 will be placed at index 1.

Now to insert number 55

H1(55) = 55 % 10 =5 Collision

H2(55) = 7-(55 % 7)

= 7 – 6 = 1

That means we have to take one jump from index 5 to place 55.

Finally the hash table will be -

Comparison of Quadratic Probing & Double Hashing

The double hashing requires another hash function whose probing efficiency is same as

some another hash function required when handling random collision.

The double hashing is more complex to implement than quadratic probing. The quadratic

probing is fast technique than double hashing.

REHASHING

Rehashing is a technique in which the table is resized, i.e., the size of table is doubled by creating

a new table. It is preferable is the total size of table is a prime number. There are situations in

which the rehashing is required.

 When table is completely full

 With quadratic probing when the table is filled half.

 When insertions fail due to overflow.

Key

90

17

22

45

37

49

Key

90

17

22

45

55

37

49

109

Page 17

In such situations, we have to transfer entries from old table to the new table by re computing

their positions using hash functions.

Consider we have to insert the elements 37, 90, 55, 22, 17, 49, and 87. the table size is 10 and will

use hash function.,

H(key) = key mod tablesize

37 % 10 = 7

90 % 10= 0

55 % 10 = 5

22 % 10 = 2

17 % 10 = 7 Collision solved by linear probing

49 % 10 = 9

Now this table is almost full and if we try to insert more elements collisions will occur and

eventually further insertions will fail. Hence we will rehash by doubling the table size. The old

table size is 10 then we should double this size for new table, that becomes 20. But 20 is not a

prime number, we will prefer to make the table size as 23. And new hash function will be

H(key) key mod 23 0

1

37 % 23 = 14 2

90 % 23 = 21 3

55 % 23 = 9 4

22 % 23 = 22 5

17 % 23 = 17 6

49 % 23 = 3 7
87 % 23 = 18 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Now the hash table is sufficiently large to accommodate new insertions.

Advantages:

90

11

22

55

87

37

49

110

Page 18

1. This technique provides the programmer a flexibility to enlarge the table size if required.

2. Only the space gets doubled with simple hash function which avoids occurrence of

collisions.

EXTENSIBLE HASHING

 Extensible hashing is a technique which handles a large amount of data. The data to be

placed in the hash table is by extracting certain number of bits.

 Extensible hashing grow and shrink similar to B-trees.

 In extensible hashing referring the size of directory the elements are to be placed in

buckets. The levels are indicated in parenthesis.

For eg: Directory

(0) (1)

Levels

data to be

placed in bucket

 The bucket can hold the data of its global depth. If data in bucket is more than global

depth then, split the bucket and double the directory.

Consider we have to insert 1, 4, 5, 7, 8, 10. Assume each page can hold 2 data entries (2 is the

depth).

Step 1: Insert 1, 4

(0)

1 = 001

4 = 100

We will examine last bit

of data and insert the data

in bucket.

Insert 5. The bucket is full. Hence double the directory.

0

1

001

010

111 001

010

0

111

Step 4: Insert 1

1 = 001

(0) (1)

4 = 100

5 = 101

Based on last bit the data

is inserted.

Step 2: Insert 7

7 = 111

But as depth is full we can not insert 7 here. Then double the directory and split the bucket.

After insertion of 7. Now consider last two bits.

(1) (2) (2)

Step 3: Insert 8 i.e. 1000

(2)

0

00 01 10 11

100 001

010
111

01 10 11

(1)

100

1000

00

111 001

010

001

010

100

1 0

112

Page 20

Thus the data is inserted using extensible hashing.

Deletion Operation:

If we wan tot delete 10 then, simply make the bucket of 10 empty.

(1) (2) (2)

100 001 111

1000 101

Delete 7.

00 01 10 11

(1) (1)

100 001 Note that the level was increased

1000 101 when we insert 7. Now on deletion
of 7, the level should get decremented.

Delete 8. Remove entry from directory 00.

(1) (1)

Applications of hashing:

001

101

100

00 01 10 11

00 00 10 11

113

Page 21

1. In compilers to keep track of declared variables.

2. For online spelling checking the hashing functions are used.

3. Hashing helps in Game playing programs to store the moves made.

4. For browser program while caching the web pages, hashing is used.

5. Construct a message authentication code (MAC)

6. Digital signature.

7. Time stamping

8. Key updating: key is hashed at specific intervals resulting in new key

114

1

UNIT IV

Graphs: Graph Implementation Methods. Graph Traversal Methods. (DFS,BFS)

Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort

Introduction to Graphs
Graph is a non-linear data structure. It contains a set of points known as nodes (or vertices) and a

set of links known as edges (or Arcs). Here edges are used to connect the vertices. A graph is

defined as follows...

Generally, a graph G is represented as G = (V , E), where V is set of vertices and E is set of
edges.

Example
The following is a graph with 5 vertices and 6 edges.

This graph G can be defined as G = (V , E)

Where V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}.

DFS (A-

BFS

Graph Terminology
We use the following terms in graph data structure...

Vertex
Individual data element of a graph is called as Vertex. Vertex is also known as node. In above

example graph, A, B, C, D & E are known as vertices.

Edge
An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is

represented as (startingVertex, endingVertex). For example, in above graph the link between

vertices A and B is represented as (A,B). In above example graph, there are 7 edges (i.e., (A,B),

(A,C), (A,D), (B,D), (B,E), (C,D), (D,E)).

Edges are three types.

1. Undirected Edge - An undirected egde is a bidirectional edge. If there is undirected edge

between vertices A and B then edge (A , B) is equal to edge (B , A).

Graph is a collection of vertices and arcs in which vertices are connected with arcs

Graph is a collection of nodes and edges in which nodes are connected with edges

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Data Structures

2

2. Directed Edge - A directed egde is a unidirectional edge. If there is directed edge

between vertices A and B then edge (A , B) is not equal to edge (B , A).

3. Weighted Edge - A weighted egde is a edge with value (cost) on it.

Undirected Graph
A graph with only undirected edges is said to be undirected graph.

Directed Graph
A graph with only directed edges is said to be directed graph.

Mixed Graph
A graph with both undirected and directed edges is said to be mixed graph.

End vertices or Endpoints
The two vertices joined by edge are called end vertices (or endpoints) of that edge.

Origin
If a edge is directed, its first endpoint is said to be the origin of it.

Destination
If a edge is directed, its first endpoint is said to be the origin of it and the other endpoint is said to

be the destination of that edge.

Adjacent

If there is an edge between vertices A and B then both A and B are said to be adjacent. In other

words, vertices A and B are said to be adjacent if there is an edge between them.

Incident
Edge is said to be incident on a vertex if the vertex is one of the endpoints of that edge.

Outgoing Edge
A directed edge is said to be outgoing edge on its origin vertex.

Incoming Edge

A directed edge is said to be incoming edge on its destination vertex.

Degree
Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

Total number of incoming edges connected to a vertex is said to be indegree of that vertex.

Outdegree
Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.

Parallel edges or Multiple edges

If there are two undirected edges with same end vertices and two directed edges with same origin

and destination, such edges are called parallel edges or multiple edges.

Self-loop

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

3

Edge (undirected or directed) is a self-loop if its two endpoints coincide with each other.

Simple Graph

A graph is said to be simple if there are no parallel and self-loop edges.

Path
A path is a sequence of alternate vertices and edges that starts at a vertex and ends at other vertex

such that each edge is incident to its predecessor and successor vertex.

Graph Representations

Graph data structure is represented using following representations...

1. Adjacency Matrix

2. Incidence Matrix

3. Adjacency List

Adjacency Matrix
In this representation, the graph is represented using a matrix of size total number of vertices by

a total number of vertices. That means a graph with 4 vertices is represented using a matrix of

size 4X4. In this matrix, both rows and columns represent vertices. This matrix is filled with

either 1 or 0. Here, 1 represents that there is an edge from row vertex to column vertex and 0

represents that there is no edge from row vertex to column vertex.

For example, consider the following undirected graph representation...

Directed graph representation...

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

4

Incidence Matrix

In this representation, the graph is represented using a matrix of size total number of vertices by

a total number of edges. That means graph with 4 vertices and 6 edges is represented using a

matrix of size 4X6. In this matrix, rows represent vertices and columns represents edges. This

matrix is filled with 0 or 1 or -1. Here, 0 represents that the row edge is not connected to column

vertex, 1 represents that the row edge is connected as the outgoing edge to column vertex and -1

represents that the row edge is connected as the incoming edge to column vertex.

For example, consider the following directed graph representation...

Adjacency List

In this representation, every vertex of a graph contains list of its adjacent vertices.

For example, consider the following directed graph representation implemented using linked

list...

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

5

This representation can also be implemented using an array as follows..

Graph Traversal

Graph traversal is a technique used for a searching vertex in a graph. The graph traversal is also

used to decide the order of vertices is visited in the search process. A graph traversal finds the

edges to be used in the search process without creating loops. That means using graph traversal

we visit all the vertices of the graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

DFS (Depth First Search)

DFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph

without loops. We use Stack data structure with maximum size of total number of vertices in the

graph to implement DFS traversal.

We use the following steps to implement DFS traversal...

 Step 1 - Define a Stack of size total number of vertices in the graph.

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and push it on to

the Stack.

 Step 3 - Visit any one of the non-visited adjacent vertices of a vertex which is at the top

of stack and push it on to the stack.

 Step 4 - Repeat step 3 until there is no new vertex to be visited from the vertex which is

at the top of the stack.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

6

 Step 5 - When there is no new vertex to visit then use back tracking and pop one vertex

from the stack.

 Step 6 - Repeat steps 3, 4 and 5 until stack becomes Empty.

 Step 7 - When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

Back tracking is coming back to the vertex from which we reached the current vertex.

Example

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

7

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

8

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

9

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

10

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

11

Program

#include<stdio.h>

#include<conio.h>

int a[20][20],reach[20],n;

void dfs(int v) {

int i;

reach[v]=1;

for (i=1;i<=n;i++)

if(a[v][i] && !reach[i]) {

printf("\n %d->%d",v,i);

dfs(i);

}

}

void main()

{

int i,j,count=0;

printf("\n Enter number of vertices:");

scanf("%d",&n);

for (i=1;i<=n;i++) {

reach[i]=0;

for (j=1;j<=n;j++)

a[i][j]=0;

}

printf("\n Enter the adjacency matrix:\n");

for (i=1;i<=n;i++)

for (j=1;j<=n;j++)

scanf("%d",&a[i][j]);

dfs(1);

printf("\n");

for (i=1;i<=n;i++) {

if(reach[i])

count++;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

12

}

if(count==n)

printf("\n Graph is connected"); else

printf("\n Graph is not connected");

}

OUTPUT:

BFS (Breadth First Search)

BFS traversal of a graph produces a spanning tree as final result. Spanning Tree is a graph

without loops. We use Queue data structure with maximum size of total number of vertices in

the graph to implement BFS traversal.

We use the following steps to implement BFS traversal...

 Step 1 - Define a Queue of size total number of vertices in the graph.

 Step 2 - Select any vertex as starting point for traversal. Visit that vertex and insert it

into the Queue.

 Step 3 - Visit all the non-visited adjacent vertices of the vertex which is at front of the

Queue and insert them into the Queue.

 Step 4 - When there is no new vertex to be visited from the vertex which is at front of the

Queue then delete that vertex.

 Step 5 - Repeat steps 3 and 4 until queue becomes empty.

 Step 6 - When queue becomes empty, then produce final spanning tree by removing

unused edges from the graph

EXAMPLE

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

13

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

14

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

15

PROGRAM :

#include<stdio.h>

#include<conio.h>

int a[20][20],q[20],visited[20],n,i,j,f=0,r=-1;

void bfs(int v)

{

visited[v]=1;

for (i=1;i<=n;i++)

{

if(a[v][i] && !visited[i])

{

printf("%d-%d\n",v,i);

q[++r]=i;

}

}

if(f<=r)

{

visited[q[f]]=1;

bfs(q[f++]);

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

16

}

void main()

{

int v;

printf("\n Enter the number of vertices:");

scanf("%d",&n);

for (i=1;i<=n;i++)

{

q[i]=0;

visited[i]=0;

}

// GRAPH IS GIVEN AS ADJACENCY MATRIX

printf("\n Enter graph data in matrix form:\n");

for (i=1;i<=n;i++)

for (j=1;j<=n;j++)

scanf("%d",&a[i][j]);

printf("\n Enter the starting vertex:");

scanf("%d",&v);

printf("BFS visiting order is\n");

bfs(v);

printf("\n The node which are reachable are:\n");

for (i=1;i<=n;i++)

if(visited[i])

printf("%d\t",i); else

printf("\n Bfs is not possible");

}

OUTPUT :

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

17

UNIT IV

Sorting: Heap Sort, External Sorting- Model for external sorting, Merge Sort

SORTING INTRODUCTION

Sorting is nothing but arranging the data in ascending or descending order.

The term sorting came into picture, as humans realized the importance of searching quickly.

There are so many things in our real life that we need to search for, like a particular record in

database, roll numbers in merit list, a particular telephone number in telephone directory, a

particular page in a book etc. All this would have been a mess if the data was kept unordered

and unsorted, but fortunately the concept of sorting came into existence, making it easier for

everyone to arrange data in an order, hence making it easier to search.

Sorting arranges data in a sequence which makes searching easier.

Sorting Efficiency

The two main criteria to judge which algorithm is better than the other have been:

1. Time taken to sort the given data.

2. Memory Space required to do so.

Different Sorting Algorithms

There are many different techniques available for sorting, differentiated by their efficiency and

space requirements. Following are some sorting techniques which we will be covering here.

1. Bubble Sort

2. Insertion Sort

3. Selection Sort

4. Merge Sort

5. Heap Sort

Sorting Terminology

What is in-place sorting?

An in-place sorting algorithm uses constant extra space for producing the output (modifies the

given array only). It sorts the list only by modifying the order of the elements within the list.

For example, Insertion Sort and Selection Sorts are in-place sorting algorithms as they do not

use any additional space for sorting the list and a typical implementation of Merge Sort is not

in-place.

What are Internal and External Sorting?

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

18

When all data that needs to be sorted cannot be placed in-memory at a time, the sorting is

called external sorting. External Sorting is used for massive amount of data. Merge Sort and its

variations are typically used for external sorting. Some external storage like hard-disk, CD, etc is

used for external storage.

When all data is placed in-memory, then sorting is called internal sorting.

Example of external sorting is Merge Sort.

What is stable sorting?

Stability is mainly important when we have key value pairs with duplicate keys possible (like

people names as keys and their details as values). And we wish to sort these objects by keys.

A sorting algorithm is said to be stable if two objects with equal keys appear in the same

order in sorted output as they appear in the input array to be sorted.

Informally, stability means that equivalent elements retain their relative positions, after sorting.

When equal elements are indistinguishable, such as with integers or more generally, any data

where the entire element is the key, stability is not an issue. Stability is also not an issue if all

keys are different.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

http://en.wikipedia.org/wiki/External_sorting

19

An example where it is useful

Consider the following dataset of Student Names and their respective class sections.

If we sort this data according to name only, then it is highly unlikely that the resulting dataset

will be grouped according to sections as well.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

20

So we might have to sort again to obtain list of students section wise too. But in doing so, i f the sorting

algorithm is not stable, we might get a result like this-

The dataset is now sorted according to sections, but not according to names.

In the name-sorted dataset, the tuple (alice , B)was before (ERIC,B), but since the sorting

algorithm is not stable, the relative order is lost.

If on the other hand we used a stable sorting algorithm, the result would be-

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

21

HEAP SORT

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-case

running time. Heap sort involves building a Heap data structure from the given array and then

utilizing the Heap to sort the array.

What is a Heap?

Heap is a special tree-based data structure that satisfies the following special heap properties:

1. Shape Property: Heap data structure is always a Complete Binary Tree, which means all

levels of the tree are fully filled.

Heap Property: All nodes are either greater than or equal to or less than or equal to each of its

children. If the parent nodes are greater than their child nodes, heap is called a Max-Heap, and

if the parent nodes are smaller than their child nodes, heap is called Min-Heap.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

https://www.studytonight.com/data-structures/introduction-to-binary-trees

22

Building Heap from Array

Algorithm

Step 1 − Create a new node at the end of heap.

Step 2 − Assign new value to the node.

Step 3 − Compare the value of this child node with its parent.

Step 4 − If value of parent is less than child, then swap them.

Step 5 − Repeat step 3 & 4 until Heap property holds.

Note − In Min Heap construction algorithm, we expect the value of the

parent node to be less than that of the child node.

Example:

Array = {1, 3, 5, 4, 6, 13, 10, 9, 8, 15, 17}

Corresponding Complete Binary Tree is:

1

/ \

3 5

/ \ / \

4 6 13 10

/ \ / \

9 8 15 17

The task to build a Max-Heap from above array.

Total Nodes = 11.

Last Non-leaf node index = (11/2) - 1 = 4.

Therefore, last non-leaf node = 6.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

23

To build the heap, heapify only the nodes:

[1, 3, 5, 4, 6] in reverse order.

Heapify 6: Swap 6 and 17.

1

/ \

3 5

/ \ / \

4 17 13 10

/ \ / \

9 8 15 6

Heapify 4: Swap 4 and 9.

1

/ \

3 5

/ \ / \

9 17 13 10

/ \ / \

4 8 15 6

Heapify 5: Swap 13 and 5.

1

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

24

/ \

3 13

/ \ / \

9 17 5 10

/ \ / \

4 8 15 6

Heapify 3: First Swap 3 and 17, again swap 3 and 15.

1

/ \

17 13

/ \ / \

9 15 5 10

/ \ / \

4 8 3 6

Heapify 1: First Swap 1 and 17, again swap 1 and 15,

Finally swap 1 and 6.

17

/ \

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

25

15

/ \

13

/ \

9 6 5 10

/ \ / \

4 8 3 1

Heap Sort Algorithm

Heap sort is one of the sorting algorithms used to arrange a list of elements in order.

Heap sort algorithm uses one of the tree concepts called Heap Tree. In this sorting algorithm,

we use Max Heap to arrange list of elements in Descending order and Min Heap to arrange list

elements in ascending order.

Step by Step Process

The Heap sort algorithm to arrange a list of elements in ascending order is performed

using following steps...

 Step 1 - Construct a Binary Tree with given list of Elements.

 Step 2 - Transform the Binary Tree into Min Heap (descending order/max heap

(Ascending order).

 Step 3 - Delete the root element from Min Heap/max heap using Heapify method.

 Step 4 - Put the deleted element into the Sorted list.

 Step 5 - Repeat the same until Min Heap becomes empty.

 Step 6 - Display the sorted list.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

26

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

27

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

28

Note:

Heap sort is an in-place algorithm.

Its typical implementation is not stable, but can be made stable.

PROGRAM

#include <stdio.h>

/* function to heapify a subtree. Here 'i' is the

index of root node in array a[], and 'n' is the size of heap. */

void heapify(int a[], int n, int i)

{

int largest = i; // Initialize largest as root

int left = 2 * i + 1; // left child

int right = 2 * i + 2; // right child

// If left child is larger than root

if (left < n && a[left] > a[largest])

largest = left;

// If right child is larger than root

if (right < n && a[right] > a[largest])

largest = right;

// If root is not largest

if (largest != i) {

// swap a[i] with a[largest]

int temp = a[i];

a[i] = a[largest];

a[largest] = temp;

heapify(a, n, largest);

}

}

/*Function to implement the heap sort*/

void heapSort(int a[], int n)

{

for (int i = n / 2 - 1; i >= 0; i--)

heapify(a, n, i);

// One by one extract an element from heap

for (int i = n - 1; i >= 0; i--) {

/* Move current root element to end*/

// swap a[0] with a[i]

int temp = a[0];

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

29

a[0] = a[i];

a[i] = temp;

heapify(a, i, 0);

}

}

/* function to print the array elements */

void printArr(int arr[], int n)

{

for (int i = 0; i < n; ++i)

{

printf("%d", arr[i]);

printf(" ");

}

}

int main()

{

int a[100],n ;

printf("enter the number of elements");

scanf("%d",&n);

printf("enter the values");

for(int i=0;i<n;i++)

{

scanf("%d",&a[i]);

}

printf("Before sorting array elements are - \n");

printArr(a, n);

heapSort(a, n);

printf("\nAfter sorting array elements are - \n");

printArr(a, n);

return 0;

}

Output:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

30

Time Complexity:

Time complexity of heapify is O(Logn). Time complexity of createAndBuildHeap() is O(n) and

overall time complexity of Heap Sort is O(nLogn).

MERGE SORT

Merge Sort follows the rule of Divide and Conquer to sort a given set of numbers/elements,

recursively, hence consuming less time.

Before jumping on to, how merge sort works and its implementation, first let’s understand

what the rule of Divide and Conquer is?

Divide and Conquer

If we can break a single big problem into smaller sub-problems, solve the smaller sub-problems

and combine their solutions to find the solution for the original big problem, it becomes easier

to solve the whole problem.

Let's take an example, Divide and Rule.

When Britishers s came to India, they saw a country with different religions living in harmony,

hard working but naive citizens, unity in diversity, and found it difficult to establish their

empire. So, they adopted the policy of Divide and Rule. Where the population of India was

collectively a one big problem for them, they divided the problem into smaller problems, by

instigating rivalries between local kings, making them stand against each other, and this worked

very well for them.

Well that was history, and a socio-political policy (Divide and Rule), but the idea here is, if we

can somehow divide a problem into smaller sub-problems, it becomes easier to eventually

solve the whole problem.

In Merge Sort, the given unsorted array with n elements is divided into n sub arrays, each

having one element, because a single element is always sorted in itself. Then, it repeatedly

merges these sub arrays, to produce new sorted sub arrays, and in the end, one complete

sorted array is produced.

The concept of Divide and Conquer involves three steps:

1. Divide the problem into multiple small problems.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

31

2. Conquer the sub problems by solving them. The idea is to break down the problem into

atomic sub problems, where they are actually solved.

3. Combine the solutions of the sub problems to find the solution of the actual problem.

How Merge Sort Works?

As we have already discussed that merge sort utilizes divide-and-conquer rule to break the

problem into sub-problems, the problem in this case being, sorting a given array.

In merge sort, we break the given array midway, for example if the original array

had 6 elements, then merge sort will break it down into two sub arrays with 3 elements each.

But breaking the original array into 2 smaller sub arrays is not helping us in sorting the array.

So we will break these sub arrays into even smaller sub arrays, until we have multiple sub

arrays with single element in them. Now, the idea here is that an array with a single element is

already sorted, so once we break the original array into sub arrays which has only a single

element, we have successfully broken down our problem into base problems.

And then we have to merge all these sorted sub arrays, step by step to form one single sorted

array.

Let's consider an array with values {14, 7, 3, 12, 9, 11, 6, 12}

Below, we have a pictorial representation of how merge sort will sort the given array.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

32

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

33

In merge sort we follow the following steps:

1. We take a variable p and store the starting index of our array in this. And we take

another variable r and store the last index of array in it.

2. Then we find the middle of the array using the formula (p + r)/2 and mark the middle

index as q, and break the array into two sub arrays, from p to q and from q +

1 to r index.

3. Then we divide these 2 sub arrays again, just like we divided our main array and this

continues.

4. Once we have divided the main array into sub arrays with single elements, then we start

merging the sub arrays.

Example

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves unless the

atomic values are achieved. We see here that an array of 8 items is divided into two arrays of

size 4.

This does not change the sequence of appearance of items in the original. Now we divide these

two arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

34

Now, we combine them in exactly the same manner as they were broken down. Please note the

color codes given to these lists.

We first compare the element for each list and then combine them into another list in a sorted

manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and in the

target list of 2 values we put 10 first, followed by 27. We change the order of 19 and 35

whereas 42 and 44 are placed sequentially.

In the next iteration of the combining phase, we compare lists of two data values, and merge

them into a list of found data values placing all in a sorted order.

After the final merging, the list should look like this −

PROGRAM

#include <stdio.h>

void mergeSort(int [], int, int, int);

void partition(int [],int, int);

int main()

{

int list[50];

int i, size;

printf("Enter total number of elements:");

scanf("%d", &size);

printf("Enter the elements:\n");

for(i = 0; i < size; i++)

{

scanf("%d", &list[i]);

}

partition(list, 0, size - 1);

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

35

printf("After merge sort:\n");

for(i = 0;i < size; i++)

{

printf("%d ",list[i]);

}

return 0;

}

void partition(int list[],int low,int high)

{

int mid;

if(low < high)

{

mid = (low + high) / 2;

partition(list, low, mid);

partition(list, mid + 1, high);

mergeSort(list, low, mid, high);

}

}

void mergeSort(int list[],int low,int mid,int high)

{

int i, mi, k, lo, temp[50];

lo = low;

i = low;

mi = mid + 1;

while ((lo <= mid) && (mi <= high))

{

if (list[lo] <= list[mi])

{

temp[i] = list[lo];

lo++;

}

else

{

temp[i] = list[mi];

mi++;

}

i++;

}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

36

if (lo > mid)

{

for (k = mi; k <= high; k++)

{

temp[i] = list[k];

i++;

}

}

else

{

for (k = lo; k <= mid; k++)

{

temp[i] = list[k];

i++;

}

}

for (k = low; k <= high; k++)

{

list[k] = temp[k];

}

}

TIME COMPLEXITY

The time complexity of Merge Sort is O(n*Log n) in all the 3 cases (worst, average and best) as

the merge sort always divides the array into two halves and takes linear time to merge two

halves

COMPARISON OF SORTING TECHNIQUES

Insertion Sort

Properties:

 INSERTION-SORT can take different amounts of time to sort two input sequences of

the same size depending on how nearly sorted they already are.

 In INSERTION-SORT, the best case occurs if the array is already sorted.

T [Best Case]= O(n)

 If the array is in reverse sorted order i.e. in decreasing order, INSERTION-SORT gives

the worst case results.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

37

T [Worst Case]= o(n²)

Pros:

Cons:

 Average Case: When half the elements are sorted while half not

 The running time of insertion sort therefore belongs to both Ω(n) and O(n²)

 For nearly-sorted data, it’s incredibly efficient (very near O(n) complexity)

 It works in-place, which means no auxiliary storage is necessary i.e. requires only a

constant amount O(1) of additional memory space

 Efficient for (quite) small data sets.

 Stable, i.e. does not change the relative order of elements with equal keys

 It is less efficient on list containing more number of elements

 Insertion sort needs a large number of element shifts

Merge Sort:

Properties
 Merge Sort’s running time is 0(nlogn) in best, worst and average case

 The space complexity of Merge sort is O(n). This means that this algorithm takes a lot

of space and May slower down operations for the last data sets.

 Merge sort is external sorting.

Pros:

Cons

 It is quicker for larger lists because unlike insertion it doesn't go through the whole

list several times.

 The merge sort is slightly faster than the heap sort for larger sets

 (𝑛𝑙𝑜𝑔𝑛) worst case asymptotic complexity.

 Stable sorting algorithm

 Not a in-place sorting technique

 Slower comparative to the other sort algorithms for smaller data sets

 Marginally slower than quick sort in practice

 Goes through the whole process even if the list is sorted

 It uses more memory space to store the sub elements of the initial split list.

 It requires twice the memory of the heap sort because of the second array.

Insertion sort vs. Merge Sort

Similarity

 Both are comparison based sorting algorithms

Difference:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

38

 To work on an almost sorted array, Insertion sort takes linear time i.e. O(n) while

Merge takes O(n*logn) complexity to sort

Heap Sort
Properties:

 Heap sort involves building a Heap data structure from the given array and then utilizing

the Heap to sort the array

 Heap data structure is always a Complete Binary Tree, which means all levels of the tree

are fully filled

 A.heap_size of an array is initially the size of the array. At first iteration, after exchanging

root of the max_heap tree (A[1]) with A[i] = A[A.length] (last element inside array A)

 Doing extract_max(), A.heap_size value will be decreased by 1

 max_heap structure should be max_heapified: A[Parent(i)] >= A[i], where Parent(i)

returns i/2 of heap tree.

 Initially create a Heap. extract_max(), put element of the heap in the array until we have

the complete sorted list in our array.

 Time complexity of heap sort is o(nlogn) in all the cases

 The Heap Sort sorting algorithm seems to have a worst case complexity of O(n log(n))

 Heap sort is in place sorting techniques.

Pros:

 Heap sort and merge sort are asymptotically optimal comparison sorts

Cons: N/A

Heap Sort vs. Merge Sort:

 The time required to merge in a merge sort is counterbalanced by the time required to

build the heap in heap sort

 Heap Sort is better :

The Heap Sort sorting algorithm uses O(1) space for the sorting operation while Merge

Sort which takes O(n) space

 Merge Sort is better

* The merge sort is slightly faster than the heap sort for larger sets

* Heap sort is not stable because operations on the heap can change the relative order of

equal items.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

39

Heap Sort vs. Insertion Sort:

Similarity

 Heap sort and insertion sort are both used comparison based sorting technique

Differences

 Heap Sort is not stable whereas Insertion Sort is.

 When already sorted, Insertion Sort will not sort every element again where as Heap Sort

will use extract max and heapify again and again When already sorted, Insertion Sort

takes O(n) TC whereas Heap Sort will take O(n log(n)) time Insertion Sort is not efficient

for large input data whereas Heap Sort is.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

1

UNIT III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching,

Insertion and Deletion, AVL Trees, Definition, Height of an AVL Tree, Operations –
Insertion, Deletion and Searching, Red –Black, Splay Trees.

TREES INTRODUCTION

The tree is a nonlinear hierarchical data structure and comprises a collection of entities known as

nodes. It connects each node in the tree data structure using "edges”, both directed and
undirected.

The image below represents the tree data structure. The blue-colored circles depict the nodes of

the tree and the black lines connecting each node with another are called edges.

You will understand the parts of trees better, in the terminologies section.

The Necessity for a Tree in Data Structures

Other data structures like arrays, linked-list, stacks, and queues are linear data structures, and all

these data structures store data in sequential order. Time complexity increases with increasing

data size to perform operations like insertion and deletion on these linear data structures. But it is

not acceptable for today's world of computation.

The non-linear structure of trees enhances the data storing, data accessing, and manipulation

processes by employing advanced control methods traversal through it. You will learn about tree

traversal in the upcoming section.

Tree Terminologies

The following are some of the basic tree terms

• Root Node

• Edge

• Parent node

• Child node

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Data Structures

2

• Siblings

• Leaf nodes or external nodes

• Internal nodes

• Degree

• Level

• Height

• Depth

• Path

• Subtree

Root

• In a tree data structure, the root is the first node of the tree. The root node is the initial

node of the tree in data structures.

• In the tree data structure, there must be only one root node.

Edge

• In a tree in data structures, the connecting link of any two nodes is called the edge of the

tree data structure.

• In the tree data structure, N number of nodes connecting with N -1 number of edges.

Parent

In the tree in data structures, the node that is the predecessor of any node is known as a parent

node, or a node with a branch from itself to any other successive node is called the parent node.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

3

Child

• The node, a descendant of any node, is known as child nodes in data structures.

• In a tree, any number of parent nodes can have any number of child nodes.

• In a tree, every node except the root node is a child node.

Siblings

In trees in the data structure, nodes that belong to the same parent are called siblings.

Leaf

• Trees in the data structure, the node with no child, is known as a leaf node.

• In trees, leaf nodes are also called external nodes or terminal nodes.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

4

Internal nodes

• Trees in the data structure have at least one child node known as internal nodes.

• In trees, nodes other than leaf nodes are internal nodes.

• Sometimes root nodes are also called internal nodes if the tree has more than one node.

Degree

• In the tree data structure, the total number of children of a node is called the degree of

the node.

• The highest degree of the node among all the nodes in a tree is called the Degree of Tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

5

Level

In tree data structures, the root node is said to be at level 0, and the root node's children are at

level 1, and the children of that node at level 1 will be level 2, and so on.

Height

• In a tree data structure, the number of edges from the leaf node to the particular node in

the longest path is known as the height of that node.

• In the tree, the height of the root node is called "Height of Tree".

• The tree height of all leaf nodes is 0.

Depth

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

6

• In a tree, many edges from the root node to the particular node are called the depth of the

tree.

• In the tree, the total number of edges from the root node to the leaf node in the longest

path is known as "Depth of Tree".

• In the tree data structures, the depth of the root node is 0.

Path

• In the tree in data structures, the sequence of nodes and edges from one node to another

node is called the path between those two nodes.

• The length of a path is the total number of nodes in a path.zx

Subtree

In the tree in data structures, each child from a node shapes a sub-tree recursively and every child

in the tree will form a sub-tree on its parent node.

General Tree

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

7

The general tree is the type of tree where there are no constraints on the hierarchical structure.

Properties

• The general tree follows all properties of the tree data structure.

• A node can have any number of nodes.

BINARY TREES

The Binary tree means that the node can have maximum two children. Here, binary name itself

suggests that 'two'; therefore, each node can have either 0, 1 or 2 children.

Let's understand the binary tree through an example.

The above tree is a binary tree because each node contains the utmost two children. The logical

representation of the above tree is given below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

8

In the above tree, node 1 contains two pointers, i.e., left and a right pointer pointing to the left

and right node respectively. The node 2 contains both the nodes (left and right node); therefore, it

has two pointers (left and right). The nodes 3, 5 and 6 are the leaf nodes, so all these nodes

contain NULL pointer on both left and right parts.

Properties of Binary Tree

o At each level of i, the maximum number of nodes is 2i.

o The height of the tree is defined as the longest path from the root node to the leaf node.

The tree which is shown above has a height equal to 3. Therefore, the maximum number

of nodes at height 3 is equal to (1+2+4+8) = 15. In general, the maximum number of

nodes possible at height h is (20 + 21 + 22+….2h) = 2h+1 -1.

o If the number of nodes is minimum, then the height of the tree would be maximum.

Conversely, if the number of nodes is maximum, then the height of the tree would be

minimum.

If there are 'n' number of nodes in the binary tree.

The minimum height can be computed as:

As we know that,

n = 2h+1 -1

n+1 = 2h+1

Taking log on both the sides,

log2(n+1) = log2(2h+1)

log2(n+1) = h+1

h = log2(n+1) – 1

The maximum height can be computed as:

As we know that,

n = h+1

h= n-1

Types of Binary Tree

There are four types of Binary tree:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

9

o Full/ proper/ strict Binary tree

o Complete Binary tree

o Perfect Binary tree

o Degenerate Binary tree

o Balanced Binary tree

1. Full/ proper/ strict Binary tree

The full binary tree is also known as a strict binary tree. The tree can only be considered as the

full binary tree if each node must contain either 0 or 2 children. The full binary tree can also be

defined as the tree in which each node must contain 2 children except the leaf nodes.

Let's look at the simple example of the Full Binary tree.

In the above tree, we can observe that each node is either containing zero or two children;

therefore, it is a Full Binary tree.

Properties of Full Binary Tree

o The number of leaf nodes is equal to the number of internal nodes plus 1. In the above

example, the number of internal nodes is 5; therefore, the number of leaf nodes is equal to

6.

o The maximum number of nodes is the same as the number of nodes in the binary tree,

i.e., 2h+1 -1.

o The minimum number of nodes in the full binary tree is 2*h-1.

o The minimum height of the full binary tree is log2(n+1) - 1.

o The maximum height of the full binary tree can be computed as:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

10

 n= 2*h - 1

 n+1 = 2*h

 h = n+1/2

Complete Binary Tree

The complete binary tree is a tree in which all the nodes are completely filled except the last

level. In the last level, all the nodes must be as left as possible. In a complete binary tree, the

nodes should be added from the left.

Let's create a complete binary tree.

The above tree is a complete binary tree because all the nodes are completely filled, and all the

nodes in the last level are added at the left first.

Properties of Complete Binary Tree

o The maximum number of nodes in complete binary tree is 2h+1 - 1.

o The minimum number of nodes in complete binary tree is 2h.

o The minimum height of a complete binary tree is log2(n+1) - 1.

o The maximum height of a complete binary tree is

Perfect Binary Tree

A tree is a perfect binary tree if all the internal nodes have 2 children, and all the leaf nodes are at

the same level.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

11

Let's look at a simple example of a perfect binary tree.

The below tree is not a perfect binary tree because all the leaf nodes are not at the same level.

Degenerate Binary Tree

The degenerate binary tree is a tree in which all the internal nodes have only one children.

Let's understand the Degenerate binary tree through examples.

The above tree is a degenerate binary tree because all the nodes have only one child. It is also

known as a right-skewed tree as all the nodes have a right child only.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

12

The above tree is also a degenerate binary tree because all the nodes have only one child. It is

also known as a left-skewed tree as all the nodes have a left child only.

Balanced Binary Tree

The balanced binary tree is a tree in which both the left and right trees height differ by atmost 1.

For example, AVL and Red-Black trees are balanced binary tree.

Let's understand the balanced binary tree through examples.

The above tree is a balanced binary tree because the difference between the height of left subtree

and right subtree is zero.

The above tree is not a balanced binary tree because the difference between the height of left

subtree and the right subtree is greater than 1.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

13

Tree Traversals

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one

logical way to traverse them, trees can be traversed in different ways. Following are the

generally used ways for traversing trees.

Depth First Traversals:

 (a) Inorder (Left, Root, Right)

 (b) Preorder (Root, Left, Right)

 (c) Postorder (Left, Right, Root)

Breadth-First or Level Order Traversal

Let see each traversal method with example.

Inorder Traversal

Algorithm Inorder(tree)

 1. Traverse the left subtree, i.e., call Inorder(left-subtree)

 2. Visit the root.

 3. Traverse the right subtree, i.e., call Inorder(right-subtree)

Uses of Inorder

In the case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order.

To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder

traversal s reversed can be used.

Example:

In order traversal for the above-given figure is 4 2 5 1 3.

Preorder Traversal

Algorithm Preorder(tree)

 1. Visit the root.

 2. Traverse the left subtree, i.e., call Preorder(left-subtree)

 3. Traverse the right subtree, i.e., call Preorder(right-subtree)

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

14

Uses of Preorder

Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix

expression on an expression tree.

Example: Preorder traversal for the above-given figure is 1 2 4 5 3.

Postorder Traversal

Algorithm Postorder(tree)

 1. Traverse the left subtree, i.e., call Postorder(left-subtree)

 2. Traverse the right subtree, i.e., call Postorder(right-subtree)

 3. Visit the root.

EXAMPLE

Example: Postorder traversal for the above-given figure is 4 5 2 3 1.

Uses of Postorder

Postorder traversal is also useful to get the postfix expression of an expression tree.

Level Order Binary Tree Traversal

Level order traversal of a tree is breadth first traversal for the tree.

Level order traversal of the above tree is 1 2 3 4 5

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

15

Construct a binary tree from inorder and postorder traversals

The idea is to start with the root node, which would be the last item in the postorder sequence,

and find the boundary of its left and right subtree in the inorder sequence. To find the boundary,

search for the index of the root node in the inorder sequence. All keys before the root node in the

inorder sequence become part of the left subtree, and all keys after the root node become part of

the right subtree. Repeat this recursively for all nodes in the tree and construct the tree in the

process.

 To illustrate, consider the following inorder and postorder sequence:

Inorder : { 4, 2, 1, 7, 5, 8, 3, 6 }

Postorder : { 4, 2, 7, 8, 5, 6, 3, 1 }

Root would be the last element in the postorder sequence, i.e., 1. Next, locate the index of the

root node in the inorder sequence. Now since 1 is the root node, all nodes before 1 in the inorder

sequence must be included in the left subtree of the root node, i.e., {4, 2} and all the nodes

after 1 must be included in the right subtree, i.e., {7, 5, 8, 3, 6}. Now the problem is reduced to

building the left and right subtrees and linking them to the root node.

Left subtree:

Inorder : {4, 2}

Postorder : {4, 2}

Right subtree:

Inorder : {7, 5, 8, 3, 6}

Postorder : {7, 8, 5, 6, 3}

The idea is to recursively follow the above approach until the complete tree is constructed.

The final tree will be

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

16

Binary Search Tree(BST)

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned

properties −

• The value of the key of the left sub-tree is less than the value of its parent (root) node's

key.

• The value of the key of the right sub-tree is greater than or equal to the value of its parent

(root) node's key.

let's understand the concept of Binary search tree with an example.

In the above figure, we can observe that the root node is 40, and all the nodes of the left subtree

are smaller than the root node, and all the nodes of the right subtree are greater than the root

node.

Similarly, we can see the left child of root node is greater than its left child and smaller than its

right child. So, it also satisfies the property of binary search tree. Therefore, we can say that the

tree in the above image is a binary search tree.

Suppose if we change the value of node 35 to 55 in the above tree, check whether the tree will be

binary search tree or not.

In the above tree, the value of root node is 40, which is greater than its left child 30 but smaller

than right child of 30, i.e., 55. So, the above tree does not satisfy the property of Binary search

tree. Therefore, the above tree is not a binary search tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

17

Advantages of Binary search tree

o Searching an element in the Binary search tree is easy as we always have a hint that

which subtree has the desired element.

o As compared to array and linked lists, insertion and deletion operations are faster in BST.

Example of creating a Binary Search Tree (BST)

Now, let's see the creation of binary search tree using an example.

Suppose the data elements are - 45, 15, 79, 90, 10, 55, 12, 20, 50

o First, we have to insert 45 into the tree as the root of the tree.

o Then, read the next element; if it is smaller than the root node, insert it as the root of the

left subtree, and move to the next element.

o Otherwise, if the element is larger than the root node, then insert it as the root of the right

subtree.

Now, let's see the process of creating the Binary search tree using the given data element. The

process of creating the BST is shown below -

Step 1 - Insert 45.

Step 2 - Insert 15.

As 15 is smaller than 45, so insert it as the root node of the left subtree.

Step 3 - Insert 79.

As 79 is greater than 45, so insert it as the root node of the right subtree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

18

Step 4 - Insert 90.

90 is greater than 45 and 79, so it will be inserted as the right subtree of 79.

Step 5 - Insert 10.

10 is smaller than 45 and 15, so it will be inserted as a left subtree of 15.

Step 6 - Insert 55.

55 is larger than 45 and smaller than 79, so it will be inserted as the left subtree of 79.

Step 7 - Insert 12.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

19

12 is smaller than 45 and 15 but greater than 10, so it will be inserted as the right subtree of 10.

Step 8 - Insert 20.

20 is smaller than 45 but greater than 15, so it will be inserted as the right subtree of 15.

Step 9 - Insert 50.

50 is greater than 45 but smaller than 79 and 55. So, it will be inserted as a left subtree of 55.

Now, the creation of binary search tree is completed. After that, let's move towards the

operations that can be performed on Binary search tree.

We can perform insert, delete and search operations on the binary search tree.

Let's understand how a search is performed on a binary search tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

20

Searching in Binary search tree(BST)

Searching means to find or locate a specific element or node in a data structure. In Binary search

tree, searching a node is easy because elements in BST are stored in a specific order. The steps of

searching a node in Binary Search tree are listed as follows -

1. First, compare the element to be searched with the root element of the tree.

2. If root is matched with the target element, then return the node's location.

3. If it is not matched, then check whether the item is less than the root element, if it is

smaller than the root element, then move to the left subtree.

4. If it is larger than the root element, then move to the right subtree.

5. Repeat the above procedure recursively until the match is found.

6. If the element is not found or not present in the tree, then return NULL.

Now, let's understand the searching in binary tree using an example. We are taking the binary

search tree formed above. Suppose we have to find node 20 from the below tree.

Step1:

Step2:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

21

Step3:

Now, let's see the algorithm to search an element in the Binary search tree.

Now let's understand how the deletion is performed on a binary search tree. We will also see an

example to delete an element from the given tree.

Deletion in Binary Search tree(BST)

In a binary search tree, we must delete a node from the tree by keeping in mind that the property

of BST is not violated. To delete a node from BST, there are three possible situations occur -

o The node to be deleted is the leaf node, or,

o The node to be deleted has only one child, and,

o The node to be deleted has two children

We will understand the situations listed above in detail.

When the node to be deleted is the leaf node

It is the simplest case to delete a node in BST. Here, we have to replace the leaf node with NULL

and simply free the allocated space.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

22

We can see the process to delete a leaf node from BST in the below image. In below image,

suppose we have to delete node 90, as the node to be deleted is a leaf node, so it will be replaced

with NULL, and the allocated space will free.

When the node to be deleted has only one child

In this case, we have to replace the target node(Deleting node) with its child, and then delete the

child node. It means that after replacing the target node with its child node, the child node will

now contain the value to be deleted. So, we simply have to replace the child node with NULL

and free up the allocated space.

We can see the process of deleting a node with one child from BST in the below image.

In the below image, suppose we have to delete the node 79, as the node to be deleted has only

one child, so it will be replaced with its child 55.

So, the replaced node 79 will now be a leaf node that can be easily deleted.

When the node to be deleted has two children

This case of deleting a node in BST is a bit complex among other two cases. In such a case, the

steps to be followed are listed as follows -

o First, find the inorder successor of the node to be deleted.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

23

o After that, replace that node with the inorder successor until the target node is placed at

the leaf of tree.

o And at last, replace the node with NULL and free up the allocated space.

The inorder successor is required when the right child of the node is not empty. We can obtain

the inorder successor by finding the minimum element in the right child of the node.

We can see the process of deleting a node with two children from BST in the below image. In the

below image, suppose we have to delete node 45 that is the root node, as the node to be deleted

has two children, so it will be replaced with its inorder successor. Now, node 45 will be at the

leaf of the tree so that it can be deleted easily.

Now let's understand how insertion is performed on a binary search tree.

Insertion in Binary Search tree(BST)

A new key in BST is always inserted at the leaf. To insert an element in BST, we have to start

searching from the root node; if the node to be inserted is less than the root node, then search for

an empty location in the left subtree. Else, search for the empty location in the right subtree and

insert the data. Insert in BST is similar to searching, as we always have to maintain the rule that

the left subtree is smaller than the root, and right subtree is larger than the root.

Now, let's see the process of inserting a node into BST using an example.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

24

The complexity of the Binary Search tree

Let's see the time and space complexity of the Binary search tree. We will see the time

complexity for insertion, deletion, and searching operations in best case, average case, and worst

case.

1. Time Complexity

Operations Best case time

complexity

Average case

time complexity

Worst case time

complexity

Insertion O(log n) O(log n) O(n)

Deletion O(log n) O(log n) O(n)

Search O(log n) O(log n) O(n)

Worst case scenario indicates the BST is the Degenerated BST for all the operations (insertion,

deletion and search)

Where 'n' is the number of nodes in the given tree.

2. Space Complexity

Operations Space complexity

Insertion O(n)

Deletion O(n)

Search O(n)

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

25

o The space complexity of all operations of Binary search tree is O(n).

Implementation of binary Search Tree traversal method

Program:

#include <stdio.h>

#include <stdlib.h>

 struct btnode

{

 int value;

 struct btnode *l;

 struct btnode *r;

}*root = NULL, *temp = NULL, *t2, *t1;

void insert();

void create();

void search(struct btnode *root);

void inorder(struct btnode *t);

void preorder(struct btnode *t);

void postorder(struct btnode *t);

void main()

{

 int ch;

 printf("\nOPERATIONS ---");

 printf("\n1 - Insert an element into tree\n");

 printf("2 - Inorder Traversal\n");

 printf("3 - Preorder Traversal\n");

 printf("4 - Postorder Traversal\n");

 printf("5 - Exit\n");

 while(1)

 {

 printf("\nEnter your choice : ");

 scanf("%d", &ch);

 switch (ch)

 {

 case 1:

 insert();

 break;

 case 2:

 inorder(root);

 break;

 case 3:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

26

 preorder(root);

 break;

 case 4:

 postorder(root);

 break;

 case 5:

 exit(0);

 default :

 printf("Wrong choice, Please enter correct choice ");

 break;

 }

 }

}

/* To insert a node in the tree */

void insert()

{

 create();

 if (root == NULL)

 root = temp;

 else

 search(root);

}

/* To create a node */

void create()

{

 int data;

 printf("Enter data of node to be inserted : ");

 scanf("%d", &data);

 temp = (struct btnode *)malloc(1*sizeof(struct btnode));

 temp->value = data;

 temp->l = temp->r = NULL;

}

/* Function to search the appropriate position to insert the new node */

void search(struct btnode *t)

{

 if ((temp->value > t->value) && (t->r != NULL)) /* value more than root node value insert

at right */

 search(t->r);

 else if ((temp->value > t->value) && (t->r == NULL))

 t->r = temp;

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

27

 else if ((temp->value < t->value) && (t->l != NULL)) /* value less than root node value

insert at left */

 search(t->l);

 else if ((temp->value < t->value) && (t->l == NULL))

 t->l = temp;

}

/* recursive function to perform inorder traversal of tree */

void inorder(struct btnode *t)

{

 if (root == NULL)

 {

 printf("No elements in a tree to display");

 return;

 }

 if (t->l != NULL)

 inorder(t->l);

 printf("%d -> ", t->value);

 if (t->r != NULL)

 inorder(t->r);

}

/* To find the preorder traversal */

void preorder(struct btnode *t)

{

 if (root == NULL)

 {

 printf("No elements in a tree to display");

 return;

 }

 printf("%d -> ", t->value);

 if (t->l != NULL)

 preorder(t->l);

 if (t->r != NULL)

 preorder(t->r);

}

 /* To find the postorder traversal */

void postorder(struct btnode *t)

{

 if (root == NULL)

 {

 printf("No elements in a tree to display ");

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

28

 return;

 }

 if (t->l != NULL)

 postorder(t->l);

 if (t->r != NULL)

 postorder(t->r);

 printf("%d -> ", t->value);

}

OUTPUT:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

AVL Tree

AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree is named AVL

in honour of its inventors.

AVL Tree can be defined as height balanced binary search tree in which each node is associated

with a balance factor which is calculated by subtracting the height of its right sub-tree from that

of its left sub-tree.

Tree is said to be balanced if balance factor of each node is in between -1 to 1, otherwise, the tree

will be unbalanced and need to be balanced.

If balance factor of any node is 0, it means that the left sub-tree and right sub-tree contain equal

height.

If balance factor of any node is -1, it means that the left sub-tree is one level lower than the right

sub-tree.

An AVL tree is given in the following figure. We can see that, balance factor associated with

each node is in between -1 and +1. therefore, it is an example of AVL tree.

Why AVL Tree?

AVL tree controls the height of the binary search tree by not letting it to be skewed. The time

taken for all operations in a binary search tree of height h is O(h). However, it can be extended

to O(n) if the BST becomes skewed (i.e. worst case). By limiting this height to log n, AVL tree

imposes an upper bound on each operation to be O(log n) where n is the number of nodes.

AVL Rotations

We perform rotation in AVL tree only in case if Balance Factor is other than -1, 0, and 1. There

are basically four types of rotations which are as follows:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

1. L L rotation: Inserted node is in the left subtree of left subtree of A

2. R R rotation : Inserted node is in the right subtree of right subtree of A

3. L R rotation : Inserted node is in the right subtree of left subtree of A

4. R L rotation : Inserted node is in the left subtree of right subtree of A

Where node A is the node whose balance Factor is other than -1, 0, 1.

The first two rotations LL and RR are single rotations and the next two rotations LR and RL are

double rotations. For a tree to be unbalanced, minimum height must be at least 2, Let us

understand each rotation

1. RR Rotation

When BST becomes unbalanced, due to a node is inserted into the right subtree of the right

subtree of A, then we perform RR rotation, RR rotation

is an anticlockwise rotation, which is applied on the edge below a node having balance factor -2

In above example, node A has balance factor -2 because a node C is inserted in the right subtree

of A right subtree. We perform the RR rotation on the edge below A.

2. LL Rotation

When BST becomes unbalanced, due to a node is inserted into the left subtree of the left subtree

of C, then we perform LL rotation,

LL rotation is clockwise rotation, which is applied on the edge below a node having balance

factor 2.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

https://www.javatpoint.com/rr-rotation-in-avl-tree
https://www.javatpoint.com/rr-rotation-in-avl-tree

[Type text]

In above example, node C has balance factor 2 because a node A is inserted in the left subtree of

C left subtree. We perform the LL rotation on the edge below A.

3. LR Rotation

Double rotations are bit tougher than single rotation which has already explained above. LR

rotation = RR rotation + LL rotation, i.e., first RR rotation is performed on subtree and then LL

rotation is performed on full tree, by full tree we mean the first node from the path of inserted

node whose balance factor is other than -1, 0, or 1.

Let us understand each and every step very clearly:

State Action

A node B has been inserted into the right subtree of

A the left subtree of C, because of which C has

become an unbalanced node having balance factor 2.

This case is L R rotation where: Inserted node is in

the right subtree of left subtree of C

As LR rotation = RR + LL rotation, hence RR

(anticlockwise) on subtree rooted at A is performed

first. By doing RR rotation, node A, has become the

left subtree of B.

After performing RR rotation, node C is still

unbalanced, i.e., having balance factor 2, as inserted

node A is in the left of left of C

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Now we perform LL clockwise rotation on full tree,

i.e. on node C. node C has now become the right

subtree of node B, A is left subtree of B

Balance factor of each node is now either -1, 0, or 1,

i.e. BST is balanced now.

4. RL Rotation

. R L rotation= LL rotation + RR rotation, i.e., first LL rotation is performed on subtree and then

RR rotation is performed on full tree, by full tree we mean the first node from the path of

inserted node whose balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the left subtree

of C the right subtree of A, because of which A has

become an unbalanced node having balance factor -

2. This case is RL rotation where: Inserted node is in

the left subtree of right subtree of A

As RL rotation = LL rotation + RR rotation, hence,

LL (clockwise) on subtree rooted at C is performed

first. By doing RR rotation, node C has become the

right subtree of B.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

After performing LL rotation, node A is still

unbalanced, i.e. having balance factor -2, which is

because of the right-subtree of the right-subtree

node A.

Now we perform RR rotation (anticlockwise

rotation) on full tree, i.e. on node A. node C has

now become the right subtree of node B, and node A

has become the left subtree of B.

Balance factor of each node is now either -1, 0, or 1,

i.e., BST is balanced now.

AVL TREE CONSTRUCTION

Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

On inserting the above elements, especially in the case of H, the BST becomes unbalanced as the

Balance Factor of H is -2. Since the BST is right-skewed, we will perform RR Rotation on node

H.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

The resultant balance tree is:

2. Insert B, A

On inserting the above elements, especially in case of A, the BST becomes unbalanced as the

Balance Factor of H and I is 2, we consider the first node from the last inserted node i.e. H. Since

the BST from H is left-skewed, we will perform LL Rotation on node H.

The resultant balance tree is:

3. Insert E

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

On inserting E, BST becomes unbalanced as the Balance Factor of I is 2, since if we travel from

E to I we find that it is inserted in the left subtree of right subtree of I, we will perform LR

Rotation on node I. LR = RR + LL rotation

3 a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

4. Insert C, F, D

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H is -2, since if

we travel from D to B we find that it is inserted in the right subtree of left subtree of B, we will

perform RL Rotation on node I. RL = LL + RR rotation.

4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

5. Insert G

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

On inserting G, BST become unbalanced as the Balance Factor of H is 2, since if we travel from

G to H, we find that it is inserted in the left subtree of right subtree of H, we will perform LR

Rotation on node I. LR = RR + LL rotation.

5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

5 b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

6. Insert K

On inserting K, BST becomes unbalanced as the Balance Factor of I is -2. Since the BST is right-

skewed from I to K, hence we will perform RR Rotation on the node I.

The resultant balanced tree after RR rotation is:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

7. Insert L

On inserting the L tree is still balanced as the Balance Factor of each node is now either, -1, 0,

+1. Hence the tree is a Balanced AVL tree

Operations on AVL tree

The following operations are performed on AVL Tree

1. Insertion

2. Deletion

3. Search

Insertion Operation on AVL Tree

Insertion in AVL tree is performed in the same way as it is performed in a binary search tree.

The new node is added into AVL tree as the leaf node. However, it may lead to violation in the

AVL tree property and therefore the tree may need balancing.

The tree can be balanced by applying rotations. Rotation is required only if, the balance factor of

any node is disturbed upon inserting the new node, otherwise the rotation is not required.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

EXAMPLE

Construct an AVL tree by inserting the following elements in the given order.

63, 9, 19, 27, 18, 108, 99, 81

The process of constructing an AVL tree from the given set of elements is shown in the

following figure.

At each step, we must calculate the balance factor for every node, if it is found to be more than 2

or less than -2, then we need a rotation to rebalance the tree. The type of rotation will be

estimated by the location of the inserted element with respect to the critical node.

All the elements are inserted in order to maintain the order of binary search tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

Deletion in AVL Tree

Deleting a node from an AVL tree is similar to that in a binary search tree. Deletion may

disturb the balance factor of an AVL tree and therefore the tree needs to be rebalanced in order to

maintain the AVLness. For this purpose, we need to perform rotations.

Example

Delete the node 60 from the AVL tree shown in the following image.

Solution:

in this case, node B has balance factor -1. Deleting the node 60, disturbs the balance factor of the

node 50 therefore, it needs to be R-1 rotated. The node C i.e. 45 becomes the root of the tree with

the node B(40) and A(50) as its left and right child.

Search Operation in AVL Tree

Search operation in AVL tree is similar to binary search tree search operation.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

1

RED-BLACK TREE

Introduction:

A red-black tree is a kind of self-balancing binary search tree where each node has an extra bit,

and that bit is often interpreted as the color (red or black). These colors are used to ensure that

the tree remains balanced during insertions and deletions. Although the balance of the tree is

not perfect, This tree was invented in 1972 by Rudolf Bayer.

Rules That Every Red-Black Tree Follows:

1. Every node has a color either red or black.

2. The root of the tree is always black.

3. There are no two adjacent red nodes (A red node cannot have a red parent or red child).

4. Every path from a node (including root) to any of its descendants NULL nodes has the

same number of black nodes.

5. All leaf nodes are black nodes.

EXAMPLE

The above tree is a Red-Black tree where every node is satisfying all the properties of

Red-Black Tree.

Why Red-Black Trees?

 Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is

the height of the BST. The cost of these operations may become O(n) for a skewed Binary tree.

If we make sure that the height of the tree remains O(log n) after every insertion and deletion,

then we can guarantee an upper bound of O(log n) for all these operations. The height of a Red-

Black tree is always O(log n) where n is the number of nodes in the tree. Where “n” is the total
number of elements in the red-black tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

2

Comparison with AVL Tree:

The AVL trees are more balanced compared to Red-Black Trees, but they may cause more

rotations during insertion and deletion. So if your application involves frequent insertions and

deletions, then Red-Black trees should be preferred. And if the insertions and deletions are less

frequent and search is a more frequent operation, then AVL tree should be preferred over Red-

Black Tree.

Interesting points about Red-Black Tree:

1. Black height of the red-black tree is the number of black nodes on a path from the root

node to a leaf node. Leaf nodes are also counted as black nodes. So, a red-black tree of

height h has black height >= h/2.

2. Height of a red-black tree with n nodes is h<= 2 log2(n + 1).

3. All leaves (NIL) are black.

4. The black depth of a node is defined as the number of black nodes from the root to that

node i.e the number of black ancestors.

5. Every red-black tree is a special case of a binary tree.

Black Height of a Red-Black Tree :

Black height is the number of black nodes on a path from the root to a leaf. Leaf nodes are also

counted black nodes. From the above properties 3 and 4, we can derive, a Red-Black Tree of

height h has black-height >= h/2.

NOTE: Every Red Black Tree with n nodes has height <= 2Log2(n+1)

The following operations are performed on Red-Black Tree

1. Search

2. Insertion

3. Deletion

Search operation in Red-Black Tree

Every red-black tree is a special case of a binary tree so the searching algorithm of a red-black

tree is similar to that of a binary tree.

Example: Searching 11 in the following red-black tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

3

Solution:

1. Start from the root.

2. Compare the inserting element with root, if less than root, then recurse for left, else

recurse for right.

3. If the element to search is found anywhere, return true, else return false.

Insertion operation in Red-Black Tree

In the Red-Black tree, we use two tools to do the balancing.

1. Recoloring

2. Rotation

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

4

Re-coloring is the change in color of the node i.e. if it is red then change it to black and vice

versa. It must be noted that the color of the NULL node is always black. Moreover, we always

try re-coloring first, if re-coloring doesn’t work, then we go for rotation.

Following is a detailed algorithm. The algorithms have mainly two cases depending upon the

color of the uncle(Uncle means new node parent sibling). If the uncle is red, we do recolor. If the

uncle is black, we do rotations and/or re-coloring.

Logic:

First, you have to insert the node similarly to that in a binary tree and assign a red color to it.

Now, if the node is a root node then change its color to black, but if it is not then check the color

of the parent node. If its color is black then don’t change the color but if it is not i.e. it is red then

check the color of the node’s uncle. If the node’s uncle has a red color then change the color of

the node’s parent and uncle to black and that of grandfather to red color and repeat the same

process for him (i.e. grandfather).

Algorithm

1. Perform standard BST insertion and make the color of newly inserted nodes as RED.

2. If new node (x) is the root, change the color of x as BLACK

3. Do the following if the color of new node (x’s) parent is not BLACK and x is not the

root.

a) If x’s uncle(Uncle means new node parent sibling) is RED (Grandparent must

have been black from Red-Black Tree Property)

➢ Change the colour of parent and uncle as BLACK.

➢ Colour of a grandparent as RED.

➢ Change x = x’s grandparent, repeat steps 2 and 3 for new x.

b). If x’s uncle is BLACK, then there can be four configurations for x, x’s parent (p)

and x’s grandparent (g)

➢ Left Left Case (p is left child of g and x is left child of p)

➢ Left Right Case (p is left child of g and x is the right child of p)

➢ Right Right Case

➢ Right Left Case

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

5

➢

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

6

EXAMPLE:

Create a Red-Black Tree with the following sequence of numbers 8,18,5,15,17,25,40 and 80

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

7

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

8

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

9

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

10

Deletion in Red Black Tree

The below table is useful to identify the case and its corresponding set of actions to be performed when

deleting a node from Red Black Tree

Example 1: Delete 30 from the RB tree in fig. 3

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

11

Initial RB Tree

You first have to search for 30, once found perform BST deletion . For a node with value ‘30’, find either
the maximum of the left subtree or a minimum of the right subtree and replace 30 with that value. This

is BST deletion .

RB Tree after replacing 30 with min element from right subtree

The resulting RB tree will be like one in fig. 4. Element 30 is deleted and the value is successfully

replaced by 38. But now the task is to delete duplicate element 38.

Go to the table above and you’ll observe case 1 is satisfied by this tree.

After removing the red leaf node

Since node with element 38 is a red leaf node, remove it and the tree looks like the one in fig. 5.

Observe that if you perform correct actions, the tree will still hold all the properties of the RB tree.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

12

Example 2: Delete 15 from below RB tree

 Initial RB Tree

15 can be removed easily from the tree (BST deletion). In the case of RB trees, if a leaf node is deleted

you replace it with a double black (DB) nil node . It is represented by a double circle.

NIL node added in place of 15

The entire problem is now drilled down to get rid of this bad boy, DB, via some actions.

Go back to our rule book (table) and case 3 fits perfectly.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

13

NIL Node removed after applying actions

In short, remove DB and then swap the color of its sibling with its parent

Example 3: Delete ‘15’ from fig.(A).

Fig: (A) Initial RB Tree, (B) NIL node added in place of 15

Delete node with value 15 and, as a rule, replace it with DB nil node as shown. Now, DB’s sibling is black
and sibling’s both children are also black (don’t forget the hidden NIL nodes!), it satisfies all the

conditions of case 3. Here,

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

14

Fig: RB Tree after case 3 is applied

1. DB’s parent is 20

2. DB’s parent is black

3. DB’s sibling is 30

With these points in mind perform the actions and you get an RB tree as in fig. 10.

20 becomes DB and hence the problem is not resolved yet. Reapply case 3

Fig. RB Tree after case 3 is applied

The resulting tree looks like the one in the above fig.

The DB still exist . Recheck which case will be applicable.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

15

Fig.: NIL Node removed after applying actions

Found it? It’s case 2, the simplest of all!

The root resolved DB and becomes a black node. And you’re done deleting 15 successfully.

Example 4: Delete ‘15’ from below fig. (A).

(A) Initial RB Tree, (B) NIL node added in place of 15

First, Search 15 as per BST rules and then delete it. Second, replace deleted node with DB NIL node as

shown in fig. 13 (B).

DB’s sibling is red. Clearly, case 4 is applicable.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

16

 RB Tree after case 4 is applied

(a) Swap DB’s parent’s color with DB’s sibling’s color. I know this is confusing, but take it easy and keep

following. The tree looks like fig. 14.

 (b) Perform rotation at parent node in direction of DB. The tree becomes like the one in fig. 15. DB is

still there (what’s its problem!).

(c) Check which case can be applied in the current tree. And got it, case 3.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

17

 NIL Node removed after applying actions

(d) Apply case 3 as explained and the RB tree is free from the DB node as shown in fig. 16.

I know it’s tiresome, but I swear if you practice these examples 2–3 times, you will have a good grasp of

the concept of deletion in RB trees.

Example 5: Delete ‘1’ from below fig(A).

 (A) Initial RB Tree, (B) NIL node added in place of 1

Perform the basic preliminary steps- delete the node with value 1 and replace it with DB NIL node as

shown in fig. 17(B). Check for the cases which fit the current tree and it’s case 3(DB’s sibling is black).

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

18

RB Tree after case 3 is applied

Node 5 has now become a double black node. We need to get rid of it.

Search for cases that can be applied and case 5 seems to fit here (not case 3).

 (A) Tree after swapping colors of 30 & 25 (B) Tree after rotation

Case 5 is applied as follows-

(a) swap colors of nodes 30 and 25 (fig. 19(A))

(b) Rotate at sibling node in the direction opposite to the DB node. Hence, perform right rotation at

node 30 and the tree becomes like fig. 19 (B).

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

19

The double black node still haunts the tree! Re-check the case that can be applied to this tree and we

find that case 6 (don’t fall for case 3) seems to fit.

Apply case 6 as follow-

(a) Swap colors of DB’s parent with DB’s sibling.

(b) Perform rotation at DB’s parent node in the direction of DB (fig, 20(B)).

NIL Node removed after applying actions

(c) Change DB node to black node. Also, change the color of DB’s sibling’s far-red child to black and the

final RB tree will look fig. 21.

And, voilà! The RB tree is free of element 1 as well as of any double node. Life is good now.

Applications of Red-Black Trees

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

[Type text]

20

Real-world uses of red-black trees include TreeSet, TreeMap, and Hashmap in the Java Collections

Library.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Splay Tree

Splay trees are the self-balancing or self-adjusted binary search trees. In other words, we can say

that the splay trees are the variants of the binary search trees. The prerequisite for the splay trees

that we should know about the binary search trees.

As we already know, the time complexity of a binary search tree in every case. The time

complexity of a binary search tree in the average case is O(logn) and the time complexity in the

worst case is O(n). In a binary search tree, the value of the left subtree is smaller than the root

node, and the value of the right subtree is greater than the root node; in such case, the time

complexity would be O(logn). If the binary tree is left-skewed or right-skewed, then the time

complexity would be O(n). To limit the skewness, the AVL and Red-Black tree came into the

picture, having O(logn) time complexity for all the operations in all the cases. We can also

improve this time complexity by doing more practical implementations, so the new Tree data

structure was designed, known as a Splay tree.

What is a Splay Tree?

A splay tree is a self-balancing tree, but AVL and Red-Black trees are also self-balancing trees

then. What makes the splay tree unique two trees. It has one extra property that makes it unique

is splaying.

A splay tree contains the same operations as a Binary search tree, i.e., Insertion, deletion and

searching, but it also contains one more operation, i.e., splaying. So. all the operations in the

splay tree are followed by splaying.

Splay trees are not strictly balanced trees, but they are roughly balanced trees. Let's understand

the search operation in the splay-tree.

Suppose we want to search 7 element in the tree, which is shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

To search any element in the splay tree, first, we will perform the standard binary search tree

operation. As 7 is less than 10 so we will come to the left of the root node. After performing the

search operation, we need to perform splaying. Here splaying means that the operation that we

are performing on any element should become the root node after performing some

rearrangements. The rearrangement of the tree will be done through the rotations.

Note: The splay tree can be defined as the self-adjusted tree in which any operation performed

on the element would rearrange the tree so that the element on which operation has been

performed becomes the root node of the tree.

In a splay tree, every operation is performed at the root of the tree. All the operations in splay

tree are involved with a common operation called "Splaying".

Splaying an element, is the process of bringing it to the root position by performing

suitable rotation operations.

In a splay tree, splaying an element rearranges all the elements in the tree so that splayed element

is placed at the root of the tree.

By splaying elements we bring more frequently used elements closer to the root of the tree so

that any operation on those elements is performed quickly. That means the splaying operation

automatically brings more frequently used elements closer to the root of the tree.

Every operation on splay tree performs the splaying operation. For example, the insertion

operation first inserts the new element using the binary search tree insertion process, then the

newly inserted element is splayed so that it is placed at the root of the tree. The search operation

in a splay tree is nothing but searching the element using binary search process and then splaying

that searched element so that it is placed at the root of the tree.

In splay tree, to splay any element we use the following rotation operations...

Rotations in Splay Tree

• 1. Zig Rotation

• 2. Zag Rotation

• 3. Zig - Zig Rotation

• 4. Zag - Zag Rotation

• 5. Zig - Zag Rotation

• 6. Zag - Zig Rotation

Example

Zig Rotation

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

The Zig Rotation in splay tree is similar to the single right rotation in AVL Tree rotations. In zig

rotation, every node moves one position to the right from its current position. Consider the

following example...

Zag Rotation

The Zag Rotation in splay tree is similar to the single left rotation in AVL Tree rotations. In zag

rotation, every node moves one position to the left from its current position. Consider the

following example...

Zig-Zig Rotation

The Zig-Zig Rotation in splay tree is a double zig rotation. In zig-zig rotation, every node

moves two positions to the right from its current position. Consider the following example...

Zag-Zag Rotation

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

The Zag-Zag Rotation in splay tree is a double zag rotation. In zag-zag rotation, every node

moves two positions to the left from its current position. Consider the following example...

Zig-Zag Rotation

The Zig-Zag Rotation in splay tree is a sequence of zig rotation followed by zag rotation. In zig-

zag rotation, every node moves one position to the right followed by one position to the left from

its current position. Consider the following example...

Zag-Zig Rotation

The Zag-Zig Rotation in splay tree is a sequence of zag rotation followed by zig rotation. In

zag-zig rotation, every node moves one position to the left followed by one position to the right

from its current position. Consider the following example...

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Rotations

There are six types of rotations used for splaying:

1. Zig rotation (Right rotation)

2. Zag rotation (Left rotation)

3. Zig zag (Zig followed by zag)

4. Zag zig (Zag followed by zig)

5. Zig zig (two right rotations)

6. Zag zag (two left rotations)

Factors required for selecting a type of rotation

The following are the factors used for selecting a type of rotation:

o Does the node which we are trying to rotate have a grandparent?

o Is the node left or right child of the parent?

o Is the node left or right child of the grandparent?

Cases for the Rotations

Case 1: If the node does not have a grand-parent, and if it is the right child of the parent, then we

carry out the left rotation; otherwise, the right rotation is performed.

Case 2: If the node has a grandparent, then based on the following scenarios; the rotation would

be performed:

Scenario 1: If the node is the right of the parent and the parent is also right of its parent, then

Scenario 2: If the node is left of a parent, but the parent is right of its parent, then zig zag right

left rotation is performed.

Scenario 3:

Scenario 4: If the node is right of a parent, but the parent is left of its parent, then

Now, let's understand the above rotations with examples.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

zag

zag left left rotation is performed.

If the node is left of the parent and the parent is left of its parent, then zig zig right

right rotation is performed.

zag zig left-

right rotation is performed.

To rearrange the tree, we need to perform some rotations. The following are the types of

rotations in the splay tree:

o

node (i.e., left or the right child).

The following are the cases that can exist in the splay tree while searching:

Case 1: If the search item is a root node of the tree.

Case 2: If the search item is a child of the root node, then the two scenarios will be there:

1. If the child is a left child, the right rotation would be performed, known as a zig right

rotation.

rotation.

Let's look at the above two scenarios through an example.

Consider the below example:

In the above example, we have to search 7 element in the tree. We will follow the below steps:

Step 1: First, we compare 7 with a root node. As 7 is less than 10, so it is a left child of the root

node.

Step 2: Once the element is found, we will perform splaying. The right rotation is performed so

that 7 becomes the root node of the tree, as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Zig rotations & Zag rotations

The zig & zag rotations are used when the item to be searched is either a root node or the child of a root

2. If the child is a right child, the left rotation would be performed, known as a zag left

Let's consider another example.

In the above example, we have to search 20 element in the tree. We will follow the below steps:

Step 1: First, we compare 20 with a root node. As 20 is greater than the root node, so it is a right

child of the root node.

Step 2: Once the element is found, we will perform splaying. The left rotation is performed so

that 20 element becomes the root node of the tree.

o Zig zig rotations

Sometimes the situation arises when the item to be searched is having a parent as well as a

grandparent. In this case, we have to perform four rotations for splaying.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Let's understand this case through an example.

Suppose we have to search 1 element in the tree, which is shown below:

Step 1: First, we have to perform a standard BST searching operation in order to search the 1

element. As 1 is less than 10 and 7, so it will be at the left of the node 7. Therefore, element 1 is

having a parent, i.e., 7 as well as a grandparent, i.e., 10.

Step 2: In this step, we have to perform splaying. We need to make node 1 as a root node with

the help of some rotations. In this case, we cannot simply perform a zig or zag rotation; we have

to implement zig zig rotation.

In order to make node 1 as a root node, we need to perform two right rotations known as zig zig

rotations. When we perform the right rotation then 10 will move downwards, and node 7 will

come upwards as shown in the below figure:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Again, we will perform zig right rotation, node 7 will move downwards, and node 1 will come

upwards as shown below:

As we observe in the above figure that node 1 has become the root node of the tree; therefore, the

searching is completed.

In order to search 20, we need to perform two left rotations. Following are the steps required to

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Zag Zag Rotations
Suppose we want to search 20 in the below tree.

search 20 node:

Step 1: First, we perform the standard BST searching operation. As 20 is greater than 10 and 15,

so it will be at the right of node 15.

Step 2: The second step is to perform splaying. In this case, two left rotations would be

performed. In the first rotation, node 10 will move downwards, and node 15 would move

upwards as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

In the second left rotation, node 15 will move downwards, and node 20 becomes the root node of

the tree, as shown below:

rotation.

o Zig zag rotations

Till now, we have read that both parent and grandparent are either in RR or LL relationship.

Now, we will see the RL or LR relationship between the parent and the grandparent.

Let's understand this case through an example.

Suppose we want to search 13 element in the tree which is shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

As we have observed that two left rotations are performed; so it is known as a zag zag left

Step 1: First, we perform standard BST searching operation. As 13 is greater than 10 but less

than 15, so node 13 will be the left child of node 15.

Step 2: Since node 13 is at the left of 15 and node 15 is at the right of node 10, so RL

relationship exists. First, we perform the right rotation on node 15, and 15 will move downwards,

and node 13 will come upwards, as shown below:

Still, node 13 is not the root node, and 13 is at the right of the root node, so we will perform left

rotation known as a zag rotation. The node 10 will move downwards, and 13 becomes the root

node as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

As we can observe in the above tree that node 13 has become the root node; therefore, the

searching is completed. In this case, we have first performed the zig rotation and then zag

rotation; so, it is known as a zig zag rotation.

o Zag zig rotation

Let's understand this case through an example.

Suppose we want to search 9 element in the tree, which is shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Step 1: First, we perform the standard BST searching operation. As 9 is less than 10 but greater

than 7, so it will be the right child of node 7.

Step 2: Since node 9 is at the right of node 7, and node 7 is at the left of node 10, so LR

relationship exists. First, we perform the left rotation on node 7. The node 7 will move

downwards, and node 9 moves upwards as shown below:

Still the node 9 is not a root node, and 9 is at the left of the root node, so we will perform the

right rotation known as zig rotation. After performing the right rotation, node 9 becomes the root

node, as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

As we can observe in the above tree that node 13 is a root node; therefore, the searching is

completed. In this case, we have first performed the zag rotation (left rotation), and then zig

rotation (right rotation) is performed, so it is known as a zag zig rotation.

Advantages of Splay tree

o In the splay tree, we do not need to store the extra information. In contrast, in AVL trees,

we need to store the balance factor of each node that requires extra space, and Red-Black

trees also require to store one extra bit of information that denotes the color of the node,

either Red or Black.

o It is the fastest type of Binary Search tree for various practical applications. It is used

in Windows NT and GCC compilers.

o It provides better performance as the frequently accessed nodes will move nearer to the

root node, due to which the elements can be accessed quickly in splay trees. It is used in

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

the cache implementation as the recently accessed data is stored in the cache so that we

do not need to go to the memory for accessing the data, and it takes less time.

Drawback of Splay tree

The major drawback of the splay tree would be that trees are not strictly balanced, i.e., they are

roughly balanced. Sometimes the splay trees are linear, so it will take O(n) time complexity.

Insertion operation in Splay tree

In the insertion operation, we first insert the element in the tree and then perform the splaying

operation on the inserted element.

15, 10, 17, 7

Step 1: First, we insert node 15 in the tree. After insertion, we need to perform splaying. As 15 is

a root node, so we do not need to perform splaying.

Step 2: The next element is 10. As 10 is less than 15, so node 10 will be the left child of node 15,

as shown below:

Now, we perform splaying. To make 10 as a root node, we will perform the right rotation, as

shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Step 3: The next element is 17. As 17 is greater than 10 and 15 so it will become the right child

of node 15.

Now, we will perform splaying. As 17 is having a parent as well as a grandparent so we will

perform zig zig rotations

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

In the above figure, we can observe that 17 becomes the root node of the tree; therefore, the

insertion is completed.

Step 4: The next element is 7. As 7 is less than 17, 15, and 10, so node 7 will be left child of 10.

Now, we have to splay the tree. As 7 is having a parent as well as a grandparent so we will

perform two right rotations as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Still the node 7 is not a root node, it is a left child of the root node, i.e., 17. So, we need to

perform one more right rotation to make node 7 as a root node as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Deletion in Splay tree

As we know that splay trees are the variants of the Binary search tree, so deletion operation in

the splay tree would be similar to the BST, but the only difference is that the delete operation is

followed in splay trees by the splaying operation.

Types of Deletions:

There are two types of deletions in the splay trees:

1. Bottom-up splaying

2. Top-down splaying

Bottom-up splaying

In bottom-up splaying, first we delete the element from the tree and then we perform the

splaying on the deleted node.

Let's understand the deletion in the Splay tree.

Suppose we want to delete 12, 14 from the tree shown below:

o First, we simply perform the standard BST deletion operation to delete 12 element. As 12

is a leaf node, so we simply delete the node from the tree.

The deletion is still not completed. We need to splay the parent of the deleted node, i.e., 10. We

have to perform Splay(10) on the tree. As we can observe in the above tree that 10 is at the right

of node 7, and node 7 is at the left of node 13. So, first, we perform the left rotation on node 7

and then we perform the right rotation on node 13, as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Still, node 10 is not a root node; node 10 is the left child of the root node. So, we need to perform

the right rotation on the root node, i.e., 14 to make node 10 a root node as shown below:

o Now, we have to delete the 14 element from the tree, which is shown below:

As we know that we cannot simply delete the internal node. We will replace the value of the

node either using inorder predecessor or inorder successor. Suppose we use inorder successor in

which we replace the value with the lowest value that exist in the right subtree. The lowest value

in the right subtree of node 14 is 15, so we replace the value 14 with 15. Since node 14 becomes

the leaf node, so we can simply delete it as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Still, the deletion is not completed. We need to perform one more operation, i.e., splaying in

which we need to make the parent of the deleted node as the root node. Before deletion, the

parent of node 14 was the root node, i.e., 10, so we do need to perform any splaying in this case.

Top-down splaying

In top-down splaying, we first perform the splaying on which the deletion is to be performed and

then delete the node from the tree. Once the element is deleted, we will perform the join

operation.

Let's understand the top-down splaying through an example.

Suppose we want to delete 16 from the tree which is shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Step 1: In top-down splaying, first we perform splaying on the node 16. The node 16 has both

parent as well as grandparent. The node 16 is at the right of its parent and the parent node is also

at the right of its parent, so this is a zag zag situation. In this case, first, we will perform the left

rotation on node 13 and then 14 as shown below:

The node 16 is still not a root node, and it is a right child of the root node, so we need to perform

left rotation on the node 12 to make node 16 as a root node.

Once the node 16 becomes a root node, we will delete the node 16 and we will get two different

trees, i.e., left subtree and right subtree as shown below:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

As we know that the values of the left subtree are always lesser than the values of the right

subtree. The root of the left subtree is 12 and the root of the right subtree is 17. The first step is to

find the maximum element in the left subtree. In the left subtree, the maximum element is 15,

and then we need to perform splaying operation on 15.

As we can observe in the above tree that the element 15 is having a parent as well as a

grandparent. A node is right of its parent, and the parent node is also right of its parent, so we

need to perform two left rotations to make node 15 a root node as shown below:

After performing two rotations on the tree, node 15 becomes the root node. As we can see, the

right child of the 15 is NULL, so we attach node 17 at the right part of the 15 as shown below,

and this operation is known as a join operation.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore

Pattern Matching

Pattern searching is an important problem in computer science. When we do search for a

string in notepad/word file or browser or database, pattern searching algorithms are used to

show the search results.

A typical problem statement would be-

Given a text txt[0..n-1] and a pattern pat[0..m-1], write a function search(char pat[], char

txt[]) that prints all occurrences of pat[] in txt[]. You may assume that n > m.

Examples:

Input: txt[] = "THIS IS A TEST TEXT"

 pat[] = "TEST"

Output: Pattern found at index 10

Input: txt[] = "AABAACAADAABAABA"

 pat[] = "AABA"

Output: Pattern found at index 0

 Pattern found at index 9

 Pattern found at index 12

Different Types of Pattern Matching Algorithms

1. Navie Based Algorithm or Brute Force Algorithm

2. Boyer Moore Algorithm

3. Knuth-Morris Pratt (KMP) Algorithm

Navie Based Algorithm or Brute Force Algorithm

When we talk about a string matching algorithm, every one can get a simple string matching

technique. That is starting from first letters of the text and first letter of the pattern check

whether these two letters are equal. if it is, then check second letters of the text and pattern. If

it is not equal, then move first letter of the pattern to the second letter of the text. then check

these two letters. this is the simple technique everyone can thought.

 Brute Force string matching algorithm is also like that. Therefore we call that as Naive string

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

Data Structures

matching algorithm. Naive means basic.

Brute Force Algorithm

do

 if (text letter == pattern letter)

compare next letter of pattern to next letter of text

else

move pattern down text by one letter

while (entire pattern found or end of text)

Lets learn this method using an example.

EXAMPLE 1

Let our text (T) as,

 THIS IS A SIMPLE EXAMPLE

and our pattern (P) as,

 SIMPLE

Red Boxes-Mismatch Green Boxes-Match

 In above red boxes says mismatch letters against letters of the text and green boxes says

match letters against letters of the text. According to the above

 In first raw we check whether first letter of the pattern is matched with the first letter of the

text. It is mismatched, because "S" is the first letter of pattern and "T" is the first letter of text.

Then we move the pattern by one position. Shown in second raw.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

http://1.bp.blogspot.com/-YJDalyxz6XY/UFCYnd2_nBI/AAAAAAAAAB4/uewJpXgs9Mc/s1600/Brute+Force.jpg

 Then check first letter of the pattern with the second letter of text. It is also mismatched.

Likewise we continue the checking and moving process. In fourth raw we can see first letter of

the pattern matched with text. Then we do not do any moving but we increase testing letter of

the pattern. We only move the position of pattern by one when we find mismatches. Also in

last raw, we can see all the letters of the pattern matched with the some letters of the text

continuously.

Example 2

Running Time Analysis Of Brute Force String Matching Algorithm

Worst Case

Given a pattern M characters in length, and a text N characters in length...

• Worst case: compares pattern to each substring of text of length M.
For example, M=5.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

• Total number of comparisons: M (N-M+1) • Worst case time complexity: Ο(MN)

• Total number of comparisons: M (N-M+1)

 • Worst case time complexity: Ο(MN)

Best case

Given a pattern M characters in length, and a text N characters in length...

• Best case if pattern found: Finds pattern in first M positions of text.

For example, M=5.

AAAAAAAAAAAAAAAAAAAAAAAAAAAH

AAAAA 5 comparisons made

• Total number of comparisons: M
• Best case time complexity: Ο(M)
Best case if pattern not found:

Always mismatch on first character. For example, M=5.

• Total number of comparisons: N
• Best case time complexity: Ο(N)

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Advantages

1. Very simple technique and also that does not require any preprocessing. Therefore total

running time is the same as its matching time.

Disadvantages

1. Very inefficient method. Because this method takes only one position movement in

each time

Boyer Moore Algorithm for Pattern Searching

The B-M algorithm takes a backward approach . the pattern string(p) is aligned with the start of

the text string(T) and then compare the characters of pattern from right to left beginning with

rightmost character

If a character is compared that is not within the pattern, no match can be found by comparing

any furher characters at this position so the pattern can be shifted completely past the

mismatching character.

For determining the possible shifts , B-M algorithm uses 2 preprocessing strategies

simultaneously whenever a mismatch occurs, the algorithm computes a shift using both

strategies and selects the longer one. thus it makes use of the most efficient stategy for each

individual case

NOTE : Boyer Moore algorithm starts matching from the last character of the pattern.

The 2 strategies are called heuristics of B-M as they are used to reduce the search. They are

1) Bad Character Heuristic

2) Good Suffix Heuristic

Bad Character Heuristic

The idea of bad character heuristic is simple. The character of the text which doesn’t match
with the current character of the pattern is called the Bad Character. Upon mismatch, we shift

the pattern until –

1) The mismatch becomes a match

2) Pattern P move past the mismatched character.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Case 1 – Mismatch become match

We will lookup the position of last occurrence of mismatching character in pattern and if

mismatching character exist in pattern then we’ll shift the pattern such that it get aligned to the
mismatching character in text T.

case 1

Explanation: In the above example, we got a mismatch at position 3. Here our mismatching

character is “A”. Now we will search for last occurrence of “A” in pattern. We got “A” at
position 1 in pattern (displayed in Blue) and this is the last occurrence of it. Now we will shift

pattern 2 times so that “A” in pattern get aligned with “A” in text.

Case 2 – Pattern move past the mismatch character

We’ll lookup the position of last occurrence of mismatching character in pattern and if

character does not exist we will shift pattern past the mismatching character.

case2

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Explanation: Here we have a mismatch at position 7. The mismatching character “C” does not

exist in pattern before position 7 so we’ll shift pattern past to the position 7 and eventually in
above example we have got a perfect match of pattern (displayed in Green). We are doing this

because, “C” do not exist in pattern so at every shift before position 7 we will get mismatch and

our search will be fruitless.

Problem in Bad Character Heuristic

In some cases Bad Character Heuristic produces negative results

For Example:

This means we need some extra information to produce a shift an encountering a bad

character. The information is about last position of evry character in the pattern and also the

set of every character in the pattern and also the set of characters used in the pattern

2.Good Suffix Heuristic

Let t be substring of text T which is matched with substring of pattern P. Now we shift pattern

until :

1) Another occurrence of t in P matched with t in T.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

2) A prefix of P, which matches with suffix of t

3) P moves past t

Case 1: Another occurrence of t in P matched with t in T

Pattern P might contain few more occurrences of t. In such case, we will try to shift the pattern

to align that occurrence with t in text T. For example-

Explanation: In the above example, we have got a substring t of text T matched with pattern P

(in green) before mismatch at index 2. Now we will search for occurrence of t (“AB”) in P. We
have found an occurrence starting at position 1 (in yellow background) so we will right shift the

pattern 2 times to align t in P with t in T. This is weak rule of original Boyer Moore

Case 2: A prefix of P, which matches with suffix of t in T

It is not always likely that we will find the occurrence of t in P. Sometimes there is no

occurrence at all, in such cases sometimes we can search for some suffix of t matching with

some prefix of P and try to align them by shifting P. For example –

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Explanation: In above example, we have got t (“BAB”) matched with P (in green) at index 2-4

before mismatch . But because there exists no occurrence of t in P we will search for some

prefix of P which matches with some suffix of t. We have found prefix “AB” (in the yellow
background) starting at index 0 which matches not with whole t but the suffix of t “AB” starting
at index 3. So now we will shift pattern 3 times to align prefix with the suffix.

Case 3: P moves past t

If the above two cases are not satisfied, we will shift the pattern past the t. For example –

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Explanation: If above example, there exist no occurrence of t (“AB”) in P and also there is no
prefix in P which matches with the suffix of t. So, in that case, we can never find any perfect

match before index 4, so we will shift the P past the t ie. to index 5.

Strong Good suffix Heuristic

Suppose substring q = P[i to n] got matched with t in T and c = P[i-1] is the mismatching

character. Now unlike case 1 we will search for t in P which is not preceded by character c. The

closest such occurrence is then aligned with t in T by shifting pattern P. For example –

Explanation: In above example, q = P[7 to 8] got matched with t in T. The mismatching

character c is “C” at position P[6]. Now if we start searching t in P we will get the first
occurrence of t starting at position 4. But this occurrence is preceded by “C” which is equal to c,
so we will skip this and carry on searching. At position 1 we got another occurrence of t (in the

yellow background). This occurrence is preceded by “A” (in blue) which is not equivalent to c.
So we will shift pattern P 6 times to align this occurrence with t in T.We are doing this because

we already know that character c = “C” causes the mismatch. So any occurrence of t preceded

by c will again cause mismatch when aligned with t, so that’s why it is better to skip this.

Preprocessing for Good suffix heuristic

As a part of preprocessing, an array shift is created. Each entry shift[i] contain the distance

pattern will shift if mismatch occur at position i-1. That is, the suffix of pattern starting at

position i is matched and a mismatch occur at position i-1. Preprocessing is done separately for

strong good suffix and case 2 discussed above.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

1) Preprocessing for Strong Good Suffix

Before discussing preprocessing, let us first discuss the idea of border. A border is a substring

which is both proper suffix and proper prefix. For example, in string “ccacc”, “c” is a

border, “cc” is a border because it appears in both end of string but “cca” is not a border.

As a part of preprocessing an array bpos (border position) is calculated. Each

entry bpos[i] contains the starting index of border for suffix starting at index i in given pattern

P.

The suffix φ beginning at position m has no border, so bpos[m] is set to m+1 where m is the

length of the pattern.

The shift position is obtained by the borders which cannot be extended to the left.

Complexity of Boyer Moore Algorithm

This algorithm takes o(mn) in the worst case and O(nlog(m)/m) on average case,

which is the sub linear in the sense that not all characters are inspected

Applications

This algorithm is highly useful in tasks like recursively searching files for virus patterns,searching

databases for keys or data ,text and word processing and any other task that requires handling

large amount of data at very high speed

Knuth-Morris Pratt (KMP) Algorithm for Pattern Searching

The Naive pattern searching algorithm doesn’t work well in cases where we see many matching
characters followed by a mismatching character. Following are some examples.

 txt[] = "AAAAAAAAAAAAAAAAAB"

 pat[] = "AAAAB"

 txt[] = "ABABABCABABABCABABABC"

 pat[] = "ABABAC" (not a worst case, but a bad case for Naive

KMP Algorithm is one of the most popular patterns matching algorithms. KMP stands for Knuth

Morris Pratt. KMP algorithm was invented by Donald Knuth and Vaughan Pratt together and

independently by James H Morris in the year 1970. In the year 1977, all the three jointly

published KMP Algorithm.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

KMP algorithm was the first linear time complexity algorithm for string matching.

KMP algorithm is one of the string matching algorithms used to find a Pattern in a Text.

KMP algorithm is used to find a "Pattern" in a "Text". This algorithm campares character by

character from left to right. But whenever a mismatch occurs, it uses a preprocessed table

called "Prefix Table" to skip characters comparison while matching. Some times prefix table is

also known as LPS Table. Here LPS stands for "Longest proper Prefix which is also Suffix".

Steps for Creating LPS Table (Prefix Table)

• Step 1 - Define a one dimensional array with the size equal to the length of the Pattern.

(LPS[size])

• Step 2 - Define variables i & j. Set i = 0, j = 1 and LPS[0] = 0.

• Step 3 - Compare the characters at Pattern[i] and Pattern[j].

• Step 4 - If both are matched then set LPS[j] = i+1 and increment both i & j values by one.

Goto to Step 3.

• Step 5 - If both are not matched then check the value of variable 'i'. If it is '0' then

set LPS[j] = 0 and increment 'j' value by one, if it is not '0' then set i = LPS[i-1]. Goto Step

3.

• Step 6- Repeat above steps until all the values of LPS[] are filled.

Let us use above steps to create prefix table for a pattern...

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

How to use LPS Table

We use the LPS table to decide how many characters are to be skipped for comparison

when a mismatch has occurred.

When a mismatch occurs, check the LPS value of the previous character of the mismatched

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

character in the pattern. If it is '0' then start comparing the first character of the pattern with

the next character to the mismatched character in the text. If it is not '0' then start comparing

the character which is at an index value equal to the LPS value of the previous character to the

mismatched character in pattern with the mismatched character in the Text.

How the KMP Algorithm Works

Let us see a working example of KMP Algorithm to find a Pattern in a Text

EXAMPLE 1

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Example 2

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

KMP ALGORITHM COMPLEXITY

O(m)- it is to compute to prefix function values

O(n)-it is to compare the pattern to the text

O(n+m)- Total time taken by KMP Algorithm.

Advantages

• The running time of KMP algorithm is O(n+m). which is very fast

• The algorithm never needs to move backwards in the input text T. It makes the

algorithm good for processing very large files.

Disadvantages

• Does not work well as the size of the alphabet increase. By which more chances of

mismatch occurs

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

TRIES DATA STRUCTURE

Trie is an efficient information reTrieval data structure. The term tries comes from the word

retrieval

Definition of a Trie

 Data structure for representing a collection of strings

 In computer science , a trie also called digital tree or radix tree or prefix tree.

 Tries support fast string matching.

Properties of Tries

 A Multi way tree

 Each node has from 1 to n children

 Each edge of the tree is labeled with a character

 Each leaf node corresponds to the stored string which is a concatenation of characters

on a path from the root to this node.

EXAMPLE

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

http://en.wikipedia.org/wiki/Trie

Trie | (Insert and Search)

Trie is an efficient information retrieval data structure. Using Trie, search complexities can be

brought to an optimal limit (key length).

Given multiple strings. The task is to insert the string in a Trie

Examples:

 Example 1: str = {"cat", "there", "caller", "their", "calling", “bat”}

 root

 / \

 c t

 | |

 a h

 | \ |

 l t e

 | | \

 l i r

 | \ | |

 e i r e

 | |

 r n

 |

 g

Example 2: str = {"Candy", "cat", "Caller", "calling"}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

http://www.geeksforgeeks.org/trie-insert-and-search/

 root

 |

 c

 |

 a

 / | \

 l n t

 | |

 l d

 | \ |

 e i y

 | |

 r n

 |

 g

Approach: An efficient approach is to treat every character of the input key as an individual trie

node and insert it into the trie. Note that the children are an array of pointers (or references) to

next level trie nodes. The key character acts as an index into the array of children. If the input

key is new or an extension of the existing key, we need to construct non-existing nodes of the

key, and mark end of the word for the last node. If the input key is a prefix of the existing key in

Trie, we simply mark the last node of the key as the end of a word. The key length determines

Trie depth.

Trie deletion

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Here is an algorithm how to delete a node from trie.

During delete operation we delete the key in bottom up manner using recursion. The following

are possible conditions when deleting key from trie,

1. Key may not be there in trie. Delete operation should not modify trie.

2. Key present as unique key (no part of key contains another key (prefix), nor the key

itself is prefix of another key in trie). Delete all the nodes.

3. Key is prefix key of another long key in trie. Unmark the leaf node.

4. Key present in trie, having atleast one other key as prefix key. Delete nodes from end of

key until first leaf node of longest prefix key.

Time Complexity: The time complexity of the deletion operation is O(n) where n is the key

length

Advantages of Trie Data Structure

Tries is a tree that stores strings. The maximum number of children of a node is equal to the

size of the alphabet. Trie supports search, insert and delete operations in O(L) time

where L is the length of the key.

Hashing:- In hashing, we convert the key to a small value and the value is used to index

data. Hashing supports search, insert and delete operations in O(L) time on average.

Self Balancing BST : The time complexity of the search, insert and delete operations in a

self-balancing Binary Search Tree (BST) (like Red-Black Tree, AVL Tree, Splay Tree, etc) is O(L

* Log n) where n is total number words and L is the length of the word. The advantage of

Self-balancing BSTs is that they maintain order which makes operations like minimum,

maximum, closest (floor or ceiling) and kth largest faster.

Why Trie? :-

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

https://www.geeksforgeeks.org/trie-insert-and-search/
https://www.geeksforgeeks.org/hashing-set-1-introduction/
http://geeksquiz.com/binary-search-tree-set-1-search-and-insertion/
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
https://www.geeksforgeeks.org/splay-tree-set-1-insert/

1. With Trie, we can insert and find strings in O(L) time where L represent the length of a

single word. This is obviously faster than BST. This is also faster than Hashing because of

the ways it is implemented. We do not need to compute any hash function. No collision

handling is required (like we do in open addressing and separate chaining)

2. Another advantage of Trie is, we can easily print all words in alphabetical order which is

not easily possible with hashing.

3. We can efficiently do prefix search (or auto-complete) with Trie.

Issues with Trie :-

The main disadvantage of tries is that they need a lot of memory for storing the strings. For

each node we have too many node pointers(equal to number of characters of the alphabet),

if space is concerned, then Ternary Search Tree can be preferred for dictionary

implementations. In Ternary Search Tree, the time complexity of search operation is O(h)

where h is the height of the tree. Ternary Search Trees also supports other operations

supported by Trie like prefix search, alphabetical order printing, and nearest neighbor

search.

The final conclusion is regarding tries data structure is that they are faster but require huge

memory for storing the strings.

APPLICATIONS OF TRIES

String handling and processing are one of the most important topics for programmers.

Many real time applications are based on the string processing like:

1. Search Engine results optimization

2. Data Analytics

3. Sentimental Analysis

The data structure that is very important for string handling is the Trie data structure that is

based on prefix of string

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

https://www.geeksforgeeks.org/hashing-set-3-open-addressing/
https://www.geeksforgeeks.org/hashing-set-2-separate-chaining/
https://www.geeksforgeeks.org/sorting-array-strings-words-using-trie/
https://www.geeksforgeeks.org/auto-complete-feature-using-trie/
https://www.geeksforgeeks.org/ternary-search-tree/

TYPES OF TRIES

Tries are classified into three categories:

1. Standard Tries

2. Compressed Tries

3. Suffix Tries

STANDARD TRIES

A standard trie have the following properties:}

 It is an ordered tree like data structure.

 Each node(except the root node) in a standard trie is labeled with a character.

 The children of a node are in alphabetical order.

 Each node or branch represents a possible character of keys or words.

 Each node or branch may have multiple branches.

 The last node of every key or word is used to mark the end of word or node.

 The path from external node to the root yields the string of S.

Below is the illustration of the Standard Trie

Standard Trie Insertion

Strings={ a,an,and,any}

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

https://www.geeksforgeeks.org/combinatorics-ordered-trees/

Example of Standard Trie

Standard trie for the following strings

S={ bear, bell, bid, bull, buy, sell, stock, stop}

Handling Keys(strings)

 When a key is prefix of another key

How can we know that “an “ is a word

Example : an, and

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Standard Trie Searching

Search hit where search node has a $ symbol

Standard Trie Deletion

 To perform the deletion there exist cases

1. Word not found

 Return false

2. Word exist as a standalone word

I. Part of any other node

Example:

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

II. Does not part of any other node

EXAMPLE

3. Word exist as a prefix of another word.

COMPRESSED TRIE

A Compressed trie have the following properties:

1. A Compressed Trie is an advanced version of the standard trie.

2. Each nodes(except the leaf nodes) have atleast 2 children.

3. It is used to achieve space optimization.

4. To derive a Compressed Trie from a Standard Trie, compression of chains of redundant

nodes is performed.

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

5. It consists of grouping, re-grouping and un-grouping of keys of characters.

6. While performing the insertion operation, it may be required to un-group the already

grouped characters.

7. While performing the deletion operation, it may be required to re-group the already

grouped characters.

Compressed trie is constructed from standard trie

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Storage of Compressed Trie

A compressed Trie can be stored at O9s) where s= | S| by using O(1) Space index ranges at the

nodes

In the below representation each node is represented with (I,j,k) value

I ---- indicate index of the string

j—starting index of the character of string I

k--- ending index of the character of the string I

Ex: In the given diagram node (4,2,3) having the characters(ll) which belongs to s[4] so i=4,

index of l character in s[4] is 2 so j=2 and ending index is 3 so k=3

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

SUFFIX TRIES

A Suffix trie have the following properties:

1. Suffix trie is a compressed trie for all the suffixes of the text

2. Suffix trie are space efficient data structure to store a string that allows many kinds of

queries to be answered quickly.

Example

Let us consider an example text “soon$”

After alphabetically order the trie look like

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

Advantages of suffix tries

1. Insertion is faster compared to the hash table

2. Look up is faster than hash table implementation

3. There are no collision of different keys in tries

Downloaded by Dr.Kishore Verma S (kishore.saj3@gmail.com)

lOMoARcPSD|13574892

