

(R20CSE2102) COMPUTER ORGANIZATION & ARCHITECTURE

A Digital computer can be considered as a digital system that performs various computational tasks.

The first electronic digital computer was developed in the late 1940s and was used primarily for numerical

computations.

By convention, the digital computers use the binary number system, which has two digits: 0 and 1. A binary

digit is called a bit.

A computer system is subdivided into two functional entities: Hardware and Software.

The hardware consists of all the electronic components and electromechanical devices that comprise the

physical entity of the device.

The software of the computer consists of the instructions and data that the computer manipulates to perform

various data-processing tasks.

o The Central Processing Unit (CPU) contains an arithmetic and logic unit for manipulating data, a

number of registers for storing data, and a control circuit for fetching and executing instructions.

o The memory unit of a digital computer contains storage for instructions and data.

Digital Computers

UNIT - I Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer

Organization, Computer Design and Computer Architecture. Register Transfer Language and Micro

operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro

operations, logic micro operations, shift micro operations, Arithmetic logic shift unit. Basic Computer
Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and
Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

o The Random Access Memory (RAM) for real-time processing of the data.

o The Input-Output devices for generating inputs from the user and displaying the final results to the

user.

o The Input-Output devices connected to the computer include the keyboard, mouse, terminals, magnetic

disk drives, and other communication devices.

What are Digital Computers?

The digital computer is a digital system that performs various computational tasks. The word digital implies

that the information in the computer is represented by variables that take a limited number of discrete values.

These values are processed internally by components that can maintain a limited number of discrete states.

The decimal digits 0, 1, 2, ..., 9, for example, provide 10 discrete values. The first electronic digital computer,

developed in the late 1940s, was used primarily for numerical computations and the discrete elements were

the digits. From this application the term digital computer emerged.

In practice, digital computers function more reliably if only two states are used. Because of the physical

restriction of components, and because human logic tends to be binary (i.e. true or false, yes or no statements),

digital components that are constrained to take discrete values are further constrained to take only two values

and are said to be binary.

Digital computers use the binary number system, which has two digits: 0 and 1. A binary digit is called a bit.

Information is represented in digital computers in groups of bits. By using various coding techniques, groups

of bits can be made to represent not only binary numbers but also other discrete symbols, such as decimal

digits or letters of the alphabet.

Digital Computers: Computer Organization

Computer Organization is concerned with the way the hardware components operate and the way they are

connected together to form the computer system.

The various components are assumed to be in place and the task is to investigate the organizational structure

to verify that the computer parts operate as intended.

Digital Computers: Computer Design

Computer Design is concerned with the hardware design of the computer. Once the computer specifications

are formulated, it is the task of the designer to develop hardware for the system.

Computer design is concerned with the determination of what hardware should be used and how the parts

should be connected. This aspect of computer hardware is sometimes referred to as computer

implementation.

Digital Computers: Computer Architecture

Computer Architecture is concerned with the structure and behaviour of the computer as seen by the user.

It includes the information, formats, the instruction set, and techniques for addressing memory. The

architectural design of a computer system is concerned with the specifications of the various functional

modules, such as processors and memories, and structuring them together into a computer system.

Two basic types of computer architecture are:

1. von Neumann architecture

2. Harvard architecture

1. von Neumann architecture

The von Neumann architecture describes a general framework, or structure, that a computer's hardware,

programming, and data should follow. Although other structures for computing have been devised and

implemented, the vast majority of computers in use today operate according to the von Neumann architecture.

von Neumann envisioned the structure of a computer system as being composed of the following components:

1. ALU: The Arithmetic-Logic unit that performs the computer's computational and logical functions.

2. RAM: Memory; more specifically, the computer's main, or fast, memory, also known as Random

Access Memory(RAM).

3. Control Unit: This is a component that directs other components of the computer to perform certain

actions, such as directing the fetching of data or instructions from memory to be processed by the

ALU; and

4. Man-machine interfaces; i.e. input and output devices, such as keyboard for input and display

monitor for output.

Block diagram of a Digital Computer

An example of computer architecture base on the von Neumann architecture is the desktop personal

computer.

2. Harvard architecture

The Harvard architecture uses physically separate storage and signal pathways for their instructions and

data. The term originated from the Harvard Mark I and the data in relay latches (23- digits wide).

In a computer with Harvard architecture, the CPU can read both an instruction and data from memory at the

same time, leading to double the memory bandwidth.

Microcontroller (single-chip microcomputer)-based computer systems and DSP(Digital Signal Processor)-

based computer systems are examples of Harvard architecture.

BASIC LOGIC GATES WITH TRUTH TABLES

 Nowadays, computers have become an integral part of life as they perform many tasks and operations

in quite a short span of time. One of the most important functions of the CPU in a computer is to perform

logical operations by utilizing hardware like Integrated Circuits software technologies & electronic circuits,.

But, how this hardware and software perform such operations is a mysterious puzzle. In order to have a better

understanding of such a complex issue, we must have to acquaint ourselves with the term Boolean Logic,

developed by George Boole. For a simple operation, computers utilize binary digits rather than digital digits.

All the operations are carried out by the Basic Logic gates. This article discusses an overview of what are basic

logic gates in digital electronics and their working.

https://www.elprocus.com/different-types-of-integrated-circuits/
https://www.elprocus.com/free-electronics-circuits-engineering-projects/

What are Basic Logic Gates?

 A logic gate is a basic building block of a digital circuit that has two inputs and one output. The

relationship between the i/p and the o/p is based on a certain logic. These gates are implemented using

electronic switches like transistors, diodes. But, in practice, basic logic gates are built using (complementary

metal-oxide-semiconductor) CMOS technology, Field-effect transistor FETS, and MOSFET(Metal Oxide

Semiconductor FET)s. Logic gates are used in microprocessors, microcontrollers, embedded system

applications, and in electronic and electrical project circuits. The basic logic gates are categorized into seven:

AND, OR, XOR, NAND, NOR, XNOR, and NOT. These logic gates with their logic gate symbols and truth

tables are explained below.

 Basic Logic Gates Operation

What are the 7 Basic Logic Gates?

 The basic logic gates are classified into seven types: AND gate, OR gate, XOR gate, NAND gate,

NOR gate, XNOR gate, and NOT gate. The truth table is used to show the logic gate function. All the logic

gates have two inputs except the NOT gate, which has only one input.

 When drawing a truth table, the binary values 0 and 1 are used. Every possible combination depends

on the number of inputs. If you don’t know about the logic gates and their truth tables and need guidance on

them, please go through the following infographic that gives an overview of logic gates with their symbols

and truth tables.

Why we use Basic Logic Gates?

 The basic logic gates are used to perform fundamental logical functions. These are the basic building

blocks in the digital ICs (integrated circuits). Most of the logic gates use two binary inputs and generates a

single output like 1 or 0. In some electronic circuits, few logic gates are used whereas in some other circuits,

microprocessors include millions of logic gates.

 The implementation of Logic gates can be done through diodes, transistors, relays, molecules, and

optics otherwise different mechanical elements. Because of this reason, basic logic gates are used like

electronic circuits.

Binary & Decimal

 Before talking about the truth tables of logic gates, it is essential to know the background of binary &

decimal numbers. We all know the decimal numbers which we utilize in everyday calculations like 0 to 9.

This kind of number system includes the base-10. In the same way, binary numbers like 0 and 1 can be utilized

to signify decimal numbers wherever the base of the binary numbers is 2.

 The significance of using binary numbers here is to signify the switching position otherwise voltage

position of a digital component. Here 1 represents the High signal or high voltage whereas “0” specifies low

voltage or low signal. Therefore, Boolean algebra was started. After that, each logic gate is discussed

separately this contains the logic of the gate, truth table, and its typical symbol.

Types of Logic Gates:

The different types of logic gates and symbols with truth tables are discussed below.

https://www.elprocus.com/mosfet-as-a-switch-circuit-diagram-free-circuits/
https://www.elprocus.com/mosfet-as-a-switch-circuit-diagram-free-circuits/
https://www.elprocus.com/microprocessor-and-microcontroller/
https://www.elprocus.com/top-electrical-project-ideas-for-engineering-students/

Basic Logic Gates

AND Gate

The AND gate is a digital logic gate with ‘n’ i/ps one o/p, which performs logical conjunction based on the

combinations of its inputs. The output of this gate is true only when all the inputs are true. When one or more

inputs of the AND gate’s i/ps are false, then only the output of the AND gate is false. The symbol and truth

table of an AND gate with two inputs is shown below.

AND Gate and its Truth Table

OR Gate

The OR gate is a digital logic gate with ‘n’ i/ps and one o/p, that performs logical conjunction based on the

combinations of its inputs. The output of the OR gate is true only when one or more inputs are true. If all the

i/ps of the gate are false, then only the output of the OR gate is false. The symbol and truth table of an OR

gate with two inputs is shown below.

OR Gate and its Truth Table

NOT Gate

The NOT gate is a digital logic gate with one input and one output that operates an inverter operation of the

input. The output of the NOT gate is the reverse of the input. When the input of the NOT gate is true then the

output will be false and vice versa. The symbol and truth table of a NOT gate with one input is shown below.

By using this gate, we can implement NOR and NAND gates

https://www.elprocus.com/different-types-of-digital-logic-circuits/

NOT Gate and Its Truth Table

NAND Gate

The NAND gate is a digital logic gate with ‘n’ i/ps and one o/p, that performs the operation of the AND gate

followed by the operation of the NOT gate.NAND gate is designed by combining the AND and NOT gates. If

the input of the NAND gate high, then the output of the gate will be low.The symbol and truth table of the

NAND gate with two inputs is shown below.

NAND Gate and its Truth Table

NOR Gate

The NOR gate is a digital logic gate with n inputs and one output, that performs the operation of the OR gate

followed by the NOT gate. NOR gate is designed by combining the OR and NOT gate. When any one of the

i/ps of the NOR gate is true, then the output of the NOR gate will be false. The symbol and truth table of the

NOR gate with the truth table is shown below.

NOR Gate and Its Truth Table

Exclusive-OR Gate

The Exclusive-OR gate is a digital logic gate with two inputs and one output. The short form of this gate is

Ex-OR. It performs based on the operation of the OR gate. . If any one of the inputs of this gate is high, then

the output of the EX-OR gate will be high. The symbol and truth table of the EX-OR are shown below.

EX-OR gate and Its Truth Table

Exclusive-NOR Gate

The Exclusive-NOR gate is a digital logic gate with two inputs and one output. The short form of this gate is

Ex-NOR. It performs based on the operation of the NOR gate. When both the inputs of this gate are high, then

the output of the EX-NOR gate will be high. But, if any one of the inputs is high (but not both), then the output

will be low. The symbol and truth table of the EX-NOR are shown below.

EX-NOR Gate and Its Truth Table

What is the Easiest Way to Learn Logic Gates?

The easiest way to learn the function of basic logic gates is explained below.

 For AND Gate – If both the inputs are high then the output is also high

 For OR Gate – If a minimum of one input is high then the output is High

 For XOR Gate – If the minimum one input is high then only the output is high

 NAND Gate – If the minimum one input is low then the output is high

 NOR Gate – If both the inputs are low then the output is high.

Register Transfer Language

Computers are the electronic devices which have several sets of digital hardware
which are inter connected to exchange data. Digital hardware comprises of VLSI Chips
which are used for both data processing as well as data storage facilities. Each of the
Digital hardware is defined as the digital module. Digital modules are considered as the
devices which store the data using the registers available in them and process the data
basing on micro operational codes. These Micro operational codes will be used to
coordinate the data transfer as well as for data processing. Register transfer can be
defined as the process of moving the data between the registers which are controlled by
the micro operations.

Therefore in order to define the micro operations we normally use the descriptive
language. We explain each micro operation in detail. This type of writing is better for
explanatory purpose, but to write a program this kind of writing is not sufficient.

Therefore like in other computer programming languages, we use the symbols for
denoting an operation. Like to load some data into the registers we use “LOAD 5 → R0”
This will be a self explanatory mnemonics. This type of program writing is called as
Register Transfer Language.

As the register transfer language deals with the internals of the hardware we
should be first knowing what is the internal hardware organization.

The internal hardware organization of a digital computer is best defined by specifying:
• The set of registers it contains and their function
• The sequence of micro-operations performed on the binary information stored

in the registers.
• The control that initiates the sequence of micro operations.

The contents of Register transfer language:

 Register Transfer language syntax will contain the micro operations along with the
source and target registers on which the data modification will be performed with a set of
control signals.

For Example: P: LOAD 5 → R0. The command given here is used to load a data 5
to the register R0.

LOAD → Micro Operation
5 → Data (Source Data)
R0 → General Purpose Register (Target Register)
P → Control Signal initiated to run the micro operation.
“ → ” → Data transfer from source to destination.

Register Transfer

Before we see how the data is transferred from one register to another register, we will
see the construction of a register and its various diagrams. Registers are the fast data
storage devices which are constructed using VLSI Chips with the technology of FLIP-
FLOPs. In a simple 8 bit register, there will be 8 flip-flops which will be holding the data
, the design of the flip-flops are based on the manufactures specification. Several
registers are present in the CPU. Such as MAR → used to store the address of the
particular data. MDR → which is used to store the data of a particular address stored in
MAR. PC → is used to point the next instruction to be executed.

The following Diagrams are the different representations of the Register.

Register with a the name inside: Register R1

Register with the no of bits showing inside:

Register with Name and no of bits showing:
 15 0

Register with bits divided into parts:
 15 8 7 0

Next we will see how the Register transfer actually works. We will take the example
syntax and then see how the register transfer takes place.

Ex: if(P==1) then (R2 ← R1)

Here “P” is the control signal generated by the control unit which should be true if the
data transfer from R1 to R2 should take place.

Steps of execution:
• First n outputs of R1 is connected with n inputs of R2.
• Register R2 has a Load Input which is activated when the control signal P==1;

R1

 7 6 5 4 3 2 1 0

R1

• Here the control variable is synchronized with the clock. The type of the register
here we are considering is the Positive edge trigger flip flop. Therefore the data
storage and the transfer process will begin only in the positive edge of the clock.
• After acquiring the positive edge of the clock, the control signal P is active i.e..,
P=1 and then the Register R2 finds the Load input active and the data inputs from
R1 are loaded into R2 in parallel.
• After the data transfer P will go back to 0, because if P is not going back to 0, it
will always be 1 and at every positive edge of the clock, the data transfer from R1 to
R2 will be taking place.

The complete scenario is depicted in the diagram below:

Basic symbols for Register Transfers:

Symbols Description Examples
Letters Denotes a Register MAR, PC, IR, MDR, R1, R2

etc..,
Parentheses () Denotes a part of the register R2(0 – 7)
Arrow ← or → Denotes transfer of

information
R2 ← R1

Comma, Separates two Micro-
operations

R2 ← R1, R3 ← R1

Bus and Memory Transfers:

In a digital computer all the devices are inter connected using a bus. All the
devices will be using these bus paths as the data paths through which the data will be

exchanged. So if we are constructing a system which has several devices(Registers) and
each register has to be having its own path means, there will be a lot of bus(set of wires).
This is not a good design, because providing a communication path for each and every
device means the time taken to exchange information will be long if the bus path is very
long or else the bus management will be very difficult. To avoid this kind of problems we
use “Common Bus Structure”. In this all the bus available will be shared among all the
devices. Therefore only two devices can communicate at a time using the common bus
structure in-order to avoid data inconsistency.

To solve this problem we have discussed the method of buffers. But this solution
also solves the problem only to a certain point. Consider the following problem. You have
a system which has 16 bit bus lines, through which you want to send 16 signals of 16 bit
data. That is total of 256 bit of data has to be sent from 16 registers. So in this type of
problem, we use multiplexers.

Multiplexers are the one which convert the no of input data signals into a small no
of output signals. Ex: 16x1 multiplexer can convert 16 signals into one signal basing on
the selection modes. The diagram below will represent how 4x1 multiplexers are used to
transfer 4 signals of 4 bits each using only 4 bit bus.

The description below explains how the 4x1 multiplexer is used in the above
scenario. The above setup has 2 select signals named “S0” and “S1”, along with 4 sets of
registers which are 4 bits long(stores 4 bits of data). In this diagram we can see that the
first multiplexer has inputs from the first bits of all the respective registers. Like wise the
second multiplexer will have all the inputs from the second bit of all the registers.
Likewise third and fourth multiplexers have the third bit and fourth bit input from the
respective registers.

So in this scenario two select signals will generate four combinations. Such as
(0,0),(0,1),(1,1),(1,0). so for every select signals combination each respective bit of the
multiplexer will be activated. For example if we are considering the select signal (0,0)
notation is active then, let us assume that the third bit of each multiplexer is in on state
which will then generate the register D at the output. Thus the data in the Register D will
occupy the bus when the select signals are in (0,0) combination. Thus the total amount of
bus will be shared among all the available registers.

The general symbol and the structure of 4X1 multiplexer is given below:

The truth table representing the output of the above 4x1 multiplexer circuit:

Signal
S0

Signal
S1

Output
generated

0 0 A
0 1 B
1 0 C
1 1 D

So whenever we are representing that a data transfer is taking place from R1 →
R2, this internally means that R1 → BUS and BUS → R2. If we know that the bus is
definitely present in the system then we can skip the BUS variable and we can just write
R1 → R2.

This is how a multiple data paths are achieved by using a single bus, by
implementing Multiplexers.
Three State Bus Buffers:

Without using multiplexers also we can construct a bus system. These can be
achieved using three state gates.

The three state gate can be defined as the device which have a “Data input line”,
“Data output line” and “A control signal Line”. Therefore the behavior of the Three state
gate will be as follows:

• If the control signal is in high state then the device either produced 1 or 0 basing
on the input provided.

• If the control signal is in low state(== 0) then the device is in high impedance
state.

The three states are “1”, “0”, “High Impedance state”.

So how can we use this to create a bus structure is defined below in the diagram.

The below diagram uses a 2 to 4 Decoder. The decoder is a device which will produce the
output signals basing on the input signals. It naturally decodes the data using select
signals as well as Enable. The truth table of the 2 to 4 decoder is given below:

Select
Signal S0

Select Signal
S1

 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 0 1
0 1 0 0 1 0
1 1 0 1 0 0
1 0 1 0 0 0

So as per the truth table we can see that when the select signals S0 and S1 both are
equal to 0, Bit 0 is having the output of 1. Therefore the Three state gate 1 will be active
and the signal A0 will be transferred to the bus line for bit 0. Like wise when S0 and S1
both equal to 1, Bit 3 is having the output of 1. Therefore the Three state gate 4 will be
active and the signal D0 will be transferred to the bus line for bit 0. This is how the
parallel data transfer will be used. This is the process of implementing the three state
gates also called as three state bus buffers. These are called as Three state bus buffers
because when the control signal is equal to 1, simple the data input will be sent as the
data output, nothing but it stores and sends the output signal. Since a temporary data
storing is occurring it is called as Buffers. So in this type of scenario the only measure we
should take is that if one control signal is in on position, then definitely all the remaining
buffer's control signals must be in off position otherwise the buffer should be in high
impedance state. This scenario can be achieved using a decoder circuit.

Note: Impedance can be defined as the opposition to the flow of the Alternate Current.

Memory Transfer:

Memory Data Transfers are of two types. Read operation and Write operation. So
a Read Operation can be defined as the transfer of data from the memory to the outside
world. The data that is being transferred will be in the form of word (set of bits). The
memory word will be represented by Capital Letter M.

For example: Read: DR ← M[AR]. This statement is used to transfer the data word
that is present at the particular AR → Address Register to the destination register DR →
Data Register.

A Write operation can be defined as the transfer of data from the outside world to the
Memory. This operation also will be performed as the transfer of word (Set of Bits).
For Example: Write: M[AR] ← R1. In this statement the data that is present in R1 will
be transferred to the Address that is represented by the AR → Address Register. M[AR]
represents the data that is to be written a the particular memory location.

Arithmetic Micro-operations:

Micro operation can be defined as the operation that is being performed on the
binary data that is present inside the registers. The most commonly described micro
operations are of four types.
 They are:

• Register transfer micro operations:
• Which performs all the data transfer from one register to another register.

• Arithmetic micro-operations performed on the binary data stored in the
registers.
• Which performs all the arithmetic operations such as “Addition”,

“Subtraction”, “Multiplication”, “Division”.
• Logic Micro-operations perform bit manipulation operations on binary data

stored in the registers.
• Such as Logical AND,OR,NOT, Comparisons etc..,

• Shift Micro-operations which perform data shifting as per bit wise.
• Such as Left Shift and Right Shift operations.

In the previous scenarios we saw that the Register transfers are used to transfer the
data between one register to another register with out modifying the data. But as
computer systems are not only designed to copy the data, but also modify the data, this
generally incorporates the following things:

• Registers to hold the data
• Arithmetic circuits which perform the respective operations such as Add,

Subtraction, etc..,

The following syntax will show how to perform an Addition micro operation
R3 ← R1 + R2

So in the syntax above the contents of the register R1 and R2 are added using
some device and then finally the result that is acquired from that addition will be stored in
the register R3.

If a subtract command has to be performed, it will use the technique of two's complement
as discussed in the before chapters:

R3 ← R1 + R2`+1
This syntax will achieve the subtraction of register R1 to R2 using two's complement
technique.

The following table indicates different micro operations performed:

Symbolic Designation Description
 R3 ← R1+R2 Contents of R1 plus R2 transferred to R3
 R3 ← R1-R2 Contents of R1 minus R2 transferred to R3
 R2 ← R2' Complement the contents of R2(1`s

complement)
R2 ← R2' + 1 2's complement the contents of R2
R3 ← R1 + R2'+1 Subtraction operation achieved using the 2's

complement addition of the second number
R1 ← R1+1 Increment by 1
R1 ← R1-1 Decrement by 1

Binary Adder:

In order to implement binary adder we need to consider the implementation of full
adder circuit. Binary adder circuit will be constructed basing on the cascaded connections
of Full adder circuits. The implementation of binary adder is shown below.

In the figure above, you can see that initially the first full adder is having a carry
signal C0, after that each of the bits of the data to be added will be feed to the circuit bit
by bit. In this two bits are added and if any carry is generated then it will be forwarded to
the next Full adder. Therefore a “n-bit” adder will be having “n” Full adder circuits.

Binary Adder – Subtracter:
This is a special kind of binary adder circuit implementation in which both

addition and subtraction can be performed basing on the control signal. The circuit
implementation will be in the following form.

In the circuit above if the control signal M=0 then the circuit becomes an Adder
Circuit and if the signal M=1, then the circuit will compute subtraction using 2's
complement addition.

If the value of M=0, then in the circuit xor gates will generate the output as the
same input. i.e.., if B0 signal is transferred through the xor gate then if the other input is
0, then the output generated by the xor will be B0 signal only. Like wise if B1 signal is
passing through the xor signal then the output generated will be B1 only. Since M=0, C0
which is the first carry will be 0, then the whole circuit will be converted as Binary
Adder. If M=1 then the output of xor will generate the 1's complement, since M=1 the
carry C0 also equal to 1. If we are adding 1 to 1's complement no, then that will become
2's complement. Then if we add 2's complement to the original no, it will be the
subtraction operation. Like this we can accomplish both addition and subtraction
operation basing on the value of M.
Binary Incrementer:

The purpose of the incrementer circuit is to add 1 to the original data. The 4 bit
combinational circuit incrementer is shown in the following figure. In this the first half
adder will be having one input as 1, then automatically the bit will be added to the current
position and then the carry will be incremented to the next bit position.

Arithmetic circuit:

The arithmetic circuit is a special type of circuit in which the above discussed
circuits, I.e.., Binary adder, Binary Subtracter and Binary incrementer will be
implemented in a single circuit using a combination of the select signals and other signal
combinations. By controlling the data inputs to the arithmetic circuit, we can control the
output being generated. The circuit diagram of the arithmetic circuit is given below.

Working principle of the Arithmetic Circuit:
The arithmetic circuit will be having the following input signals. Cin signal is the

default carry signal inputted to the circuit. S0, S1 signals are the select signals which will
be forming the different combinations of the select signals for the multiplexers. The input
of the multiplexers will be the select signals S0, S1, Bbit and B'bit. After these inputs are
fed to the multiplexer circuits basing on the select signals the output will be generated
and these outputs will be fed to the Full Adder circuits, after which they will be added to
the Abit Signals. By controlling these input signals we can generate different
combinations of the output which will implement different arithmetic operations
mentioned in the table below.

Arithmetic Circuit Function Table

Select Input
Y

Output
D=A+Y+

Cin

Micro operation

S1 S0 Cin
0 0 0 B D=A+B Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B` D=A+B` Subtract with

borrow
0 1 1 B` D=A+B`+1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A-1 Decrement A
1 1 1 1 D=A Transfer A

By using this arithmetic circuit we can have all the arithmetic operations
implemented in only one circuit.

Logic Microoperations:

x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Cle
ar

AN
D

A^
B`

A A`^
B

B A xor

B

OR Nor XNO

R

B` Av
B`

A` A`v
B

NAN

D

Set
1

Hardware Implementation:

The hardware implementation of the above discussed logic operations are based
on the primitive gates such as AND, OR, XOR, NOT gates. Using the combinations or by
using select signals with the help of a multiplexer we will be implementing the circuit.

Selective set: The selective set operation sets to 1 the bits in register A where there are
corresponding 1's in register B. it does not affect bit positions that have 0's in B. the
following numerical example clarifies this operation:

1010 A Before
1100 B (Logic operand)

1110 A After

Selective complement: The selective complement operation complements bits in A where
there are corresponding 1's in B. It does not affect bit positions that have 0's in B. For
example:

1010 A Before
1100 B (Logic operand)

0110 A After

Selective clear: The selective clear operation clears to 0 the bits in A only where there are
corresponding 1's in B. For example:

1010 A Before
1100 B (Logic operand)

0010 A After

Masking: The mask operation is similar to the selective-clear operation except that the
bits of A are cleared only where there are corresponding 0's in B. The mask operation is
an AND micro operation as seen from the following numerical example:

1010 A Before
1100 B (Logic operand)

1000 A After

Inserting: The insert operation inserts a new value into a group of bits. The is done by
first masking the bits and then ORing them with the required value. For example, suppose
that an A register contains eight bits, 01101010. To replace the four leftmost bits by the
value 1001 we first mask the four unwanted bits:

0110 1010 A Before
0000 1111 B (Logic operand)

0000 1010 A After

and then insert the new value:
0110 1010 A Before
1001 0000 B (Logic operand)

1001 1010 A After

Shift Micro operations:
Logical shift: A logical shift is one that transfers 0 through the serial input. We will adopt
the symbols shl and shr for logical shift-left and shift-right micro operations.

R1 ← shl R1
R2 ← shr R2

The bit transferred to the end position through the serial input is assumed to be 0 during a
logical shift.

Circular Shift: The circular shift(also known as a rotate operation) circulates the bits of
the register around the two ends without loss of information. This is accomplished by
connecting the serial output of the shift register to its serial input. We will use the
symbols cil and cir for the circular shift left and right, respectively. The symbolic notation
for the shift micro operations is shown in the following figure;

Symbolic Designation Description
R ← shl R Shift left register R
R ← Shr R Shift right register R
R ← cil R Circular Shift left Register R
R ← cil R Circular Shift Right Register R

R ← ashl R Arithmetic shift left R
R ← ashr R Arithmetic Shift Right R

Arithmetic Logic Shift Unit:
In a computer system, if each and every register performs its own operation, then

the designing of the computer system will be very much harder and also many devices
are needed to create the computer. Normally all the devices such as arithmetic circuit,
logic circuit and shift circuit will be combined together to form a single unit called as
ALU stands for Arithmetic Logic Unit. In the modern computers the shift unit is also
combined with the main ALU unit. The below diagram represents the ALU Circuit
implementation in a single circuit.

It is controlled by a set of 4 Select signals named as S0, S1, S2, S3. Along with
the data lines A and B and a carry in signal Cin. This has three parts,

• One stage of Arithmetic circuit
• One stage of Logic Circuit
• 4X1 Mux.

By using the combinations of the select signals the ALU will perform all the different
operations that are listed below in the table.

Operation Select

S3 S2 S1 S0 Cin Operation Function

0 0 0 0 0 F=A Transfer A

0 0 0 0 1 F=A+1 Increment A

0 0 0 1 0 F= A+B Addition

0 0 0 1 1 F= A+B+1 Add with Carry

0 0 1 0 0 F=A+B` Subtract with
Borrow

0 0 1 0 1 F= A+B`+1 Subtraction

0 0 1 1 0 F= A -1 Decrement A

0 0 1 1 1 F= A Transfer A

0 1 0 0 X F = A and B AND

0 1 0 1 X F = A v B OR

0 1 1 0 X F= A xor B XOR

0 1 1 1 X F= A` Complement A

1 0 X X X F= shr A Shift right A into F

1 1 X X X F= shl A Shift left A into F

Instruction Code

An instruction code is a group of bits that instruct the computer to perform a specific operation.

Operation Code

The operation code of an instruction is a group of bits that define such operations as add,
subtract, multiply, shift, and complement. The number of bits required for the operation code of
an instruction depends on the total number of operations available in the computer. The

operation code must consist of at least n bits for a given 2
n

 (or less) distinct operations.

Accumulator (AC)

Computers that have a single-processor register usually assign to it the name accumulator (AC)
accumulator and label it AC. The operation is performed with the memory operand and the
content of AC.

Stored Program Organization
 The simplest way to organize a computer is to have one processor register and an

instruction code format with two parts.

 The first part specifies the operation to be performed and the second specifies an
address.

 The memory address tells the control where to find an operand in memory.

 This operand is read from memory and used as the data to be operated on together with
the data stored in the processor register.

 The following figure 2.1 shows this type of organization.

Figure 2.1: Stored Program Organization

 Instructions are stored in one section of memory and data in another.
 For a memory unit with 4096 words, we need 12 bits to specify an address since 2

12
 =

4096.

Unit 1 – Basic Computer Organization and Design

1 | P a g e

UNIT-I

 If we store each instruction code in one 16-bit memory word, we have available four bits
for operation code (abbreviated opcode) to specify one out of 16 possible operations,
and 12 bits to specify the address of an operand.

 The control reads a 16-bit instruction from the program portion of memory.

 It uses the 12-bit address part of the instruction to read a 16-bit operand from the data
portion of memory.

 It then executes the operation specified by the operation code.

 Computers that have a single-processor register usually assign to it the name
accumulator and label it AC.

 If an operation in an instruction code does not need an operand from memory, the rest

of the bits in the instruction can be used for other purposes.

 For example, operations such as clear AC, complement AC, and increment AC operate on
data stored in the AC register. They do not need an operand from memory. For these
types of operations, the second part of the instruction code (bits 0 through 11) is not
needed for specifying a memory address and can be used to specify other operations for
the computer.

Direct and Indirect addressing of basic computer.
 The second part of an instruction format specifies the address of an operand, the

instruction is said to have a direct address.

 In Indirect address, the bits in the second part of the instruction designate an address of
a memory word in which the address of the operand is found.

 One bit of the instruction code can be used to distinguish between a direct and an

indirect address.

 It consists of a 3-bit operation code, a 12-bit address, and an indirect address mode bit
designated by I.

 The mode bit is 0 for a direct address and 1 for an indirect address.

 A direct address instruction is shown in Figure 2.2. It is placed in address 22 in memory.

 The I bit is 0, so the instruction is recognized as a direct address instruction.

 The opcode specifies an ADD instruction, and the address part is the binary equivalent of
457.

 The control finds the operand in memory at address 457 and adds it to the content of

AC.

 The instruction in address 35 shown in Figure 2.3 has a mode bit I = 1, recognized as an
indirect address instruction.

 The address part is the binary equivalent of 300.

 The control goes to address 300 to find the address of the operand. The address of the
operand in this case is 1350. The operand found in address 1350 is then added to the
content of AC.

Unit 1 – Basic Computer Organization and Design

2 | P a g e

UNIT-I

 The indirect address instruction needs two references to memory to fetch an operand.
1. The first reference is needed to read the address of the operand
2. Second reference is for the operand itself.

 The memory word that holds the address of the operand in an indirect address
instruction is used as a pointer to an array of data.

 15 14 12 11 0

 I Opcode Address

 Memory Memory

22 0 ADD 457 35 1 ADD 300

 300 1350

457 Operand

1350

Operand

+

+

AC

AC

Figure 2.2: Direct Address

Figure 2.3: Indirect Address

Direct Address Indirect Address

When the second part of an When the second part of an instruction

instruction code specifies the address code specifies the address of a memory

of an operand, the instruction is said word in which the address of the operand,
to have a direct address. the instruction is said to have a direct

 address.

For instance the instruction MOV R0 For instance the instruction MOV @R0 00H,
00H. R0, when converted to machine when converted to machine language, @R0

language is the physical address of becomes whatever is stored in R0, and that

register R0. The instruction moves 0 is the address used to move 0 to. It can be

to R0. whatever is stored in R0.

Unit 1 – Basic Computer Organization and Design

3 | P a g e

UNIT-I

Registers of basic computer
 It is necessary to provide a register in the control unit for storing the instruction code

after it is read from memory.

 The computer needs processor registers for manipulating data and a register for holding
a memory address.

 These requirements dictate the register configuration shown in Figure 2.4.

Figure 2.4: Basic Computer Register and Memory

 The data register (DR) holds the operand read from memory.
 The accumulator (AC) register is a general purpose processing register.

 The instruction read from memory is placed in the instruction register (IR).

 The temporary register (TR) is used for holding temporary data during the processing.

 The memory address register (AR) has 12 bits.

 The program counter (PC) also has 12 bits and it holds the address of the next instruction
to be read from memory after the current instruction is executed.

 Instruction words are read and executed in sequence unless a branch instruction is

encountered. A branch instruction calls for a transfer to a nonconsecutive instruction in
the program.

 Two registers are used for input and output. The input register (INPR) receives an 8-bit

character from an input device. The output register (OUTR) holds an 8-bit character for
an output device.

Unit 1 – Basic Computer Organization and Design

4 | P a g e

UNIT-I

Register Bits Register Name Function

Symbol

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction

TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

 Table 2.1: List of Registers for Basic Computer

Common Bus System for basic computer register.
What is the requirement of common bus System?

 The basic computer has eight registers, a memory unit and a control unit.

 Paths must be provided to transfer information from one register to another and
between memory and register.

 The number of wires will be excessive if connections are between the outputs of each

register and the inputs of the other registers. An efficient scheme for transferring
information in a system with many register is to use a common bus.

 The connection of the registers and memory of the basic computer to a common bus

system is shown in figure 2.5.

 The outputs of seven registers and memory are connected to the common bus. The
specific output that is selected for the bus lines at any given time is determined from the
binary value of the selection variables S2, S1, and S0.

 The number along each output shows the decimal equivalent of the required binary

selection.

 The particular register whose LD (load) input is enabled receives the data from the bus
during the next clock pulse transition. The memory receives the contents of the bus
when its write input is activated. The memory places its 16-bit output onto the bus when
the read input is activated and S2 S1 S0 = 1 1 1.

 Four registers, DR, AC, IR, and TR have 16 bits each.

 Two registers, AR and PC, have 12 bits each since they hold a memory address.

 When the contents of AR or PC are applied to the 16-bit common bus, the four most
significant bits are set to 0’s. When AR and PC receive information from the bus, only the
12 least significant bits are transferred into the register.

 The input register INPR and the output register OUTR have 8 bits each and communicate

with the eight least significant bits in the bus. INPR is connected to provide information
to the bus but OUTR can only receive information from the bus.

Unit 1 – Basic Computer Organization and Design

5 | P a g e

UNIT-I

Figure 2.5: Basic computer registers connected to a common bus

 Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). Two
registers have only a LD input.

 AR must always be used to specify a memory address; therefore memory address is

connected to AR.

 The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of
inputs.
1. Set of 16-bit inputs come from the outputs of AC.
2. Set of 16-bits come from the data register DR.
3. Set of 8-bit inputs come from the input register INPR.

 The result of an addition is transferred to AC and the end carry-out of the addition is
transferred to flip-flop E (extended AC bit).

 The clock transition at the end of the cycle transfers the content of the bus into the

designated destination register and the output of the adder and logic circuit into AC.

Unit 1 – Basic Computer Organization and Design

6 | P a g e

UNIT-I

Instruction Format with its types.
 The basic computer has three instruction code formats, as shown in figure 2.6.

Figure 2.6: Basic computer instruction format

 Each format has 16 bits.

 The operation code (opcode) part of the instruction contains three bits and the meaning
of the remaining 13 bits depends on the operation code encountered.

 A memory-reference instruction uses 12 bits to specify an address and one bit to specify

the addressing mode I. I is equal to 0 for direct address and to 1 for indirect address.

 The register reference instructions are recognized by the operation code 111 with a 0 in
the leftmost bit (bit 15) of the instruction. A register-reference instruction specifies an
operation on or a test of the AC register. An operand from memory is not needed;
therefore, the other 12 bits are used to specify the operation or test to be executed.

 An input-output instruction does not need a reference to memory and is recognized by

the operation code 111 with a 1 in the leftmost bit of the instruction. The remaining 12
bits are used to specify the type of input-output operation or test performed.

Control Unit with timing diagram.
 The block diagram of the control unit is shown in figure 2.7.

 Components of Control unit are
1. Two decoders
2. A sequence counter
3. Control logic gates

 An instruction read from memory is placed in the instruction register (IR). In control unit
the IR is divided into three parts: I bit, the operation code (12-14)bit, and bits 0 through
11.

 The operation code in bits 12 through 14 are decoded with a 3 X 8 decoder.

Unit 1 – Basic Computer Organization and Design

7 | P a g e

UNIT-I

Figure 2.7: Control unit of basic computer

 Bit-15 of the instruction is transferred to a flip-flop designated by the symbol I.

 The eight outputs of the decoder are designated by the symbols D0 through D7. Bits 0
through 11 are applied to the control logic gates. The 4‐bit sequence counter can count
in binary from 0 through 15.The outputs of counter are decoded into 16 timing signals T0
through T15.

 The sequence counter SC can be incremented or cleared synchronously. Most of the

time, the counter is incremented to provide the sequence of timing signals out of 4 X 16
decoder. Once in awhile, the counter is cleared to 0, causing the next timing signal to be
T0.

 As an example, consider the case where SC is incremented to provide timing signals T0,

T1, T2, T3 and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active.
This is expressed symbolically by the statement

D3T4: SC ← 0

Timing Diagram:

 The timing diagram figure2.8 shows the time relationship of the control signals.
 The sequence counter SC responds to the positive transition of the clock.

 Initially, the CLR input of SC is active.

 The first positive transition of the clock clears SC to 0, which in turn activates the timing
T0 out of the decoder. T0 is active during one clock cycle. The positive clock transition

Unit 1 – Basic Computer Organization and Design

8 | P a g e

UNIT-I

labeled T0 in the diagram will trigger only those registers whose control inputs are
connected to timing signal T0.

 SC is incremented with every positive clock transition, unless its CLR input is active.

 This procedures the sequence of timing signals T0, T1, T2, T3 and T4, and so on. If SC is not
cleared, the timing signals will continue with T5, T6, up to T15 and back to T0.

T0 T1 T2 T3 T4 T0
Clock

T0

T1

T2

T3

T4

D3

CLR SC

Figure 2.8: Example of control timing signals

 The last three waveforms shows how SC is cleared when D3T4 = 1. Output D3 from the
operation decoder becomes active at the end of timing signal T2. When timing signal T4
becomes active, the output of the AND gate that implements the control function D3T4
becomes active.

 This signal is applied to the CLR input of SC. On the next positive clock transition the

counter is cleared to 0. This causes the timing signal T0 to become active instead of T5
that would have been active if SC were incremented instead of cleared.

Unit 1 – Basic Computer Organization and Design

9 | P a g e

UNIT-I

Instruction cycle
 A program residing in the memory unit of the computer consists of a sequence of

instructions. In the basic computer each instruction cycle consists of the following
phases:
1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.

 After step 4, the control goes back to step 1 to fetch, decode and execute the nex
instruction.

 This process continues unless a HALT instruction is encountered.

Figure 2.9: Flowchart for instruction cycle (initial configuration)

 The flowchart presents an initial configuration for the instruction cycle and shows how
the control determines the instruction type after the decoding.

 If D7 = 1, the instruction must be register-reference or input-output type. If D7 = 0, the

operation code must be one of the other seven values 110, specifying a memory-
reference instruction. Control then inspects the value of the first bit of the instruction,
which now available in flip-flop I.

 If D7 = 0 and I = 1, we have a memory-reference instruction with an indirect address. It is

then necessary to read the effective address from memory.
 The three instruction types are subdivided into four separate paths. The selected

Unit 1 – Basic Computer Organization and Design

10 | P a g e

UNIT-I

operation is activated with the clock transition associated with timing signal T3.This can
be symbolized as follows:

D’7 I T3: AR

M [AR]
D’7 I’ T3: Nothing

D7 I’ T3: Execute a register-reference instruction

D7 I T3: Execute an input-output instruction

 When a memory-reference instruction with I = 0 is encountered, it is not necessary to do
anything since the effective address is already in AR.

 However, the sequence counter SC must be incremented when D’7 I T3 = 1, so that the

execution of the memory-reference instruction can be continued with timing variable T4.

 A register-reference or input-output instruction can be executed with the click
associated with timing signal T3. After the instruction is executed, SC is cleared to 0 and
control returns to the fetch phase with T0 =1. SC is either incremented or cleared to 0
with every positive clock transition.

Register reference instruction.
 When the register-reference instruction is decoded, D7 bit is set to 1.
 Each control function needs the Boolean relation D7 I' T3

15 12 11 0

0 1 1 1 Register Operation

 There are 12 register-reference instructions listed below:

 r: SC0 Clear SC

CLA rB11: AC 0 Clear AC

CLE rB10: E 0 Clear E

CMA rB9: AC AC’ Complement AC

CME rB8: E E’ Complement E

CIR rB7: AC shr AC, AC(15) E, E AC(0) Circular Right

CIL rB6: AC shl AC, AC(0) E, E AC(15) Circular Left

INC rB5: AC AC + 1 Increment AC

SPA rB4: if (AC(15) = 0) then (PC PC+1) Skip if positive

SNA rB3: if (AC(15) = 1) then (PC PC+1 Skip if negative

SZA rB2: if (AC = 0) then (PC PC+1) Skip if AC is zero

SZE rB1: if (E = 0) then (PC PC+1) Skip if E is zero

HLT rB0: S 0 (S is a start-stop flip-flop) Halt computer

 These 12 bits are available in IR (0-11). They were also transferred to AR during time T2.

 These instructions are executed at timing cycle T3.

 The first seven register-reference instructions perform clear, complement, circular shift,
and increment microoperations on the AC or E registers.

 The next four instructions cause a skip of the next instruction in sequence when

Unit 1 – Basic Computer Organization and Design

11 | P a g e

UNIT-I

condition is satisfied. The skipping of the instruction is achieved by incrementing PC.

 The condition control statements must be recognized as part of the control conditions.
The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The
content of AC is zero (AC = 0) if all the flip-flops of the register are zero.

 The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from

counting. To restore the operation of the computer, the start-stop flip-flop must be set
manually.

Memory reference instructions
 When the memory-reference instruction is decoded, D7 bit is set to 0.

15 14 12 11 0

 I 000~110 Address

 The following table lists seven memory-reference instructions.

Symbol Operation Symbolic Description

 Decoder

AND D0 AC AC M[AR]

ADD D1 AC AC + M[AR], E Cout

LDA D2 AC M[AR]

STA D3 M[AR] AC

BUN D4 PC AR

BSA D5 M[AR] PC, PC AR + 1

ISZ D6 M[AR] M[AR] + 1, if M[AR] + 1 = 0 then PC PC+1

 The effective address of the instruction is in the address register AR and was placed
there during timing signal T2 when I = 0, or during timing signal T3 when I = 1.

 The execution of the memory-reference instructions starts with timing signal T4.

AND to AC

This is an instruction that performs the AND logic operation on pairs of bits in AC and the
memory word specified by the effective address. The result of the operation is
transferred to AC.

D0T4: DRM[AR]

D0T5: AC AC DR, SC 0

ADD to AC

This instruction adds the content of the memory word specified by the effective address
to the value of AC. The sum is transferred into AC and the output carry Cout is transferred
to the E (extended accumulator) flip-flop.

D1T4: DR M[AR]

D1T5: AC AC + DR, E Cout, SC 0

Unit 1 – Basic Computer Organization and Design

12 | P a g e

UNIT-I

LDA: Load to AC

This instruction transfers the memory word specified by the effective address to AC.

D2T4: DR M[AR]

D2T5: AC DR, SC 0

STA: Store AC

This instruction stores the content of AC into the memory word specified by the effective
address.

D3T4: M[AR] AC, SC 0

BUN: Branch Unconditionally

This instruction transfers the program to instruction specified by the effective address.
The BUN instruction allows the programmer to specify an instruction out of sequence
and the program branches (or jumps) unconditionally.

D4T4: PC AR, SC 0

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program called a subroutine or
procedure. When executed, the BSA instruction stores the address of the next
instruction in sequence (which is available in PC) into a memory location specified by the
effective address.

M[AR] PC, PC AR + 1

M[135] 21, PC 135 + 1 = 136

Figure2.10: Example of BSA instruction execution

It is not possible to perform the operation of the BSA instruction in one clock cycle when
we use the bus system of the basic computer. To use the memory and the bus properly,
the BSA instruction must be executed with a sequence of two microoperations:

D5T4: M[AR] PC, AR AR + 1

D5T5: PC AR, SC 0

ISZ: Increment and Skip if Zero

These instruction increments the word specified by the effective address, and if the
incremented value is equal to 0, PC is incremented by 1. Since it is not possible to

Unit 1 – Basic Computer Organization and Design

13 | P a g e

UNIT-I

increment a word inside the memory, it is necessary to read the word into DR, increment
DR, and store the word back into memory.

D6T4: DR M[AR]

D6T5: DR DR + 1

D6T4: M[AR] DR, if (DR = 0) then (PC PC + 1), SC 0

Control Flowchart

Figure 2.11: Flowchart for memory-reference instructions

Unit 1 – Basic Computer Organization and Design

14 | P a g e

UNIT-I

Input-output configuration of basic computer
 A computer can serve no useful purpose unless it communicates with the external

environment.

 To exhibit the most basic requirements for input and output communication, we will use
a terminal unit with a keyboard and printer.

Figure 2.12: Input-output configuration

 The terminal sends and receives serial information and each quantity of information has
eight bits of an alphanumeric code.

 The serial information from the keyboard is shifted into the input register INPR.

 The serial information for the printer is stored in the output register OUTR.

 These two registers communicate with a communication interface serially and with the
AC in parallel.

 The transmitter interface receives serial information from the keyboard and transmits it

to INPR. The receiver interface receives information from OUTR and sends it to the
printer serially.

 The 1-bit input flag FGI is a control flip-flop. It is set to 1 when new information is

available in the input device and is cleared to 0 when the information is accepted by the
computer.

 The flag is needed to synchronize the timing rate difference between the input device

and the computer.
 The process of information transfer is as follows:

The process of input information transfer:

 Initially, the input flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit
alphanumeric code is shifted into INPR and the input flag FGI is set to 1.

 As long as the flag is set, the information in INPR cannot be changed by striking another

key. The computer checks the flag bit; if it is 1, the information from INPR is transferred
in parallel into AC and FGI is cleared to 0.

Unit 1 – Basic Computer Organization and Design

15 | P a g e

UNIT-I

 Once the flag is cleared, new information can be shifted into INPR by striking another
key.

The process of outputting information:

 The output register OUTR works similarly but the direction of information flow is
reversed.

 Initially, the output flag FGO is set to 1. The computer checks the flag bit; if it is 1, the

information from AC is transferred in parallel to OUTR and FGO is cleared to 0. The
output device accepts the coded information, prints the corresponding character, and
when the operation is completed, it sets FGO to 1.

 The computer does not load a new character into OUTR when FGO is 0 because this

condition indicates that the output device is in the process of printing the character.

Input-Output instructions
 Input and output instructions are needed for transferring information to and from AC

register, for checking the flag bits, and for controlling the interrupt facility.

 Input-output instructions have an operation code 1111 and are recognized by the control
when D7 = 1 and I = 1.

 The remaining bits of the instruction specify the particular operation.

 The control functions and microoperations for the input-output instructions are listed
below.

INP AC(0-7) INPR, FGI 0 Input char. to AC

OUT OUTR AC(0-7), FGO 0 Output char. from AC

SKI if(FGI = 1) then (PC PC + 1) Skip on input flag

SKO if(FGO = 1) then (PC PC + 1) Skip on output flag

ION IEN 1 Interrupt enable on

IOF IEN 0 Interrupt enable off
Table 2.2: Input Output Instructions

 The INP instruction transfers the input information from INPR into the eight low-order
bits of AC and also clears the input flag to 0.

 The OUT instruction transfers the eight least significant bits of AC into the output

register OUTR and clears the output flag to 0.

 The next two instructions in Table 2.2 check the status of the flags and cause a skip of
the next instruction if the flag is 1.

 The instruction that is skipped will normally be a branch instruction to return and check

the flag again.

 The branch instruction is not skipped if the flag is 0. If the flag is 1, the branch instruction
is skipped and an input or output instruction is executed.

 The last two instructions set and clear an interrupt enable flip-flop IEN. The purpose of

IEN is explained in conjunction with the interrupt operation.

Unit 1 – Basic Computer Organization and Design

16 | P a g e

UNIT-I

Interrupt Cycle
The way that the interrupt is handled by the computer can be explained by means of the
flowchart shown in figure 2.13.

 An interrupt flip-flop R is included in the computer.

 When R = 0, the computer goes through an instruction cycle.

 During the execute phase of the instruction cycle IEN is checked by the control.

 If it is 0, it indicates that the programmer does not want to use the interrupt, so control
continues with the next instruction cycle.

 If IEN is 1, control checks the flag bits.

 If both flags are 0, it indicates that neither the input nor the output registers are ready
for transfer of information.

 In this case, control continues with the next instruction cycle. If either flag is set to 1

while IEN = 1, flip-flop R is set to 1.

 At the end of the execute phase, control checks the value of R, and if it is equal to 1, it
goes to an interrupt cycle instead of an instruction cycle.

Figure 2.13: Flowchart for interrupt cycle

Interrupt Cycle

 The interrupt cycle is a hardware implementation of a branch and save return address
operation.

 The return address available in PC is stored in a specific location where it can be found

later when the program returns to the instruction at which it was interrupted. This
location may be a processor register, a memory stack, or a specific memory location.

 Here we choose the memory location at address 0 as the place for storing the return

Unit 1 – Basic Computer Organization and Design

17 | P a g e

UNIT-I

address.

 Control then inserts address 1 into PC and clears IEN and R so that no more interruptions
can occur until the interrupt request from the flag has been serviced.

 An example that shows what happens during the interrupt cycle is shown in Figure 2.14:

Figure 2.14: Demonstration of the interrupt cycle

 Suppose that an interrupt occurs and R = 1, while the control is executing the instruction
at address 255. At this time, the return address 256 is in PC.

 The programmer has previously placed an input-output service program in memory

starting from address 1120 and a BUN 1120 instruction at address 1.

 The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared to
0.

 At the beginning of the next instruction cycle, the instruction that is read from memory is

in address 1 since this is the content of PC. The branch instruction at address 1 causes
the program to transfer to the input-output service program at address 1120.

 This program checks the flags, determines which flag is set, and then transfers the

required input or output information. Once this is done, the instruction ION is executed
to set IEN to 1 (to enable further interrupts), and the program returns to the location
where it was interrupted.

 The instruction that returns the computer to the original place in the main program is a

branch indirect instruction with an address part of 0. This instruction is placed at the end
of the I/O service program.

 The execution of the indirect BUN instruction results in placing into PC the return

address from location 0.

Unit 1 – Basic Computer Organization and Design

18 | P a g e

UNIT-I

Register transfer statements for the interrupt cycle

 The flip-flop is set to 1 if IEN = 1 and either FGI or FGO are equal to 1. This can happen
with any clock transition except when timing signals T0, T1 or T2 are active.

 The condition for setting flip-flop R= 1 can be expressed with the following register

transfer statement:
T0T1T2 (IEN) (FGI + FGO): R 1

 The symbol + between FGI and FGO in the control function designates a logic OR
operation. This is AND with IEN and T0T1 T2 .

 The fetch and decode phases of the instruction cycle must be modified and Replace T0,

T1, T2 with R'T0, R'T1, R'T2

 Therefore the interrupt cycle statements are :
RT0: AR 0, TR PC
RT1: M[AR] TR, PC 0

RT2: PC PC + 1, IEN 0, R 0, SC 0

 During the first timing signal AR is cleared to 0, and the content of PC is transferred to
the temporary register TR.

 With the second timing signal, the return address is stored in memory at location 0 and

PC is cleared to 0.

 The third timing signal increments PC to 1, clears IEN and R, and control goes back to T0
by clearing SC to 0.

 The beginning of the next instruction cycle has the condition RT0 and the content of PC is

equal to 1. The control then goes through an instruction cycle that fetches and executes
the BUN instruction in location 1.

Flow chart for computer operation.

 The final flowchart of the instruction cycle, including the interrupt cycle for the basic
computer, is shown in Figure 2.15.

 The interrupt flip-flop R may be set at any time during the indirect or execute phases.

 The control returns to timing signal T0 after SC is cleared to 0.

 If R = 1, the computer goes through an interrupt cycle. If R = 0, the computer goes
through an instruction cycle.

 If the instruction is one of the memory-reference instructions, the computer first checks

if there is an indirect address and then continues to execute the decoded instruction
according to the flowchart.

 If the instruction is one of the register-reference instructions, it is executed with one of

the microoperations register reference.

 If it is an input-output instruction, it is executed with one of the microoperation’s input-
output reference.

Unit 1 – Basic Computer Organization and Design

19 | P a g e

UNIT-I

Figure 2.15: Flowchart for computer operation

REFERENCE :

1. COMPUTER SYSTEM ARCHITECTURE, MORRIS M. MANO, 3RD EDITION, PRENTICE

HALL INDIA.

Unit 1 – Basic Computer Organization and Design

20 | P a g e

UNIT-I

Hardwired Control Unit:
When the control signals are generated by hardware using conventional logic design techniques,
the control unit is said to be hardwired.

Micro programmed control unit:
A control unit whose binary control variables are stored in memory is called a micro programmed
control unit.

Dynamic microprogramming:
A more advanced development known as dynamic microprogramming permits a microprogram to
be loaded initially from an auxiliary memory such as a magnetic disk. Control units that use
dynamic microprogramming employ a writable control memory. This type of memory can be
used for writing.

Control Memory:
Control Memory is the storage in the microprogrammed control unit to store the microprogram.

Writeable Control Memory:
Control Storage whose contents can be modified, allow the change in microprogram and
Instruction set can be changed or modified is referred as Writeable Control Memory.

Control Word:
The control variables at any given time can be represented by a control word string of 1 's and 0's
called a control word.

Microoperation, Microinstruction, Micro program, Microcode.

Microoperations:
 In computer central processing units, micro-operations (also known as a micro-ops or

μops) are detailed low-level instructions used in some designs to implement complex
machine instructions (sometimes termed macro-instructions in this context).

Micro instruction:
 A symbolic microprogram can be translated into its binary equivalent by means of an

assembler.
 Each line of the assembly language microprogram defines a symbolic microinstruction.

 Each symbolic microinstruction is divided into five fields: label, microoperations, CD,

BR, and AD.

Unit 2 – Microprogrammed Control

1

UNIT -II

Micro program:
 A sequence of microinstructions constitutes a microprogram.

 Since alterations of the microprogram are not needed once the control unit is in operation,

the control memory can be a read-only memory (ROM).
 ROM words are made permanent during the hardware production of the unit.

 The use of a micro program involves placing all control variables in words of ROM for

use by the control unit through successive read operations.
 The content of the word in ROM at a given address specifies a microinstruction.

Microcode:
 Microinstructions can be saved by employing subroutines that use common sections of

microcode.
 For example, the sequence of micro operations needed to generate the effective address of

the operand for an instruction is common to all memory reference instructions.
 This sequence could be a subroutine that is called from within many other routines to

execute the effective address computation.

Organization of micro programmed control unit
 The general configuration of a micro-programmed control unit is demonstrated in the

block diagram of Figure 4.1.
 The control memory is assumed to be a ROM, within which all control information is

permanently stored.

figure 4.1: Micro-programmed control organization
 The control memory address register specifies the address of the microinstruction, and the

control data register holds the microinstruction read from memory.
 The microinstruction contains a control word that specifies one or more microoperations

for the data processor. Once these operations are executed, the control must determine the
next address.

 The location of the next microinstruction may be the one next in sequence, or it may be
located somewhere else in the control memory.

Unit 2 – Microprogrammed Control

2

UNIT -II

Microprogrammed Control

 While the microoperations are being executed, the next address is computed in the next
address generator circuit and then transferred into the control address register to read the
next microinstruction.

 Thus a microinstruction contains bits for initiating microoperations in the data processor
part and bits that determine the address sequence for the control memory.

 The next address generator is sometimes called a micro-program sequencer, as it
determines the address sequence that is read from control memory.

 Typical functions of a micro-program sequencer are incrementing the control address
register by one, loading into the control address register an address from control memory,
transferring an external address, or loading an initial address to start the control
operations.

 The control data register holds the present microinstruction while the next address is

computed and read from memory.
 The data register is sometimes called a pipeline register.

 It allows the execution of the microoperations specified by the control word

simultaneously with the generation of the next microinstruction.
 This configuration requires a two-phase clock, with one clock applied to the address

register and the other to the data register.
 The main advantage of the micro programmed control is the fact that once the hardware

configuration is established; there should be no need for further hardware or wiring
changes.

 If we want to establish a different control sequence for the system, all we need to do is
specify a different set of microinstructions for control memory.

Address Sequencing
 Microinstructions are stored in control memory in groups, with each group specifying a

routine.
 To appreciate the address sequencing in a micro-program control unit, let us specify the

steps that the control must undergo during the execution of a single computer instruction.

Step-1:
 An initial address is loaded into the control address register when power is turned on in

the computer.
 This address is usually the address of the first microinstruction that activates the

instruction fetch routine.
 The fetch routine may be sequenced by incrementing the control address register through

the rest of its microinstructions.
 At the end of the fetch routine, the instruction is in the instruction register of the

computer.

3

UNIT -II

Microprogrammed Control

Step-2:
 The control memory next must go through the routine that determines the effective

address of the operand.
 A machine instruction may have bits that specify various addressing modes, such as

indirect address and index registers.
 The effective address computation routine in control memory can be reached through a

branch microinstruction, which is conditioned on the status of the mode bits of the
instruction.

 When the effective address computation routine is completed, the address of the operand
is available in the memory address register.

Step-3:
 The next step is to generate the microoperations that execute the instruction fetched from

memory.
 The microoperation steps to be generated in processor registers depend on the operation

code part of the instruction.
 Each instruction has its own micro-program routine stored in a given location of control

memory.
 The transformation from the instruction code bits to an address in control memory where

the routine is located is referred to as a mapping process.
 A mapping procedure is a rule that transforms the instruction code into a control

memory address.

Step-4:
 Once the required routine is reached, the microinstructions that execute the instruction

may be sequenced by incrementing the control address register.
 Micro-programs that employ subroutines will require an external register for storing the

return address.
 Return addresses cannot be stored in ROM because the unit has no writing capability.

 When the execution of the instruction is completed, control must return to the fetch

routine.
 This is accomplished by executing an unconditional branch microinstruction to the first

address of the fetch routine.

In summary, the address sequencing capabilities required in a control memory are:
1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.

4. A facility for subroutine call and return.

4

UNIT -II

Microprogrammed Control

selection of address for control memory

Figure 4.2: Selection of address for control memory

 Above figure 4.2 shows a block diagram of a control memory and the associated hardware
needed for selecting the next microinstruction address.

 The microinstruction in control memory contains a set of bits to initiate microoperations

in computer registers and other bits to specify the method by which the next address is

obtained.

 The diagram shows four different paths from which the control address register (CAR)
receives the address.

 The incrementer increments the content of the control address register by one, to select the

next microinstruction in sequence.

 Branching is achieved by specifying the branch address in one of the fields of the
microinstruction.

 Conditional branching is obtained by using part of the microinstruction to select a specific

status bit in order to determine its condition.
 An external address is transferred into control memory via a mapping logic circuit.

 The return address for a subroutine is stored in a special register whose value is then used

when the micro-program wishes to return from the subroutine.

5

UNIT -II

Microprogrammed Control

 The branch logic of figure 4.2 provides decision-making capabilities in the control unit.

 The status conditions are special bits in the system that provide parameter information
such as the carry-out of an adder, the sign bit of a number, the mode bits of an instruction,
and input or output status conditions.

 The status bits, together with the field in the microinstruction that specifies a branch
address, control the conditional branch decisions generated in the branch logic.

 A 1 output in the multiplexer generates a control signal to transfer the branch address
from the microinstruction into the control address register.

 A 0 output in the multiplexer causes the address register to be incremented.

Mapping of an Instruction
 A special type of branch exists when a microinstruction specifies a branch to the first

word in control memory where a microprogram routine for an instruction is located.
 The status bits for this type of branch are the bits in the operation code part of the

instruction.
For example, a computer with a simple instruction format as shown in figure 4.3 has an
operation code of four bits which can specify up to 16 distinct instructions.

 Assume further that the control memory has 128 words, requiring an address of seven
bits.

 One simple mapping process that converts the 4-bit operation code to a 7-bit address for
control memory is shown in figure 4.3.

 This mapping consists of placing a 0 in the most significant bit of the address, transferring
the four operation code bits, and clearing the two least significant bits of the control
address register.

 This provides for each computer instruction a microprogram routine with a capacity of
four microinstructions.

 If the routine needs more than four microinstructions, it can use addresses 1000000
through 1111111. If it uses fewer than four microinstructions, the unused memory
locations would be available for other routines.

Figure 4.3: Mapping from instruction code to microinstruction

address

 One can extend this concept to a more general mapping rule by using a ROM to specify

the mapping function.
 The contents of the mapping ROM give the bits for the control address register.

6

UNIT -II

Microprogrammed Control

 In this way the microprogram routine that executes the instruction can be placed in any
desired location in control memory.

 The mapping concept provides flexibility for adding instructions for control memory as
the need arises.

Computer Hardware Configuration

Figure 4.4: Computer hardware configuration
The block diagram of the computer is shown in Figure 4.4. It consists of

1. Two memory units:
Main memory -> for storing instructions and data, and
Control memory -> for storing the microprogram.

2. Six Registers:
Processor unit register: AC(accumulator),PC(Program Counter), AR(Address Register),
DR(Data Register)
Control unit register: CAR (Control Address Register), SBR(Subroutine Register)

3. Multiplexers:
The transfer of information among the registers in the processor is done through
multiplexers rather than a common bus.

4. ALU:
The arithmetic, logic, and shift unit performs microoperations with data from AC and DR
and places the result in AC.

7

UNIT -II

 DR can receive information from AC, PC, or memory.
 AR can receive information from PC or DR.

 PC can receive information only from AR.

 Input data written to memory come from DR, and data read from memory can go only to
DR.

Microinstruction Format
The microinstruction format for the control memory is shown in figure 4.5. The 20 bits of the
microinstruction are divided into four functional parts as follows:

1. The three fields F1, F2, and F3 specify microoperations for the computer.
The microoperations are subdivided into three fields of three bits each. The three bits in
each field are encoded to specify seven distinct microoperations. This gives a total of 21
microoperations.

2. The CD field selects status bit conditions.

3. The BR field specifies the type of branch to be used.
4. The AD field contains a branch address. The address field is seven bits wide, since the

control memory has 128 = 2
7
 words.

Figure 4.5: Microinstruction Format
 As an example, a microinstruction can specify two simultaneous microoperations from

F2 and F3 and none from F1.
DR M[AR] with F2 = 100
PC PC + 1 with F3 = 101

 The nine bits of the microoperation fields will then be 000 100 101.

 The CD (condition) field consists of two bits which are encoded to specify four status bit
conditions as listed in Table 4.1.

Table 4.1: Condition Field

 The BR (branch) field consists of two bits. It is used, in conjunction with the address field

AD, to choose the address of the next microinstruction shown in Table 4.2.

Unit 2 – Microprogrammed Control

8

UNIT -II

Microprogrammed Control

Table 4.2: Branch Field

Symbolic Microinstruction.

 Each line of the assembly language microprogram defines a symbolic microinstruction.
 Each symbolic microinstruction is divided into five fields: label, microoperations, CD,

BR, and AD. The fields specify the following Table 4.3.

1. Label The label field may be empty or it may specify a symbolic

 address. A label is terminated with a colon (:).

2. Microoperations It consists of one, two, or three symbols, separated by

 commas, from those defined in Table 5.3. There may be no

 more than one symbol from each F field. The NOP symbol

 is used when the microinstruction has no microoperations.

 This will be translated by the assembler to nine zeros.

3. CD The CD field has one of the letters U, I, S, or Z.

4. BR The BR field contains one of the four symbols defined in

 Table 5.2.

5. AD The AD field specifies a value for the address field of the

 microinstruction in one of three possible ways:

 i. With a symbolic address, this must also appear as a

 label.

 ii. With the symbol NEXT to designate the next

 address in sequence.

 iii. When the BR field contains a RET or MAP symbol,

 the AD field is left empty and is converted to seven

 zeros by the assembler.

 Table 4.3: Symbolic Microinstruction

9

UNIT -II

Microprogrammed Control

 Micro programmed sequencer for a control memory

Microprogram sequencer:
 The basic components of a microprogrammed control unit are the control memory and the

circuits that select the next address.
 The address selection part is called a microprogram sequencer.

 A microprogram sequencer can be constructed with digital functions to suit a particular

application.
 To guarantee a wide range of acceptability, an integrated circuit sequencer must provide

an internal organization that can be adapted to a wide range of applications.
 The purpose of a microprogram sequencer is to present an address to the control memory

so that a microinstruction may be read and executed.
 Commercial sequencers include within the unit an internal register stack used for

temporary storage of addresses during microprogram looping and subroutine calls.
 Some sequencers provide an output register which can function as the address register for

the control memory.
 The block diagram of the microprogram sequencer is shown in figure 4.6.

 There are two multiplexers in the circuit.

 The first multiplexer selects an address from one of four sources and routes it into a
control address register CAR.

 The second multiplexer tests the value of a selected status bit and the result of the test is
applied to an input logic circuit.

 The output from CAR provides the address for the control memory.

 The content of CAR is incremented and applied to one of the multiplexer inputs and to
the subroutine registers SBR.

 The other three inputs to multiplexer 1 come from the address field of the present
microinstruction, from the output of SBR, and from an external source that maps the
instruction.

 Although the figure 4.6 shows a single subroutine register, a typical sequencer will have a
register stack about four to eight levels deep. In this way, a number of subroutines can be
active at the same time.

 The CD (condition) field of the microinstruction selects one of the status bits in the
second multiplexer.

 If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is equal to
0.

 The T value together with the two bits from the BR (branch) field goes to an input logic
circuit.

 The input logic in a particular sequencer will determine the type of operations that are
available in the unit.

10

UNIT -II

Microprogrammed Control

l0 Input

3 2 1 0

Load

l1 Logic

 S

1

MU

X 1

SBR

T

S

0

Test Increment
1 MUX 2

L

Select

Clock CAR

Microo

ps

Control

Memory

CD BR

AD

Figure 4.6: Microprogram Sequencer for a control memory

Input Logic : Truth Table

 BR Input MUX 1 Load SBR

 I1 I0 T S1 S0 L

 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 1 0

 0 1 0 1 0 0 0 0

 0 1 0 1 1 0 1 1

 1 0 1 0 X 1 0 0

 1 1 1 1 X 1 1 0

11

UNIT -II

 Table 4.4: Input Logic Truth Table for Microprogram Sequencer

Microprogrammed Control

Boolean Function:
S0 = I0

S1 = I0I1 + I0’T

L = I0’I1T

 Typical sequencer operations are: increment, branch or jump, call and return from

subroutine, load an external address, push or pop the stack, and other address sequencing
operations.

 With three inputs, the sequencer can provide up to eight address sequencing operations.
 Some commercial sequencers have three or four inputs in addition to the T input and thus

provide a wider range of operations.

12

UNIT -II

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Chapter – 2

Central Processing Unit

The part of the computer that performs the bulk of data processing operations is called the

Central Processing Unit (CPU) and is the central component of a digital computer. Its purpose is

to interpret instruction cycles received from memory and perform arithmetic, logic and control

operations with data stored in internal register, memory words and I/O interface units. A CPU is

usually divided into two parts namely processor unit (Register Unit and Arithmetic Logic Unit)

and control unit.

 Fig: Components of CPU

Processor Unit:

The processor unit consists of arithmetic unit, logic unit, a number of registers and internal buses

that provides data path for transfer of information between register and arithmetic logic unit. The

block diagram of processor unit is shown in figure below where all registers are connected

through common buses. The registers communicate each other not only for direct data transfer

but also while performing various micro-operations.

Here two sets of multiplexers select register which perform input data for ALU. A decoder

selects destination register by enabling its load input. The function select in ALU determines the

particular operation that to be performed.

For an example to perform the operation: R3 R1 + R2

1. MUX A selector (SELA): to place the content of R1 into bus A.

2. MUX B selector (SELB): to place the content of R2 into bus B.

3. ALU operation selector (OPR): to provide arithmetic addition A + B.

4. Decoder destination selector (SELD): to transfer the content of the output bus into R3.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

 Fig: Processor Unit

Control unit:

The control unit is the heart of CPU. It consists of a program counter, instruction register, timing

and control logic. The control logic may be either hardwired or micro-programmed. If it is a

hardwired, register decodes and a set of gates are connected to provide the logic that determines

the action required to execute various instructions. A micro-programmed control unit uses a

control memory to store micro instructions and a sequence to determine the order by which the

instructions are read from control memory.

The control unit decides what the instructions mean and directs the necessary data to be moved

from memory to ALU. Control unit must communicate with both ALU and main memory and

coordinates all activities of processor unit, peripheral devices and storage devices. It can be

characterized on the basis of design and implementation by:

 Defining basic elements of the processor

 Describing the micro-operation that processor performs

 Determining the function that the control unit must perform to cause the micro-operations

to be performed.

Control unit must have inputs that allow determining the state of system and outputs that allow

controlling the behavior of system.

The input to control unit are:

 Flag: flags are headed to determine the status of processor and outcome of previous ALU

operation.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

 Clock: All micro-operations are performed within each clock pulse. This clock pulse is

also called as processor cycle time or clock cycle time.

 Instruction Register: The op-code of instruction determines which micro-operation to

perform during execution cycle.

 Control signal from control bus: The control bus portion of system bus provides interrupt,

acknowledgement signals to control unit.

The outputs from control unit are:

 Control signal within processor: These signals causes data transfer between registers,

activate ALU functions.

 Control signal to control bus: These are signals to memory and I/O module. All these

control signals are applied directly as binary inputs to individual logic gate.

 Fig: Control Unit

2.1 CPU Structure and Function

Processor Organization

 Things a CPU must do:

- Fetch Instructions

- Interpret Instructions

- Fetch Data

- Process Data

- Write Data

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Fig: The CPU with the System Bus

 A small amount of internal memory, called the registers, is needed by the CPU to fulfill

these requirements

Fig: Internal Structure of the CPU

 Components of the CPU

- Arithmetic and Logic Unit (ALU): does the actual computation or processing of

data

- Control Unit (CU): controls the movement of data and instructions into and out of

the CPU and controls the operation of the ALU.

Register Organization

 Registers are at top of the memory hierarchy. They serve two functions:

1. User-Visible Registers - enable the machine- or assembly-language programmer

to minimize main-memory references by optimizing use of registers

2. Control and Status Registers - used by the control unit to control the operation

Computer Organization and Architecture Chapter 2 : Central Processing Unit

 of the CPU and by privileged, OS programs to control the execution of programs

User-Visible Registers

Categories of Use

- General Purpose registers - for variety of functions

- Data registers - hold data

- Address registers - hold address information

- Segment pointers - hold base address of the segment in use

- Index registers - used for indexed addressing and may be auto indexed

- Stack Pointer - a dedicated register that points to top of a stack. Push, pop, and

other stack instructions need not contain an explicit stack operand.

- Condition Codes (flags)

Design Issues

 Completely general-purpose registers or specialized use?

- Specialized registers save bits in instructions because their use can be implicit

- General-purpose registers are more flexible

- Trend is toward use of specialized registers

 Number of registers provided?

- More registers require more operand specifier bits in instructions

- 8 to 32 registers appears optimum (RISC systems use hundreds, but are a

completely different approach)

 Register Length?

- Address registers must be long enough to hold the largest address

- Data registers should be able to hold values of most data types

- Some machines allow two contiguous registers for double-length values

 Automatic or manual save of condition codes?

- Condition restore is usually automatic upon call return

- Saving condition code registers may be automatic upon call instruction, or may be

manual

Control and Status Registers

 Essential to instruction execution

- Program Counter (PC)

- Instruction Register (IR)

- Memory Address Register (MAR) - usually connected directly to address lines

of bus

- Memory Buffer Register (MBR) - usually connected directly to data lines of bus

 Program Status Word (PSW) - also essential, common fields or flags contained

include:

- Sign - sign bit of last arithmetic operation

- Zero - set when result of last arithmetic operation is 0

- Carry - set if last op resulted in a carry into or borrow out of a high-order bit

- Equal - set if a logical compare result is equality

- Overflow - set when last arithmetic operation caused overflow

- Interrupt Enable/Disable - used to enable or disable interrupts

- Supervisor - indicates if privileged ops can be used

Computer Organization and Architecture Chapter 2 : Central Processing Unit

 Other optional registers

- Pointer to a block of memory containing additional status info (like process

control blocks)

- An interrupt vector

- A system stack pointer

- A page table pointer

- I/O registers

 Design issues

- Operating system support in CPU

- How to divide allocation of control information between CPU registers and first

part of main memory (usual tradeoffs apply)

Fig: Example Microprocessor Register Organization

The Instruction Cycle

Basic instruction cycle contains the following sub-cycles.

 Fetch - read next instruction from memory into CPU

 Execute - Interpret the opcode and perform the indicated operation

 Interrupt - if interrupts are enabled and one has occurred, save the current process

state and service the interrupt

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Fig: Instruction Cycles

Fig: Instruction Cycle State Diagram

The Indirect Cycle

- Think of as another instruction sub-cycle

- May require just another fetch (based upon last fetch)

- Might also require arithmetic, like indexing

Fig: Instruction Cycle with Indirect

 | 7

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Data Flow

- Exact sequence depends on CPU design

- We can indicate sequence in general terms, assuming CPU employs:

 a memory address register (MAR)

 a memory buffer register (MBR)

 a program counter (PC)

 an instruction register (IR)

Fetch cycle data flow

- PC contains address of next instruction to be fetched

- This address is moved to MAR and placed on address bus

- Control unit requests a memory read

- Result is

 placed on data bus

 result copied to MBR

 then moved to IR

- Meanwhile, PC is incremented

Fig: Data flow, Fetch Cycle

t1: MAR (PC)

t2: MBR Memory

 PC PC + 1

t3: IR(Address) (MBR(Address))

Indirect cycle data flow
- Decodes the instruction

- After fetch, control unit examines IR to see if indirect addressing is being used. If so:

- Rightmost n bits of MBR (the memory reference) are transferred to MAR

- Control unit requests a memory read, to get the desired operand address into the

MBR

Computer Organization and Architecture Chapter 2 : Central Processing Unit

t1: MAR (IR(Address))

t2: MBR Memory

t3: IR(Address) (MBR(Address))

Fig: Data Flow, Indirect Cycle

Execute cycle data flow

- Not simple and predictable, like other cycles

- Takes many forms, since form depends on which of the various machine instructions

is in the IR

- May involve

 transferring data among registers

 read or write from memory or I/O

 invocation of the ALU

For example: ADD R1, X

t1: MAR (IR(Address))

t2: MBR Memory

t3: R1 (R1) + (MBR)

Interrupt cycle data flow

- Current contents of PC must be saved (for resume after interrupt), so PC is

transferred to MBR to be written to memory

- Save location’s address (such as a stack ptr) is loaded into MAR from the control unit

- PC is loaded with address of interrupt routine (so next instruction cycle will begin by

fetching appropriate instruction)

t1: MBR (PC)

t2: MAR save_address

 PC Routine_address

t3: Memory (MBR)

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Fig: Data Flow, Interrupt Cycle

2.2 Arithmetic and Logic Unit

ALU is the combinational circuit of that part of computer that actually performs arithmetic and

logical operations on data. All of the other elements of computer system- control unit, registers,

memory, I/O are their mainly to bring data into the ALU for it to process and then to take the

result back out. An ALU & indeed all electronic components in computer are based on the use of

simple digital logic device that can store binary digit and perform simple Boolean logic function.

Figure indicates in general in general term how ALU is interconnected with rest of the processor.

Data are presented to ALU in register and the result of operation is stored in register. These

registers are temporarily storage location within the processor that are connected by signal path

to the ALU. The ALU may also set flags as the result of an operation. The flags values are also

stored in registers within the processor. The control unit provides signals that control the

operation of ALU and the movement of data into an out of ALU.

The design of ALU has three stages.

1. Design the arithmetic section

The basic component of arithmetic circuit is a parallel adder which is constructed with a

number of full adder circuits connected in cascade. By controlling the data inputs to the

parallel adder, it is possible to obtain different types of arithmetic operations. Below

figure shows the arithmetic circuit and its functional table.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Fig: Block diagram of Arithmetic Unit

Functional table for arithmetic unit:

Select Input

Y

Output Microoperation

S1 S0 Cin = 0 Cin = 1 Cin = 0 Cin = 1

0 0 0 A A+1 Transfer A Increment A

0 1 B A+B A+B+1 Addition Addition with

carry

1 0 B’ A+B’ A+B’+1 Subtraction with

borrow

Subtraction

1 1 -1 A-1 A Decrement A Transfer A

2. Design the logical section

The basic components of logical circuit are AND, OR, XOR and NOT gate circuits

connected accordingly. Below figure shows a circuit that generates four basic logic

micro-operations. It consists of four gates and a multiplexer. Each of four logic

operations is generated through a gate that performs the required logic. The two selection

input S1 and S0 choose one of the data inputs of the multiplexer and directs its value to

the output. Functional table lists the logic operations.

4 X 1

MUX
Ei

S1S0

Ai

Bi

Fig: Block diagram of Logic Unit

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Functional table for logic unit:

S1 S0 output Microoperation

0 0 Ai && Bi AND

0 1 Ai || Bi OR

1 0 Ai XOR Bi XOR

1 1 Ai’ NOT

3. Combine these 2 sections to form the ALU

Below figure shows a combined circuit of ALU where n data input from A are combined

with n data input from B to generate the result of an operation at the G output line. ALU

has a number of selection lines used to determine the operation to be performed. The

selection lines are decoded with the ALU so that selection lines can specify distinct

operations. The mode select S2 differentiate between arithmetic and logical operations.

The two functions select S1 and S0 specify the particular arithmetic and logic operations

to be performed. With three selection lines, it is possible to specify arithmetic operation

with S2 at 0 and logical operation with S2 at 1.

Fig: Block diagram of ALU

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Example: Design a 2-bit ALU that can perform addition, AND, OR, & XOR.

4 X 1

MUX
Result0

4 X 1

MUX
Result1

FA

A0

B0

A1

B1

Cin

S0S1

Cout

2.3 Instruction Formats

The computer can be used to perform a specific task, only by specifying the necessary steps to

complete the task. The collection of such ordered steps forms a ‘program’ of a computer. These

ordered steps are the instructions. Computer instructions are stored in central memory locations

and are executed sequentially one at a time. The control reads an instruction from a specific

address in memory and executes it. It then continues by reading the next instruction in sequence

and executes it until the completion of the program.

A computer usually has a variety of Instruction Code Formats. It is the function of the control

unit within the CPU to interpret each instruction code and provide the necessary control

functions needed to process the instruction. An n bit instruction that k bits in the address field

and m bits in the operation code field come addressed 2
k
 location directly and specify 2

m

different operation.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

 The bits of the instruction are divided into groups called fields.

 The most common fields in instruction formats are:

o An Operation code field that specifies the operation to be performed.

o An Address field that designates a memory address or a processor

register.

o A Mode field that specifies the way the operand or the effective address is

determined.

n-1 m-1 k-1 0

Fig: Instruction format with mode field

The operation code field (Opcode) of an instruction is a group of bits that define various

processor operations such as add, subtract, complement, shift etcetera. The bits that define the

mode field of an instruction code specify a variety of alternatives for choosing the operands from

the given address. Operation specified by an instruction is executed on some data stored in the

processor register or in the memory location. Operands residing in memory are specified by their

memory address. Operands residing in processor register are specified with a register address.

Types of Instruction

 Computers may have instructions of several different lengths containing varying

number of addresses.

 The number of address fields in the instruction format of a computer depends on

the internal organization of its registers.

 Most computers fall into one of 3 types of CPU organizations:

Single accumulator organization:- All the operations are performed with an

accumulator register. The instruction format in this type of computer uses one address

field. For example: ADD X, where X is the address of the operands .

General register organization:- The instruction format in this type of computer needs

three register address fields. For example: ADD R1,R2,R3

Stack organization:- The instruction in a stack computer consists of an operation code

with no address field. This operation has the effect of popping the 2 top numbers from the

stack, operating the numbers and pushing the sum into the stack. For example: ADD

Computers may have instructions of several different lengths containing varying number of

addresses. Following are the types of instructions.

1. Three address Instruction

With this type of instruction, each instruction specifies two operand location and a result

location. A temporary location T is used to store some intermediate result so as not to

alter any of the operand location. The three address instruction format requires a very

complex design to hold the three address references.

Format: Op X, Y, Z; X Y Op Z

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Example: ADD X, Y, Z; X Y + Z

 ADVANTAGE: It results in short programs when evaluating arithmetic

expressions.

 DISADVANTAGE: The instructions requires too many bits to specify 3

addresses.

2. Two address instruction

Two-address instructions are the most common in commercial computers. Here again

each address field can specify either a processor register, or a memory word. One address

must do double duty as both operand and result. The two address instruction format

reduces the space requirement. To avoid altering the value of an operand, a MOV

instruction is used to move one of the values to a result or temporary location T, before

performing the operation.

Format: Op X, Y; X X Op Y

Example: SUB X, Y; X X - Y

3. One address Instruction

It was generally used in earlier machine with the implied address been a CPU register

known as accumulator. The accumulator contains one of the operand and is used to store

the result. One-address instruction uses an implied accumulator (Ac) register for all data

manipulation. All operations are done between the AC register and a memory operand.

We use LOAD and STORE instruction for transfer to and from memory and Ac register.

Format: Op X; Ac Ac Op X

Example: MUL X; Ac Ac * X

4. Zero address Instruction

It does not use address field for the instruction like ADD, SUB, MUL, DIV etc. The

PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack. The name “Zero” address is given because of the absence

of an address field in the computational instruction.

Format: Op; TOS TOS Op (TOS – 1)

Example: DIV; TOS TOS DIV (TOS – 1)

Example: To illustrate the influence of the number of address on computer programs, we will

evaluate the arithmetic statement X=(A+B)*(C+D) using Zero, one, two, or three address

instructions.

1. Three-Address Instructions:

ADD R1, A, B; R1 M[A] + M[B]

ADD R2, C, D; R2 M[C] + M[D]

 MUL X, R1,R2; M[X] R1 * R2

It is assumed that the computer has two processor registers R1 and R2. The symbol M[A]

denotes the operand at memory address symbolized by A.

2. Two-Address Instructions:

MOV R1, A; R1 M[A]

 ADD R1, B; R1 R1 + M[B]

Computer Organization and Architecture Chapter 2 : Central Processing Unit

 MOV R2, C; R2 M[C]

 ADD R2, D; R2 R2 + M[D]

 MUL R1, R2; R1 R1 * R2

 MOV X, R1; M[X] R1

3. One-Address Instruction:

LOAD A; Ac M[A]

 ADD B; Ac Ac + M[B]

 STORE T; M[T] Ac

 LOAD C; Ac M[C]

 ADD D; Ac Ac + M[D]

 MUL T; Ac Ac * M[T]

 STORE X; M[X] Ac

Here, T is the temporary memory location required for storing the intermediate result.

4. Zero-Address Instructions:

PUSH A; TOS A

 PUSH B; TOS B

 ADD; TOS (A + B)

 PUSH C; TOS C

 PUSH D; TOS D

 ADD; TOS (C + D)

 MUL; TOS (C + D) * (A + B)

 POP X ; M[X] TOS

2.4 Addressing Modes

 Specifies a rule for interpreting or modifying the address field of the instruction before

the operand is actually referenced.

 Computers use addressing mode techniques for the purpose of accommodating the

following purposes:-

o To give programming versatility to the user by providing such facilities as

pointers to memory, counters for loop control, indexing of data and various other

purposes.

o To reduce the number of bits in the addressing field of the instructions.

 Other computers use a single binary for operation & Address mode.

 The mode field is used to locate the operand.

 Address field may designate a memory address or a processor register.

 There are 2 modes that need no address field at all (Implied & immediate

modes).

Effective address (EA):

 The effective address is defined to be the memory address obtained from the computation

dictated by the given addressing mode.

 The effective address is the address of the operand in a computational-type instruction.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

The most well known addressing mode are:

 Implied Addressing Mode.

 Immediate Addressing Mode

 Register Addressing Mode

 Register Indirect Addressing Mode

 Auto-increment or Auto-decrement Addressing Mode

 Direct Addressing Mode

 Indirect Addressing Mode

 Displacement Address Addressing Mode

 Relative Addressing Mode

 Index Addressing Mode

 Stack Addressing Mode

Implied Addressing Mode:

 In this mode the operands are specified implicitly in the definition of the instruction.

For example:- CMA - “complement accumulator” is an implied-mode instruction because

the operand in the accumulator register is implied in the definition of the instruction. In

fact, all register reference instructions that use an accumulator are implied-mode

instructions.

Opcode
Instruction

Advantage: no memory reference. Disadvantage: limited operand

Immediate Addressing mode:

 In this mode the operand is specified in the instruction itself. In other words, an

immediate-mode instruction has an operand field rather than an address field.

 This instruction has an operand field rather than an address field. The operand field

contains the actual operand to be used in conjunction with the operation specified in the

instruction.

 These instructions are useful for initializing register to a constant value;

For example MVI B, 50H

Opcode Operand
Instruction

It was mentioned previously that the address field of an instruction may specify either a memory

word or a processor register. When the address field specifies a processor register, the instruction

is said to be in register-mode.

Advantage: no memory reference. Disadvantage: limited operand

Register direct addressing mode:

 In this mode, the operands are in registers that reside within the CPU.

 The particular register is selected from the register field in the instruction.

For example MOV A, B

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Opcode Register
Instruction

Operand

Register

 Effective Address (EA) = R

Advantage: no memory reference. Disadvantage: limited address space

Register indirect addressing mode:

 In this mode the instruction specifies a register in the CPU whose contents give the

address of the operand in the memory.

 In other words, the selected register contains the address of the operand rather than the

operand itself.

 Before using a register indirect mode instruction, the programmer must ensure that the

memory address of the operand is placed in the processor register with a previous

instruction.

For example LDAX B

Opcode Register
Instruction

Register

Operand

Memory

Effective Address (EA) = (R)

Advantage: Large address space.

The address field of the instruction uses fewer bits to select a register than would have been

required to specify a memory address directly.

Disadvantage: Extra memory reference

Auto increment or Auto decrement Addressing Mode:

 This is similar to register indirect mode except that the register is incremented or

decremented after (or before) its value is used to access memory.

 When the address stored in the registers refers to a table of data in memory, it is

necessary to increment or decrement the registers after every access to the table.

 This can be achieved by using the increment or decrement instruction. In some computers

it is automatically accessed.

 The address field of an instruction is used by the control unit in the CPU to obtain the

operands from memory.

 Sometimes the value given in the address field is the address of the operand, but

sometimes it is the address from which the address has to be calculated.

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Direct Addressing Mode

 In this mode the effective address is equal to the address part of the instruction. The

operand resides in memory and its address is given directly by the address field of the

instruction.

For example LDA 4000H

Opcode Address
Instruction

Operand

Memory

Effective Address (EA) = A

Advantage: Simple. Disadvantage: limited address field

Indirect Addressing Mode

 In this mode the address field of the instruction gives the address where the effective

address is stored in memory.

 Control unit fetches the instruction from the memory and uses its address part to access

memory again to read the effective address.

Opcode Address
Instruction

Operand

Memory

 Effective Address (EA) = (A)

Advantage: Flexibility. Disadvantage: Complexity

Displacement Addressing Mode

 A very powerful mode of addressing combines the capabilities of direct addressing and

register indirect addressing.

 The address field of instruction is added to the content of specific register in the CPU.

Opcode R A
Instruction

Operand

MemoryRegister

+

Effective Address (EA) = A + (R)

Advantage: Flexibility. Disadvantage: Complexity

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Relative Addressing Mode

 In this mode the content of the program counter (PC) is added to the address part of the

instruction in order to obtain the effective address.

 The address part of the instruction is usually a signed number (either a +ve or a –ve

number).

 When the number is added to the content of the program counter, the result produces an

effective address whose position in memory is relative to the address of the next

instruction.

Effective Address (EA) = PC + A

Indexed Addressing Mode

 In this mode the content of an index register (XR) is added to the address part of the

instruction to obtain the effective address.

 The index register is a special CPU register that contains an index value.

 Note: If an index-type instruction does not include an address field in its format, the

instruction is automatically converted to the register indirect mode of operation.

Effective Address (EA) = XR + A

Base Register Addressing Mode

 In this mode the content of a base register (BR) is added to the address part of the

instruction to obtain the effective address.

 This is similar to the indexed addressing mode except that the register is now called a

base register instead of the index register.

 The base register addressing mode is used in computers to facilitate the relocation of

programs in memory i.e. when programs and data are moved from one segment of

memory to another.

Effective Address (EA) = BR + A

Stack Addressing Mode

 The stack is the linear array of locations. It is some times referred to as push down list or

last in First out (LIFO) queue. The stack pointer is maintained in register.

Instruction

Top of Stack
Implicit

Effective Address (EA) = TOS

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Let us try to evaluate the addressing modes with as example.

Fig: Numerical Example for Addressing Modes

Fig: Tabular list of Numerical Example

Computer Organization and Architecture Chapter 2 : Central Processing Unit

2.5 Data Transfer and Manipulation

Data transfer instructions cause transfer of data from one location to another without changing

the binary information. The most common transfer are between the

 Memory and Processor registers

 Processor registers and input output devices

 Processor registers themselves

Typical Data Transfer Instructions

Data manipulation Instructions

Data manipulation instructions perform operations on data and provide the computational

capabilities for the computer. These instructions perform arithmetic, logic and shift

operations.

Arithmetic Instructions

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Logical and Bit Manipulation Instructions

Shift Instructions

Program Control Instructions

The program control instructions provide decision making capabilities and change the

path taken by the program when executed in computer. These instructions specify

conditions for altering the content of the program counter. The change in value of

program counter as a result of execution of program control instruction causes a break in

sequence of instruction execution. Some typical program control instructions are:

Computer Organization and Architecture Chapter 2 : Central Processing Unit

Subroutine call and Return

A subroutine call instruction consists of an operation code together with an address that

specifies the beginning of the subroutine. The instruction is executed by performing two

tasks:

 The address of the next instruction available in the program counter (the return

address) is stored in a temporary location (stack) so the subroutine knows where

to return.

 Control is transferred to the beginning of the subroutine.

The last instruction of every subroutine, commonly called return from subroutine;

transfer the return address from the temporary location into the program counter. This

results in a transfer of program control to the instruction where address was originally

stored in the temporary location.

Interrupt

The interrupt procedure is, in principle, quite similar to a subroutine call except for three

variations:

 The interrupt is usually initiated by an external or internal signal rather than from

execution of an instruction.

 The address of the interrupt service program is determined by the hardware rather

than from the address field of an instruction.

 An interrupt procedure usually stores all the information necessary to define the

state of the CPU rather than storing only the program counter.

UNIT – III

Data Representation: Data types, Complements, Fixed Point Representation,

Floating Point Representation. Computer Arithmetic: Addition and subtraction,

multiplication Algorithms, Division Algorithms, Floating – point Arithmetic

operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

Data Representation:

 Digital computers store and process information in binary form as digital logic has only

two values "1" and "0" or in other words "True or False" or also said as "ON or OFF". This system

is called radix 2. We human generally deal with radix 10 i.e. decimal. As a matter of convenience

there are many other representations like Octal (Radix 8), Hexadecimal (Radix 16), Binary coded

decimal (BCD), Decimal etc.

 Every computer's CPU has a width measured in terms of bits such as 8 bit CPU, 16 bit

CPU, 32 bit CPU etc. Similarly, each memory location can store a fixed number of bits and is

called memory width. Given the size of the CPU and Memory, it is for the programmer to handle

his data representation. Most of the readers may be knowing that 4 bits form a Nibble, 8 bits form

a byte. The word length is defined by the Instruction Set Architecture of the CPU. The word length

may be equal to the width of the CPU.

 The memory simply stores information as a binary pattern of 1's and 0's. It is to be

interpreted as what the content of a memory location means. If the CPU is in the Fetch cycle, it

interprets the fetched memory content to be instruction and decodes based on Instruction format.

In the Execute cycle, the information from memory is considered as data. As a common man using

a computer, we think computers handle English or other alphabets, special characters or numbers.

A programmer considers memory content to be data types of the programming language he uses.

Now recall figure 1.2 and 1.3 of chapter 1 to reinforce your thought that conversion happens from

computer user interface to internal representation and storage.

Data Representation in Computers
 Information handled by a computer is classified as instruction and data. A broad overview

of the internal representation of the information is illustrated in figure 3.1. No matter whether it is

data in a numeric or non-numeric form or integer, everything is internally represented in Binary.

It is up to the programmer to handle the interpretation of the binary pattern and this interpretation

is called Data Representation. These data representation schemes are all standardized by

international organizations.

Choice of Data representation to be used in a computer is decided by

 The number types to be represented (integer, real, signed, unsigned, etc.)

 Range of values likely to be represented (maximum and minimum to be represented)

 The Precision of the numbers i.e. maximum accuracy of representation (floating point

single precision, double precision etc)

 If non-numeric i.e. character, character representation standard to be chosen. ASCII,

EBCDIC, UTF are examples of character representation standards.

 The hardware support in terms of word width, instruction.

Figure.3.1 Typical Internal data representation types

Before we go into the details, let us take an example of interpretation. Say a byte in Memory has

value "0011 0001". Although there exists a possibility of so many interpretations as in figure 3.2,

the program has only one interpretation as decided by the programmer and declared in the program.

Figure.3.2 Data Interpretation

Fixed point Number Representation
 Fixed point numbers are also known as whole numbers or Integers. The number of bits

used in representing the integer also implies the maximum number that can be represented in the

system hardware. However for the efficiency of storage and operations, one may choose to

represent the integer with one Byte, two Bytes, Four bytes or more. This space allocation is

translated from the definition used by the programmer while defining a variable as integer short or

long and the Instruction Set Architecture.

In addition to the bit length definition for integers, we also have a choice to represent them as

below:

 Unsigned Integer: A positive number including zero can be represented in this format. All

the allotted bits are utilised in defining the number. So if one is using 8 bits to represent

the unsigned integer, the range of values that can be represented is 28 i.e. "0" to "255". If

16 bits are used for representing then the range is 216 i.e. "0 to 65535".

 Signed Integer: In this format negative numbers, zero, and positive numbers can be

represented. A sign bit indicates the magnitude direction as positive or negative. There are

three possible representations for signed integer and these are Sign Magnitude format,

1's Compliment format and 2's Complement format.

Signed Integer – Sign Magnitude format: Most Significant Bit (MSB) is reserved for indicating

the direction of the magnitude (value). A "0" on MSB means a positive number and a "1" on MSB

means a negative number. If n bits are used for representation, n-1 bits indicate the absolute value

of the number. Examples for n=8:

Examples for n=8:

0010 1111 = + 47 Decimal (Positive number)

1010 1111 = - 47 Decimal (Negative Number)

0111 1110 = +126 (Positive number)

1111 1110 = -126 (Negative Number)

0000 0000 = + 0 (Postive Number)

1000 0000 = - 0 (Negative Number)

Although this method is easy to understand, Sign Magnitude representation has several

shortcomings like

 Zero can be represented in two ways causing redundancy and confusion.

 The total range for magnitude representation is limited to 2n-1, although n bits were

accounted.

 The separate sign bit makes the addition and subtraction more complicated. Also,

comparing two numbers is not straightforward.

Signed Integer – 1’s Complement format: In this format too, MSB is reserved as the sign bit. But

the difference is in representing the Magnitude part of the value for negative numbers (magnitude)

is inversed and hence called 1’s Complement form. The positive numbers are represented as it is

in binary. Let us see some examples to better our understanding.

Examples for n=8:

0010 1111 = + 47 Decimal (Positive number)

1101 0000 = - 47 Decimal (Negative Number)

0111 1110 = +126 (Positive number)

1000 0001 = -126 (Negative Number)

0000 0000 = + 0 (Postive Number)

1111 1111 = - 0 (Negative Number)

Converting a given binary number to its 2's complement form
Step 1. -x = x' + 1 where x' is the one's complement of x.

Step 2 Extend the data width of the number, fill up with sign extension i.e. MSB bit is used to fill

the bits.

Example: -47 decimal over 8bit representation

Binary equivalent of + 47 is 0010 1111

Binary equivalent of - 47 is 1010 1111 (Sign Magnitude Form)

1's complement equivalent is 1101 0000

2’s complement equivalent is 1101 0001

As you can see zero is not getting represented with redundancy. There is only one way of

representing zero. The other problem of the complexity of the arithmetic operation is also

eliminated in 2’s complement representation. Subtraction is done as Addition.

More exercises on number conversion are left to the self-interest of readers.

Floating Point Number system
 The maximum number at best represented as a whole number is 2n. In the Scientific world,

we do come across numbers like Mass of an Electron is 9.10939 x 10-31 Kg. Velocity of light is

2.99792458 x 108 m/s. Imagine to write the number in a piece of paper without exponent and

converting into binary for computer representation. Sure you are tired!!. It makes no sense to write

a number in non- readable form or non- processible form. Hence we write such large or small

numbers using exponent and mantissa. This is said to be Floating Point representation or real

number representation. he real number system could have infinite values between 0 and 1.

Representation in computer

 Unlike the two's complement representation for integer numbers, Floating Point number

uses Sign and Magnitude representation for both mantissa and exponent. In the number 9.10939 x

1031, in decimal form, +31 is Exponent, 9.10939 is known as Fraction. Mantissa, Significand and

fraction are synonymously used terms. In the computer, the representation is binary and the binary

point is not fixed. For example, a number, say, 23.345 can be written as 2.3345 x 101 or 0.23345

x 102 or 2334.5 x 10-2. The representation 2.3345 x 101 is said to be in normalised form.

Floating-point numbers usually use multiple words in memory as we need to allot a sign bit, few

bits for exponent and many bits for mantissa. There are standards for such allocation which we

will see sooner.

IEEE 754 Floating Point Representation
 We have two standards known as Single Precision and Double Precision from IEEE. These

standards enable portability among different computers. Figure 3.3 picturizes Single precision

while figure 3.4 picturizes double precision. Single Precision uses 32bit format while double

precision is 64 bits word length. As the name suggests double precision can represent fractions

with larger accuracy. In both the cases, MSB is sign bit for the mantissa part, followed by Exponent

and Mantissa. The exponent part has its sign bit.

Figure.3.3 IEEE 754 Single Precision Floating Point representation Standard

 It is to be noted that in Single Precision, we can represent an exponent in the range -127 to

+127. It is possible as a result of arithmetic operations the resulting exponent may not fit in. This

situation is called overflow in the case of positive exponent and underflow in the case of negative

exponent. The Double Precision format has 11 bits for exponent meaning a number as large as -

1023 to 1023 can be represented. The programmer has to make a choice between Single Precision

and Double Precision declaration using his knowledge about the data being handled.

Figure 3.4 IEEE 754 Double Precision Floating Point representation Standard

The Floating Point operations on the regular CPU is very very slow. Generally, a special purpose

CPU known as Co-processor is used. This Co-processor works in tandem with the main CPU. The

programmer should be using the float declaration only if his data is in real number form. Float

declaration is not to be used generously.

COMPUTER ARITHMETIC:

Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations

other arithmetic functions can be formulated and scientific problems can be solved by numerical

analysis methods.

Arithmetic Processor:

It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions

definitions specify the data type that should be present in the registers used . The arithmetic instruction

may specify binary or decimal data and in each case the data may be in fixed-point or floating point

form.

Fixed point numbers may represent integers or fractions. The negative numbers may be in signed-

magnitude or signed- complement representation. The arithmetic processor is very simple if only a

binary fixed point add instruction is included. It would be more complicated if it includes all four

arithmetic operations for binary and decimal data in fixed and floating point representations.

Algorithm:

Algorithm can be defined as a finite number of well defined procedural steps to solve a problem.

Usually, an algorithm will contain a number of procedural steps which are dependent on results of

previous steps. A convenient method for presenting an algorithm is a flowchart which consists of

rectangular and diamond –shaped boxes. The computational steps are specified in the rectangular

boxes and the decision steps are indicated inside diamond-shaped boxes from which 2 or more

alternate path emerge.

Addition and Subtraction:

3 ways of representing negative fixed point binary numbers:

COMPUTER ARITHMETIC: Addition and subtraction, multiplication algorithms,

Division Algorithms, Floating point Arithmetic operations. Decimal Arithmetic unit,

Decimal Arithmetic operations.

UNIT-III

1. Signed-magnitude representation---- used for the representation of mantissa for floating point

operations by most computers.

2. Signed-1’s complement

3. Signed -2’s complement—Most computers use this form for performing arithmetic operation

with integers

Addition and subtraction algorithm for signed-magnitude data

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted,

there are 4 different conditions to be considered for each addition and subtraction depending

on the sign of the numbers. The conditions are listed in the table below. The table shows the

operation to be performed with magnitude(addition or subtraction) are indicated for different

conditions.

Sl.No Operation

Add

Magnitudes

Subtract magnitudes

When A> B When A< B When A=B

1 (+A) + (+B) + (A + B)

2 (+A) + (-B) +(A-B) -(B-A) +(A-B)

3 (-A) + (+B) -(A-B) +(B-A) +(A-B)

4 (-A) + (-B) - (A + B)

5 (+A) - (+B) +(A-B) -(B-A) +(A-B)

6 (+A) - (-B) + (A + B)

7 (-A) - (+B) - (A + B)

8 (-A) - (-B) -(A-B) +(B-A) +(A-B)

The last column is needed to prevent a negative zero. In other words, when two equal numbers

are subtracted, the result should be +0 not -0.

The algorithm for addition and subtraction (from the table above):

Addition Algorithm:

When the signs of A and B are identical, add two magnitudes and attach the sign of A to the

result. When the sign of A and B are different, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the

complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make

te sign of the result positive.

Subtraction algorithm:

When the signs of A and B are different, add two magnitudes and attach the sign of A to the

result. When the sign of A and B are identical, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the

complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make

te sign of the result positive.

Hardware Implementation:

Let A and B are two registers that hold the numbers.

AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and

AS .and thus they form Accumulator register.

We need to perform micro operation, A+ B and hence a parallel adder.

A comparator is needed to establish if A> B, A=B, or A<B.

We need to perform micro operations A-B and B-A and hence two parallel subtractor.

An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.

Thus the hardware components required are a magnitude comparator, an adder, and two

subtractors.

Reduction of hardware by using different procedure:

1. We know subtraction can be done by complement and add.

2. The result of comparison can be determined from the end carry after the subtraction.

We find An adder and a complementer can do subtraction and comparison if 2’s

complement is used for subtraction.

Hardware forsigned-magnitude addition and subtraction:

AVF Add overflow flip flop. It hold the overflow bit when A & B are added.

Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two

numbers.

A-B = A +(-B)= Adding a and 2’s complement of B.

The A register provides other micro operations that may be needed when the sequence of steps in the

algorithm is specified.

The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on

the state of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder

circuits. The M signal is also applied to the input carry of the adder.

When input carry M=0, the sum of full adder is A +B. When M=1, S = A + B’ +1= A – B

Hardware algorithm:

Flow Chart for Add and Subtract operations:

The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different.

A + B is computed for the following and the sum is stored in EA:

1. When the signs are same and addition operation is required.

2. When the signs are different and subtract operation is required.

The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the

addoverflow flag

A-B = A+ B’+1 computed for the following:

1. When the signs are different and addition operation is required.

2. When the signs are same and subtract operation is required.

No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero.

[the subtraction of 2 n-digit un signed numbers M-N (N≠0) in base r can be done as follows:

1. Add minuend M to thee r’s complement of the subtrahend N. This performs M-N +rn .

2. If M ≥ N, The sum will produce an end carry rnwhich is discarded, and what is left is the result M-N.

3. If M< N, the sum does not produce an end carry and is equal to rn–(N-M), which is the r’s complement of the sum and place a negative

sign in front.]

A 1 in E indicates that A ≥ B and the number in A is the correct result.

If this number in A is zero, the sign AS must be made positive to avoid a negative zero.

A 0 in E indicates that A< B. For this case it is necessary to take the 2’s complement of

the value in A.

In the algorithm shown in flow chart, it is assumed that A register has circuits for micro

operations complement and increment. Hence two complement of value in A is

obtained in 2, micro operations. In other paths of the flow chart , the sign of the result is

the same as the sign of A, so no change in AS is required.

However When A < B, the sign of the result is the complement of original sign of A.

Hence The complement of AS stored in AS.

Final Result: AS A

Flow chart for ADD and Subtract operations:

Addition and Subtraction with signed-2’s complement Data.:

Arithmetic Addition:

This method does not need a comparison or subtraction but only addition and

complementation. The procedure is as below:

1. Represent the negative numbers in 2’s complement form.

2. Add the two numbers including the sign bits and discard any carry out of sign bit

position.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign

bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is

set to zero.

4. If the result is negative, take the 2’s complement of the result to get a correct

negative result.

Arithmetic Subtraction:

1. Represent the negative numbers in 2’s complement form.

2. Take the 2’s complement of the subtrahend including the sign bit and add it to the

minuend including the sign bit.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign

bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is

set to zero.

4. Discard the carry out of the sign bit position.

Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is

changed.

 Overflow

 Fig: Hardware for Signed 2/s complement for addition/ subtractioin.

BR Register

Complementer&Parallel Adder

AC Register

V

Multiplication Algorithm:

Hardware implementation of multiplication of numbers in signed – magnitude form:

1. A adder is provided to add two binary numbers and the partial product is accumulated in a register.

2. Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which result

in leaving the partial product and the multiplicand in the required relative positions.

3. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the partial

product, since it will not alter it’s value.

The hardware consists of 4 flipflops, 3 registers, one sequence counter , an adder and complementer.

Q register&QS flip flop : contains multiplier & Its sign
Sequence counter : It is set to a value equal to the number of bits in the multiplier
 B Register& BS flipflop : It contains the multiplicand,& its sign
A Register, E Flip flop : Initialized to ‘ 0’. AS denotes sign of partial product
EA Register : hold partial product, with carry generated in addition being shifted to E .
Qn : Rightmost bit of the multiplier; AQ : will contain the final product.

As AQ represent product register, both AS QSrepresent the sign of the partial product or product.
The number to be multiplied are stores in memory as n bit sign magnitude numbers and when
transferred to register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is
initially set to n-1.
Let the lower order bit of the multiplier in Qntested.
If it is 1, the multiplicand in B is added to the present partial product in A.
If it is a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial
product. The sequence counter is decremented by 1 and it’s new value checked. If it is not equal to
zero, the process is repeated and a new partial product is formed. The process stops when SC = 0.

The final product is available in both A and Q, with A holding the most significant bits and Q holding the
least significant bits.

Flowchart for multiply operation:

Numerical Example for the above algorithm:

Multiplicand B= 10111 E A Q SC

Multiplier in Q

Qn =1;add B

First Partial Product

Shift Right EAQ

0

0

0

00000

10111

10111

01011

10011

11001

101

100

Qn =1;add B

Second Partial Product

1

10111

00010

Shift Right EAQ 0 10001 01100 011

Qn =0; Shift Right EAQ 0 01000 10110 010

Qn =0; Shift Right EAQ 0 00100 01011 001

Qn =1;add B

Fifth Partial Product

Shift Right EAQ

0

0

10111

11011

01101

10101

000

Final Product in AQ

AQ = 0110110101

Booth Multiplication Algorithm:

Multiplication of signed- 2’s complement integers:

This algorithm uses the following facts.

1. A string of 0’s in the multiplier requires no addition but just shifting.

2. A string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m.

Example: Consider the binary number: 001110(+14)

The number has a string of 1’s from 23 to 21 . Hence k = 3 and m= 1. As other bits are 0’s, the

number can be represented as 2k+1 - 2m = 24 – 21 = 16-2 = 14. Therefore the multiplication M * 14 ,

where M is the multiplicand and 14 the multiplier can be done as Mx 24 –M x 21.

This can be achieved by shifting binary multiplicand M four times to the left and subtracting M

shifted left once which is equal to (Mx 24 –M x 21.).

Shifting and addition/subtraction rules for multiplicand in Booth’s Algorithm:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significand 1 in a string of I’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that

there was a previous 1)in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous

multiplier bit

Hardware Implementation of Booth Algorithm:

Note: Sign bit is not separated from register. QR register contains the multiplier register and

Qnrepresent the least significant bit of the multiplier in QR. Qn+1 is an extra flip flop appended to

QR to facilitate a double bit inspection of the multiplier.

AC register and appended Qn+1 are initially cleared to 0.

Sequence counter Sc is set to the number n which is equal to the number of bits of bits In the

multiplier.

QnQn+1 are to successive bits in the multiplier

Example for multiplication using Boot h algorithm:

QnQn+1 BR = 1011 ,𝐵𝑅′+1 = 01001 AC QR Qn+1 SC

10 Initial

Subtract BR

ashr

00000

01001

01001

00100

10011

11001

0

1

101

100

11 ashr 00010 01100 1 011

01 Add BR

ashr

10111

11001

11100

10110

0

010

00

ashr 11110 01011 0 001

10 Subtract BR 01001

Ashr

00111

00011

10101

1

000

Algorithm in flowchart for multiplication of signed 2’s complement numbers.

Array Multiplier:

2 -bit by 2- bit Array Multiplier:

Multiplicand bits are b1 and b0 .Multiplier bits are a1 and a0 .The first partial product is obtained

by multiplying a0 by b1 b0 . The bit multiplication is implemented by AND gate. First partial

product is made by two AND gates. Second partial product is made by two AND gates. The two

partial products are added with two half adder circuits.

Combinational circuit binary multiplier:

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there bits in the

multiplier. The binary output in each level of the AND gates is added in parallel with the partial product

of the previous level to form a ne partial product. The last level produces the product. For j multiplier

and k multiplicand bits, we need j*k AND Gates and (j-1)*k bit adders to ptoduce a product of j+k bits.

4- bit by 3-bit Array Multiplier:

Division Algorithms:

Division Process for division of fixed point binary number in signed –magnitude representation:

Let dividend A consists of 10 bits and divisor B consists of 5 bits.

1. Compare the 5 most significant bits of the dividend with that of divisor.

2. If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the 5 bit divisor.

3. The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position above the

dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is called partial

remainder.

4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or greater than or equal to

the divisor, the quotient bit is equal to 1.The divisor is then shifted right and subtracted from the partial remainder. If

the partial remainder is small than the divisor, then the quotient bit is zero and no subtraction is needed. The divisor

is shifted once to the right in any case,.

Hardware Implementation of division for signed magnitude fixed point numbers:

To implement division using a digital computer, the process is changed slightly for convenience.

1. Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as to

leave the two numbers in the required relative position.

2. Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information about

the relative magnitude is then available from end carry.

3. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost..

4. The divisor is stored in B register and the double length dividend is stored in registers A and Q.

5. The dividend is shifted to the left and the divisor is subtracted by adding it’s 2’s complement value.

6. If E= 1, it signifies that A ≥ B.A quotient bit is inserted into Qnand the partial remainder is shifted to the left to

repeat the process.

7. If E = 0, it signifies that A < B so the quotient Qn remains 0(inserted during the shift). The value of B is then

added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and

the process is repeated again until all 5 quotient bits are formed.

8. At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the quotient

is positive and if unalike, it is negative. The sign of the remainder is the same as dividend.

Qn

 0

Hardware for implementing division of fixed point signed- Magnitude Numbers

Example of Binary division with digital hardware: Divisor B = 10001, B + 1 = 01111

 E A Q SC

 Dividend: 01110 00000 5

 Shl EAQ 11100 00000

 Add , B + 1 01111

 E = 1 1 01011

 Set Qn= 1 1 01011 00001 4

 Shl EAQ 0 10110 00010

 Add , B + 1 01111

 E = 1 1 00101

 Set Qn= 1 1 00101 00011 3

 Shl EAQ 0 01010 00110

 Add , B + 1 01111

 E= 0; Leave Qn= 0 0 11001 00110

 Add B 10001

B Register

Complementer and parallel

adder

A Register Q Register

Sequence Counter(SC)

AS

QS

E

 Restore remainder 1 01010 2

 Shl EAQ 0 10100 01100

 Add , B + 1 01111

 E = 1 1 00011

 Set Qn= 1 1 00011 01101 1

 Shl EAQ 0 00110 11010

 Add , B + 1 01111

 E= 0; Leave Qn= 0 0 10101 11010

 Add B 10001

 Restore remainder 1 00110 11010 0

 Neglect E

 Remainder in A 00110 11010

 Quotient in Q

Divide overflow:

When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows:

A divide-overflow condition occurs if the higher order half bits of the dividend constitute a number

greater than or equal to the divisor. If the divisor is zero, then the dividend will definitely be greater

than or equal to divisor. Hence divide overflow condition occurs and hence the divide-overflow –flip flop

will be set. Let the flip flop be called DVF.

Handling DVF:

1. Check if DVF is set after each divide instruction. If DVF is set, then the program branches to a

subroutine that takes corrective measures such as rescaling the data to avoid overflow.

2. An interrupt is generated if DVF is set. The interrupt causes the processor to suspend the

current program and branch to interrupt service routine to take corrective measure. The most

common corrective measure is to remove the program and type an error message that explains

the reasons.

3. The divide overflow can be handled very simply if the numbers are represented in floating point

representation.

Flow chart for divide operation:

Assumption:

Operands are transferred from memory to registers as n bit words.n-1 bit form magnitude and 1 bit

shows the sign.

A divide overflow condition is tested by subtracting the divisor in B from half of the bits of dividend

stored in A. If vA ≥ B, the DVF is set and the operation is terminated prematurely. If A < B, no DVF occurs

and so the value of dividend is restored by adding B to A.

The division of the magnitudes starts by shifting the dividend in AQ to the left, with the higher order bit

shifted into E. If the bit shifted into E is 1, we know that EA is greater than B because EA consists of a 1

followed by n-1 bits while B consists of only n-1 bits. In this case, B must be subtracted from EA and 1

inserted into Qn for the quotient bit. Since register A is missing the higher order bit of the dividend

(which is in E), it’s value is EA – 2n-1 . Adding to this value the 2’s complement of B results in

(EA-2n-1) + (2n-1 –B)= E-B. The carry from the addition is not transferred to E if we want E to remain a 1.

If the shift left operation inserts a zero into E, the divisor is subtracted by adding it’s 2’s complement

value and the carry is transferred into E. If E = 1, it signifies that A ≥ B and hence Qn is set to 1. If E = 0, it

signifies that A < B and the original number is restored by adding B to A. In the latter case we leave a 0 in

Qn .(0 was inserted during the shift).

This process is repeated again with register A holding the partial remainder. After n-1 times, the

quotient magnitude is formed in the register Q and the remainder is found in register A.

2.

3.

4.

2

UNIT-IV 1

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV

INPUT/OUTPUT ORGANIZATION AND MEMORY

ORGANIZATION

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of

Transfer, Priority Interrupt - Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate

Memory, Cache Memory.

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of

Transfer, Priority Interrupt - Direct memory Access.

Input/output Organization:

Input-Output Interface

Asynchronous Data Transfer

Modes of Transfer

Priority Interrupt

Direct Memory Access (DMA).

UNIT-IV 2

COMPUTER ORGANIZATION AND ARCHITECTURE

INPUT-OUTPUT INTERFACE

 Input-output interface provides a method for transferring information between internal storage

and external I/O devices. Peripherals connected to a computer need special communication

links for interfacing them with the central processing unit. The purpose of the communication

link is to resolve the differences that exist between the central computer and each peripheral.

The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of operation

is different from the operation of the CPU and memory, which are electronic devices.

Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, and

consequently, a synchronization mechanism may be need.

3. Data codes and formats in peripherals differ from the word format in the CPU and memory.

4. The operating modes of peripherals are different from each other and each must be controlled

so as not to disturb the operation of other peripherals connected to the CPU.

 To resolve these differences, computer systems include special hardware components between

the CPU and peripherals to supervise and synchronize all input and output transfers. These

components are called interface units because they interface between the processor bus and the

peripheral device. In addition, each device may have its own controller that supervises the

operations of the particular mechanism in the peripheral.

I/O BUS AND INTERFACE MODULES

 A typical communication link between the processor and several peripherals is shown in Fig.

 The I/O bus consists of data lines, address lines, and control lines.

 Each peripheral device has associated with

it an interface unit. Each interface decodes

the address and control received from the

I/O bus, interprets them for the peripheral,

and provides signals for the peripheral

controller. It also synchronizes the data

flow and supervises the transfer between peripheral and processor. Each peripheral has its own

controller that operates the particular electromechanical device.

 To communicate with a particular device, the processor places a device address on the address

lines. Each interface attached to the I/O bus contains an address decoder that monitors the

address lines. When the interface detects its own address, it activates the path between the bus

lines and the device that it controls. All peripherals whose address does not correspond to the

address in the bus are disabled their interface.

UNIT-IV 3

COMPUTER ORGANIZATION AND ARCHITECTURE

 At the same time the processor provides a function code in the control lines.

 There are four types of commands that an interface may receive. They are classified as control,

status, data output, and data input.

 A control command is issued to activate the peripheral and to inform it what to do.

 A status command is used to test various status conditions in the interface and the peripheral.

 A data output command causes the interface to respond by transferring data from the bus into

one of its registers.

 The data input command is the opposite of the data output. In this case the interface receives an

item of data from the peripheral and places it in its buffer register.

I/O VERSUS MEMORY BUS

 In addition to communicating with I/O, the processor must communicate with the memory unit.

Like the I/O bus, the memory bus contains data, address, and read/write control lines. There are

three ways that computer buses can be used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and I/O but have separate control lines for each.

3. Use one common bus for memory and I/O with common control lines.

In the first method, the computer has independent sets of data, address, and control buses, one

for accessing memory and the other for I/O. This is done in computers that provide a separate

I/O processor (IOP) in addition to the central processing unit (CPU). The memory

communicates with both the CPU and the IOP through a memory bus. The IOP communicates

also with the input and output devices through a separate I/O bus with its own address, data and

control lines. The purpose of the IOP is to provide an independent pathway for the transfer of

information between external devices and internal memory

UNIT-IV 4

COMPUTER ORGANIZATION AND ARCHITECTURE

ISOLATED VERSUS MEMORY-MAPPED I/O

 Many computers use one common bus to transfer information between memory or I/O and the

CPU. The distinction between a memory transfer and I/O transfer is made through separate read

and write lines. The CPU specifies whether the address on the address lines is for a memory

word or for an interface register by enabling one of two possible read or write lines. The I/O

read and I/O write control lines are enabled during an I/O transfer. The memory read and

memory write control lines are enabled during a memory transfer.

 In the isolated I/O configuration, the CPU has distinct input and output instructions, and each

of these instructions is associated with the address of an interface register. When the CPU

fetches and decodes the operation code of an input or output instruction, it places the address

associated with the instruction into the common address lines. At the same time, it enables the

I/O read (for input) or I/O write (for output) control line. This informs the external components

that are attached to the common bus that the address in the address lines is for an interface

register and not for a memory word. On the other hand, when the CPU is fetching an instruction

or an operand from memory, it places the memory address on the address lines and enables the

memory read or memory write control line. This informs the external components that the

address is for a memory word and not for an I/O interface.

 The other alternative is to use the same address space for both memory and I/O. This is the case

in computers that employ only one set of read and write signals and do not distinguish between

memory and I/O addresses. This configuration is referred to as memory mapped I/O. The

computer treats an interface register as being part of the memory system.

 In a memory-mapped I/O organization there is no specific input or output instructions. The

CPU can manipulate I/O data residing in interface registers with the same instructions that are

used to manipulate memory words. Each interface is organized as a set of registers that respond

to read and write requests in the normal address space. Typically, a segment of the total address

space is reserved for interface registers, but in general, they can be located at any address as

long as there is not also a memory word that responds to the same address.

 Computers with memory-mapped I/O can use memory-type instructions to access I/O data. It

allows the computer to use the same instructions for either input-output transfers or for memory

transfers.

 The advantage is that the load and store instructions used for reading and writing from memory

can be used to input and output data from I/O registers.

 In a typical computer, there are more memory-reference instructions than I/O instructions. With

memory mapped I/O all instructions that refer to memory are also available for I/O. .

UNIT-IV 5

COMPUTER ORGANIZATION AND ARCHITECTURE

EXAMPLE OF I/O INTERFACE

 An example of an I/O interface unit is shown in block diagram

 It consists of two data registers called ports, a control register, a status register, bus buffers, and

timing and control circuits. The interface communicates with the CPU through the data bus.

 The chip select and register select inputs determine the address assigned to the interface. The

I/O read and write are two control lines that specify an input or output, respectively.

 The four registers communicate directly with the I/O device attached to the interface. The I/O

data to and from the device can be transferred into either port A or Port B.

 The interface may operate with an output device or with an input device, or with a device that

requires both input and output..

 A command is passed to the I/O device by sending a word to the appropriate interface register.

In a system like this, the function code in the I/O bus is not needed because control is sent to the

control register, status information is received from the status register, and data are transferred

to and from ports A and B registers. Thus the transfer of data, control, and status information is

always via the common data bus.

 The distinction between data, control, or status information is determined from the particular

register with which the CPU communicates.

 The control register receives control information from the CPU. By loading appropriate bits

into the control register, the interface and the I/O device attached to it can be placed in a variety

of operating modes.

 The interface registers communicate with the CPU through the bidirectional data bus.

 The address bus selects the interface unit through the chip select and the two register select

inputs. A circuit must be provided externally (usually, a decoder) to detect the address assigned

to the interface registers. This circuit enables the chip select (CS) input when the interface is

selected by the address bus. The two register select inputs RS1 and RS0 are usually connected

to the two least significant lines of the lines address bus. These two inputs select one of the four

registers in the interface as specified in the table accompanying the diagram.

 The content of the selected register is transfer into the CPU via the data bus when the I/O read

signal is enabled. The CPU transfers binary information into the selected register via the data

bus when the I/O write input is enabled.

UNIT-IV 6

COMPUTER ORGANIZATION AND ARCHITECTURE

ASYNCHRONOUS DATA TRANSFER

 The internal operations in a digital system are synchronized by means of clock pulses supplied

by a common pulse generator.

 If the registers in the interface share a common clock with the CPU registers, the transfer

between the two units is said to be synchronous.

 In most cases, the internal timing in each unit is independent from the other in that each uses its

own private clock for internal registers. In that case, the two units are said to be asynchronous

to each other.

 Asynchronous data transfer between two independent units requires that control signals be

transmitted between the communicating units to indicate the time at which data is being

transmitted.

 One way of achieving this is by means of a strobe pulse supplied by one of the units to indicate

to the other unit when the transfer has to occur. Another method commonly used is to

accompany each data item being transferred with a control signal that indicates the presence of

data in the bus. The unit receiving the data item responds with another control signal to

acknowledge receipt of the data. This type of agreement between two independent units is

referred to as handshaking.

STROBE CONTROL

 The strobe control method of asynchronous data transfer employs a single control line to time

each transfer. The strobe may be activated by either the source or the destination unit.

 The data bus carries the binary information from

source unit to the destination unit. Typically, the

bus has multiple lines to transfer an entire byte or

word. The strobe is a single line that informs the

destination unit when a valid data word is

available in the bus.

 As shown in the timing diagram the source unit

first places the data on the data bus. After a brief

delay to ensure that the data settle to a steady

value, the source activates the strobe pulse.

 The information on the data bus and the strobe signal remain in the active state for a sufficient

time period to allow the destination unit to receive the data. Often, the destination unit uses the

falling edge of the strobe pulse to transfer the contents of the data bus into one of its internal

registers.

UNIT-IV 7

COMPUTER ORGANIZATION AND ARCHITECTURE

 The following Figure shows a data transfer initiated by the destination unit.

 In this case the destination unit activates the strobe pulse,

informing the source to provide the data. The source unit

responds by placing the requested binary information on

the data bus. The data must be valid and remain in the

bus long enough for the destination unit to accept it. The

falling edge of the strobe pulse can be used again to

trigger a destination register. The destination unit then

disables the strobe

 The transfer of data between the CPU and an interface unit is similar to the strobe transfer. Data

transfer between an interface and an I/O device is commonly controlled by a set of handshaking

lines

HANDSHAKING

 The disadvantage of the strobe method is that the source unit that initiates the transfer has no

way of knowing whether the destination unit has actually received the data item that was placed

in the bus. Similarly, a destination unit that initiates the transfer has no way of knowing whether

the source unit has actually placed the data on the bus. The handshake method solves this

problem by introducing a second control signal that provides a reply to the unit that initiates the

transfer.

 The basic principle of the handshaking method of data transfer is as follows. One control line is

in the same direction as the data flow in the bus from the source to the destination. It is used by

the source unit to inform the destination unit whether there are valued data in the bus.

 The other control line is in the other direction from the destination to the source. It is used by

the destination unit to inform the source whether it can accept data. The sequence of control

during the transfer depends on the unit that initiates the transfer.

 The two handshaking lines are data valid, which is generated by the source unit, and data

accepted, generated by the destination unit.

 The timing diagram shows the exchange of signals between the two units. In the destination-

initiated transfer the source does not place data on the bus until after it receives the ready for

data signal from the destination unit.

 The handshaking scheme provides a high degree of flexibility and reality because the successful

completion of a data transfer relies on active participation by both units. If one unit is faulty, the

data transfer will not be completed. Such an error can be detected by means of a timeout

mechanism, which produces an alarm if the data transfer is not completed within a

predetermined time. The timeout is implemented by means of an internal clock that starts

UNIT-IV 8

COMPUTER ORGANIZATION AND ARCHITECTURE

counting time when the unit enables one of its handshaking control signals. If the return

handshake signal does not respond within a given time period, the unit assumes that an error

has occurred

ASYNCHRONOUS SERIAL TRANSFER

 The transfer of data between two units may be done in parallel or serial. In parallel data

transmission, each bit of the message has its own path and the total message is transmitted at

the same time.

 In serial data transmission, each bit in the message is sent in sequence one at a time.

 Parallel transmission is faster but requires many wires. It is used for short distances and where

speed is important. Serial transmission is slower but is less expensive since it requires only one

pair of conductors.

 Serial transmission can be synchronous or asynchronous. In synchronous transmission, the two

units share a common clock frequency and bits are transmitted continuously at the rate dictated

by the clock pulses. In long-distant serial transmission, each unit is driven by a separate clock

of the same frequency. Synchronization signals are transmitted periodically between the two

units to keep their clocks in step with each other.

UNIT-IV 9

COMPUTER ORGANIZATION AND ARCHITECTURE

 In asynchronous transmission, binary information is sent only when it is available and the line

remains idle when there is no information to be transmitted.

 Serial asynchronous data transmission technique used in many interactive terminals employs

special bits that are inserted at both ends of the character code. With this technique, each

character consists of three parts: a start bit, the character bits, and stop bits.

 The convention is that the transmitter rests at the 1-state when no characters are transmitted.

The first bit, called the start bit, is always a 0 and is used to indicate the beginning of a

character. The last bit called the stop bit is always a 1.

 An example of this format is shown in Fig.

 A transmitted character can be detected by the receiver from knowledge of the transmission

rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit, which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns to

the 1-state for at least one bit time.

 Using these rules, the receiver can detect the start bit when the line gives from 1 to 0. A clock in

the receiver examines the line at proper bit times. The receiver knows the transfer rate of the

bits and the number of character bits to accept. After the character bits are transmitted, one or

two stop bits are sent. The stop bits are always in the 1-state and frame the end of the character

to signify the idle or wait state.

 At the end of the character the line is held at the 1-state for a period of at least one or two bit

times so that both the transmitter and receiver can resynchronize. The length of time that the

line stays in this state depends on the amount of time required for the equipment to

resynchronize.

 Some older electromechanical terminals use two stop bits, but newer terminals use one stop bit.

 The line remains in the 1-state until another character is transmitted. The stop time ensures that

a new character will not follow for one or two bit times.

UNIT-IV 10

COMPUTER ORGANIZATION AND ARCHITECTURE

Asynchronous Communication Interface

 The block diagram of an asynchronous communication interface is shown in Fig.

 It functions as both a transmitter and a receiver. The interface is initialized for a particular mode

of transfer by means of a control byte that is loaded into its control register. The transmitter

register accepts a data byte from the CPU through the data bus. This byte is transferred to a

shift register for serial transmission. The receiver portion receives serial information into

another shift register, and when a complete data byte is accumulated, it is transferred to the

receiver register. The CPU can select the receiver register to read the byte through the data bus.

 The bits in the status register are used for input and output flags and for recording certain errors

that may occur during the transmission. The CPU can read the status register to check the status

of the flag bits and to determine if any errors have occurred.

 The chip select and the read and write control lines communicate with the CPU. The chip select

(CS) input is used to select the interface through the address bus. The register select (RS) is

associated with the read (RD) and write (WR) controls. Two registers are write-only and two

are read-only. The register selected is a function of the RS value and the RD and WR status, as

listed in the table accompanying the diagram.

 The operation of the asynchronous communication interface is initialized by the CPU by

sending a byte to the control register. The initialization procedure places the interface in a

specific mode of operation as it defines certain parameters such as the baud rate to use, how

many bits are in each character, whether to generate and check parity, and how many stop bits

UNIT-IV 11

COMPUTER ORGANIZATION AND ARCHITECTURE

are appended to each character. Two bits in the status register are used as flags. One bit is used

to indicate whether the transmitter register is empty and another bit is used to indicate whether

the receiver register is full.

 The operation of the transmitter portion of the interface is as follows. The CPU reads the status

register and checks the flag to see if the transmitter register is empty. If it is empty, the CPU

transfers a character to the transmitter register and the interface clears the flag to mark the

register full. The first bit in the transmitter shift register is set to 0 to generate a start bit. The

character is transferred in parallel from the transmitter register to the shift register and the

appropriate number of stop bits are appended into the shift register. The transmitter register is

then marked empty. The character can now be transmitted one bit at a time by shifting the data

in the shift register at the specified baud rate. The CPU can transfer another character to the

transmitter register after checking the flag in the status register. The interface is said to be

double buffered because a new character can be loaded as soon as the previous one starts

transmission.

 The operation of the receiver portion of the interface is similar. The receive data input is in the

1-state when the line is idle. The receiver control monitors the receive-data line for a 0 signal

to detect the occurrence of a start bit. Once a start bit has been detected, the incoming bits of the

character are shifted into the shift register at the prescribed baud rate. After receiving the data

bits, the interface checks for the parity and stop bits. The character without the start and stop

bits is then transferred in parallel from the shift register to the receiver register. The flag in the

status register is set to indicate that the receiver register is full. The CPU reads the status

register and checks the flag, and if set, it reads the data from the receiver register. The interface

checks for any possible errors during transmission and sets appropriate bits in the status

register. The CPU can read the status register at any time to check if any errors have occurred.

Three possible errors that the interface checks during transmission are parity error, framing

error, and overrun error. Parity error occurs if the number of l's in the received data is not the

correct parity. A framing error occurs if the right number of stop bits is not detected at the end

of the received character. An overrun error occurs if the CPU does not read the character from

the receiver register before the next one becomes available in the shift register. Overrun error

results in a loss of characters in the received data stream.

UNIT-IV 12

COMPUTER ORGANIZATION AND ARCHITECTURE

First-In, First-Out Buffer

UNIT-IV 13

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 14

COMPUTER ORGANIZATION AND ARCHITECTURE

MODES OF TRANSFER

 Binary information received from an external device is usually stored in memory for later

processing. Information transferred from the central computer into an external device originates

in the memory unit. The CPU merely executes the I/O instructions and may accept the data

temporarily, but the ultimate source or destination is the memory unit.

 Data transfer between the central computer and I/O devices may be handled in a variety of

modes. Some modes use the CPU as an intermediate path; other transfer the data directly to and

from the memory unit.

 Data transfer to and from peripherals may be handled in one of three possible modes:

1. Programmed I/O

2. Interrupt-initiated I/O

3. Direct memory access (DMA)

 Programmed I/O operations are the result of I/O instructions written in the computer program.

Each data item transfer is initiated by an instruction in the program. Usually, the transfer is to

and from a CPU register and peripheral. Other instructions are needed to transfer the data to and

from CPU and memory. Transferring data under program control requires constant monitoring

of the peripheral by the CPU. Once a data transfer is initiated, the CPU is required to monitor

the interface to see when a transfer can again be made. It is up to the programmed instructions

executed in the CPU to keep close tabs on everything that is taking place in the interface unit

and the I/O device.

 In the programmed I/O method, the CPU stays in a program loop until the I/O unit indicates

that it is ready for data transfer. This is a time-consuming process since it keeps the processor

busy needlessly. It can be avoided by using an interrupt facility and special commands to

inform the interface to issue an interrupt request signal when the data are available from the

device. In the meantime the CU can proceed to execute another program. The interface

meanwhile keeps monitoring the device. When the interface determines that the device is ready

for data transfer, it generates an interrupt request to the computer. Upon detecting the external

interrupt signal, the CPU momentarily stops the task it is processing, branches to a service

program to process the I/O transfer, and then returns to the task it was originally performing

Transfer of data under programmed I/O is between CPU and peripheral.

 In direct memory access (DMA), the interface transfers data into and out of the memory unit

through the memory bus. The CPU initiates the transfer by supplying the interface with the

starting address and the number of words needed to be transferred and then proceeds to execute

other tasks. When the transfer is made, the DMA requests memory cycles through the memory

bus. When the request is granted by the memory controller, the DMA transfers the data directly

UNIT-IV 15

COMPUTER ORGANIZATION AND ARCHITECTURE

into memory. The CPU merely delays its memory access operation to allow the direct memory

I/O transfer. Since peripheral speed is usually slower than processor speed, I/O-memory

transfers are infrequent compared to processor access to memory.

 Many computers combine the interface logic with the requirements for direct memory access

into one unit and call it an I/O processor (IOP). The IOP can handle many peripherals through a

DMPA and interrupt facility. In such a system, the computer is divided into three separate

modules: the memory unit, the CPU, and the IOP.

EXAMPLE OF PROGRAMMED I/O

 In the programmed I/O method, the I/O device does not have direct access to memory. A

transfer from an I/O device to memory requires the execution of several instructions by the

CPU, including an input instruction to transfer the data from the device to the CPU, and a store

instruction to transfer the data from the CPU to memory. Other instructions may be needed to

verify that the data are available from the device and to count the numbers of words transferred.

 An example of data transfer from an I/O device through an interface into the CPU is shown in

Fig.

 The device transfers bytes of data one at a time as they are available. When a byte of data is

available, the device places it in the I/O bus and enables its data valid line. The interface accepts

the byte into its data register and enables the data accepted line. The interface sets a bit in the

status register that we will refer to as an F or “flag” bit. The device can now disable the data

valid line, but it will not transfer another byte until the data accepted line is disabled by the

interface.

 A program is written for the computer to check the flag in the status register to determine if a

byte has been placed in the data register by the I/O device. This is done by reading the status

register into a CPU register and checking the value of the flag bit. If the flag is equal to 1, the

CPU reads the data from the data register. The flag bit is then cleared to 0 by either the CPU or

the interface, depending on how the interface circuits are designed. Once the flag is cleared, the

interface disables the data accepted line and the device can then transfer the next data byte.

UNIT-IV 16

COMPUTER ORGANIZATION AND ARCHITECTURE

 A flowchart of the program that must be written for the CPU is shown in Fig.

It is assumed that the device is sending

a sequence of bytes that must be

stored in memory. The transfer of each

byte requires three instructions:

1. Read the status register.

2. Check the status of the flag bit and

branch to step 1 if not set or to step 3

if set.

3. Read the data register.

 Each byte is read into a CPU register

and then transferred to memory with a

store instruction. A common I/O

programming task is to transfer a

block of words form an I/O device and

store them in a memory buffer.

 The programmed I/O method is

particularly useful in small low-speed

computers or in systems that are

dedicated to monitor a device

continuously. The difference in

information transfer rate between the CPU and the I/O device makes this type of transfer

inefficient.

INTERRUPT-INITIATED I/O

 An alternative to the CPU constantly monitoring the flag is to let the interface inform the

computer when it is ready to transfer data. This mode of transfer uses the interrupt facility.

While the CPU is running a program, it does not check the flag. However, when the flag is set,

the computer is momentarily interrupted from proceeding with the current program and is

informed of the fact that the flag has been set.

 The CPU deviates from what it is doing to take care of the input or output transfer. After the

transfer is completed, the computer returns to the previous program to continue what it was

doing before the interrupt.

 The CPU responds to the interrupt signal by storing the return address from the program

counter into a memory stack and then control branches to a service routine that processes the

UNIT-IV 17

COMPUTER ORGANIZATION AND ARCHITECTURE

required I/O transfer. The way that the processor chooses the branch address of the service

routine varies from tone unit to another. In principle, there are two methods for accomplishing

this. One is called vectored interrupt and the other, no vectored interrupt. In a non vectored

interrupt, the branch address is assigned to a fixed location in memory. In a vectored interrupt,

the source that interrupts supplies the branch information to the computer. This information is

called the interrupt vector. In some computers the interrupt vector is the first address of the I/O

service routine. In other computers the interrupt vector is an address that points to a location in

memory where the beginning address of the I/O service routine is stored.

SOFTWARE CONSIDERATIONS

 The previous discussion was concerned with the basic hardware needed to interface I/O devices

to a computer system. A computer must also have software routines for controlling peripherals

and for transfer of data between the processor and peripherals. I/O routines must issue control

commands to activate the peripheral and to check the device status to determine when it is

ready for data transfer. Once ready, information is transferred item by item until all the data are

transferred. In some cases, a control command is then given to execute a device function such

as stop tape or print characters. Error checking and other useful steps often accompany the

transfers.

 In interrupt-controlled transfers, the I/O software must issue commands to the peripheral to

interrupt when ready and to service the interrupt when it occurs. In DMA transfer, the I/O

software must initiate the DMA channel to start its operation.

 Software control of input-output equipment is a complex undertaking. For this reason I/O

routines for standard peripherals are provided by the manufacturer as part of the computer

system. They are usually included within the operating system. Most operating systems are

supplied with a variety of I/O programs to support the particular line of peripherals offered for

the computer. I/O routines are usually available as operating system procedures and the user

refers to the established routines to specify the type of transfer required without going into

detailed machine language programs.

UNIT-IV 18

COMPUTER ORGANIZATION AND ARCHITECTURE

PRIORITY INTERRUPT

 Data transfer between the CPU and an I/O device is initiated by the CPU. The CPU cannot

start the transfer unless the device is ready to communicate with the CPU. The readiness of the

device can be determined from an interrupt signal.

 Numbers of I/O devices are attached to the computer; several sources will request service

simultaneously. The first task of the interrupt system is to identify the source of the interrupt

and decide which device to service first

 A priority interrupts is a system to determine which interrupt is to be served first when two or

more requests are made simultaneously. Also determines which interrupts are permitted to

interrupt the computer while another is being serviced. Higher priority interrupts can make

requests while servicing a lower priority interrupt

 Establishing the priority of simultaneous interrupts can be done by software or hardware.

 Priority Interrupt by Software(Polling)

- Priority is established by the order of polling the devices(interrupt sources)

- Flexible since it is established by software

- Low cost since it needs a very little hardware

- Very slow

 Priority Interrupt by Hardware

- Require a priority interrupt manager which accepts all the interrupt requests to determine

the highest priority request

- Fast since identification of the highest priority interrupt request is identified by the hardware.

Each interrupt source has its own interrupt vector to access directly to its own service routine

 The hardware priority function can be established by either a serial or a parallel connection of

interrupt lines. The serial connection is also known as the daisy chaining method.

DAISY-CHAINING PRIORITY

 The daisy-chaining method of establishing priority consists of a serial connection of all devices

that request an interrupt. The device with the highest priority is placed in the first position,

followed by lower-priority devices up to the device with the lowest priority, which is placed last

in the chain.

UNIT-IV 19

COMPUTER ORGANIZATION AND ARCHITECTURE

 The interrupt request line is common to all devices and forms a wired logic connection. If any

device has its interrupt signal in the low-level state, the interrupt line goes to the low-level state

and enables the interrupt input in the CPU. When no interrupts are pending, the interrupt line

stays in the high-level state and no interrupts are recognized by the CPU.

 The CPU responds to an interrupt request by enabling the interrupt acknowledge line. This

signal is received by device 1 at its PI (priority in) input. The acknowledge signal passes on to

the next device through the PO (priority out) output only if device 1 is not requesting an

interrupt.

 If device 1 has a pending interrupt, it blocks the acknowledge signal from the next device by

placing a 0 in the PO output. It then proceeds to insert its own interrupt vector address (VAD)

into the data bus for the CPU to use during the interrupt cycle.

 The device with PI = 1 and PO = 0 is the one with the highest priority that is requesting an

interrupt, and this device places its VAD on the data bus.

 The following figure shows the internal logic that must be included with in each device when

connected in the daisy-chaining scheme.

Fig: One stage of the daisy- chain priority arrangement

 The device sets its RF flip-flop when it wants to interrupt the CPU. The output of the RF flip-

flop goes through an open-collector inverter, a circuit that provides the wired logic for the

common interrupt line.

 If PI = 0, both PO and the enable line to VAD are equal to 0, irrespective of the value of RF.

 If PI = 1 and RF = 0, then PO = 1 and the vector address is disabled. This condition passes the

acknowledge signal to the next device through PO.

 The device is active when PI = 1 and RF = 1. This condition places a 0 in PO and enables the

vector address for the data bus. It is assumed that each device has its own distinct vector

address.

 The RF flip-flop is reset after a sufficient delay to ensure that the CPU has received the vector

address.

UNIT-IV 20

COMPUTER ORGANIZATION AND ARCHITECTURE

PARALLEL PRIORITY INTERRUPT

 The parallel priority interrupt method uses a register whose bits are set separately by the

interrupt signal from each device.

 Priority is established according to the position of the bits in the register. In addition to the

interrupt register the circuit may include a mask register whose purpose is to control the status

of each interrupt request.

 The mask register can be programmed to disable lower-priority interrupts while a higher-

priority device is being serviced. It can also provide a facility that allows a high-priority device

to interrupt the CPU while a lower-priority device is being serviced.

 The priority logic for a system of four interrupt sources is shown in Fig.

 It consists of an interrupt register whose individual bits are set by external conditions and

cleared by program instructions.

 The mask register has the same number of bits as the interrupt register. By means of program

instructions, it is possible to set or reset any bit in the mask register.

 Each interrupt bit and its corresponding mask bit are applied to an AND gate to produce the

four inputs to a priority encoder. In this way an interrupt is recognized only if its corresponding

mask bit is set to 1 by the program.

 The priority encoder generates two bits of the vector address, which is transferred to the CPU.

 Another output from the encoder sets an interrupt status flip-flop IST when an interrupt that is

not masked occurs.

 The interrupt enable flip-flop IEN can be set or cleared by the program to provide an overall

control over the interrupt system.

 The outputs of IST ANDed with IEN provide a common interrupt signal for the CPU.

 The interrupt acknowledge INTACK signal from the CPU enables the bus buffers in the output

register and a vector address VAD is placed into the data bus.

UNIT-IV 21

COMPUTER ORGANIZATION AND ARCHITECTURE

Priority Encoder

 The priority encoder is a circuit that implements the priority function. The logic of the priority

encoder is such that if two or more inputs arrive at the same time, the input having the highest

priority will take precedence.

Interrupt Cycle

 The interrupt enable flip-flop IEN can be set or cleared by program instructions.

 When IEN is cleared, the interrupt request coming from IST is neglected by the CPU.

 The program-controlled IEN bit allows the programmer to choose whether to use the interrupt

facility. If an instruction to clear IEN has been inserted in the program, it means that the user

does not want his program to be interrupted. An instruction to set IEN indicates that the

interrupt facility will be used while the current program is running.

 Most computers include internal hardware that clears IEN to 0 every time an interrupt is

acknowledged by the processor

 At the end of each instruction cycle the CPU checks IEN and the interrupt signal from IST. If

either is equal to 0, control continues with the next instruction.

 If both IEN and IST are equal to 1, the CPU goes to an interrupt cycle.

 During the interrupt cycle the CPU performs the following sequence of microoperations:

SP SP-1 Decrement stack pointer

M[SP] PC Push PC into stack

INTACK 1 Enable interrupt acknowledge

PC VAD Transfer vector address to PC

lEN 0 Disable further interrupts

Go to fetch next instruction

UNIT-IV 22

COMPUTER ORGANIZATION AND ARCHITECTURE

Software Routines

 A priority interrupt system is a combination of hardware and software techniques

 The following figure shows the programs that must reside in memory for handling the interrupt

system.

Initial and Final Operations

 Each interrupt service routine must have an initial and final set of operations for controlling the

registers in the hardware interrupt system

 Initial Sequence

[1] Clear lower level Mask reg. bits

[2] IST 0

[3] Save contents of CPU registers

[4] IEN1

[5] Go to Interrupt Service Routine

 Final Sequence

[1] IEN 0

[2] Restore CPU registers

[3] Clear the bit in the Interrupt Reg

[4] Set lower level Mask reg. bits

[5] Restore return address into PC, and IEN 1

 The initial and final operations are referred to as overhead operations or housekeeping

chores. They are not part of the service program proper but are essential for processing

interrupts.

 All overhead operations can be implemented by software. This is done by inserting the proper

instructions at the beginning and at the end of each service routine. Some of the overhead

operations can be done automatically by the hardware

UNIT-IV 23

COMPUTER ORGANIZATION AND ARCHITECTURE

DIRECT MEMORY ACCESS (DMA):

 The transfer of data between a fast storage device such as magnetic disk and memory is often

limited by the speed of the CPU. Removing the CPU from the path and letting the peripheral

device manage the memory buses directly would improve the speed of transfer. This transfer

technique is called direct memory access (DMA).

 During DMA transfer, the CPU is idle and has no control of the memory buses.

 A DMA controller takes over the buses to manage the transfer directly between the I/O device

and memory.

 The CPU may be placed in an idle state in a variety of ways. One common method extensively

used in microprocessors is to disable the buses through special control signals.

 The bus request (BR) input is used by the DMA controller to request the CPU to cease control

of the buses. When this input is active, the CPU terminates the execution of the current

instruction and places the address bus, the data bus, and the read and write lines into a high-

impedance state behaves like an open circuit, which means that the output is disconnected and

does not have a logic significance.

 The CPU activates the Bus grant (BG) output to inform the external DMA that the buses are in

the high-impedance state. The DMA that originated the bus request can now take control of the

buses to conduct memory transfers without processor intervention. When the DMA terminates

the transfer, it disables the bus request line. The CPU disables the bus grant, takes control of the

buses, and returns to its normal operation.

 When the DMA takes control of the bus system, it communicates directly with the memory.

The transfer can be made in several ways. In DMA burst transfer, a block sequence consisting

of a number of memory words is transferred in a continuous burst while the DMA controller is

master of the memory buses. This mode of transfer is needed for fast devices such as magnetic

disks, where data transmission cannot be stopped or slowed down until an entire block is

transferred.

 An alternative technique called cycle stealing allows the DMA controller to transfer one data

word at a time after which it must return control of the buses to the CPU. The CPU merely

delays its operation for one memory cycle to allow the direct memory I/O transfer to “steal” one

memory cycle.

UNIT-IV 24

COMPUTER ORGANIZATION AND ARCHITECTURE

DMA CONTROLLER

 The following figure shows the block diagram of a typical DMA controller

 The unit communicates with the CPU via the data bus and control lines. The registers in the

DMA are selected by the CPU through the address bus by enabling the DS (DMA select) and

RS (register select) inputs. The RD (read) and WR (write) inputs are bidirectional.

 When the BG (bus grant) input is 0, the CPU can communicate with the DMA registers through

the data bus to read from or write to the DMA registers.

 When BG = 1, the CPU has relinquished(ceased) the buses and the DMA can communicate

directly with the memory by specifying an address in the address bus and activating the RD or

WR control.

 The DMA communicates with the external peripheral through the request and acknowledge

lines by using a prescribed handshaking procedure.

 The DMA controller has three registers: an address register, a word count register, and a control

register. The address register contains an address to specify the desired location in memory. The

address bits go through bus buffers into the address bus. The address register is incremented

after each word that is transferred to memory.

 The word count register is incremented after each word that is transferred to memory. The word

count register holds the number of words to be transferred. This register is decremented by one

after each word transfer and internally tested for zero.

 The control register specifies the mode of transfer. All registers in the DMA appear to the CPU

as I/O interface registers. Thus the CPU can read from or write into the DMA registers under

program control via the data bus.

 The DMA is first initialized by the CPU. After that, the DMA starts and continues to transfer

data between memory and peripheral unit until an entire block is transferred. The initialization

process is essentially a program consisting of I/O instructions that include the address for

UNIT-IV 25

COMPUTER ORGANIZATION AND ARCHITECTURE

selecting particular DMA registers. The CPU initializes the DMA by sending the following

information through the data bus:

1. The starting address of the memory block where data are available (for read) or where data are to

be stored (for write)

2. The word count, which is the number of words in the memory block

3. Control to specify the mode of transfer such as read or write

4. A control to start the DMA transfer

 The starting address is stored in the address register. The word count is stored in the word count

register, and the control information in the control register.

 Once the DMA is initialized, the CPU stops communicating with the DMA unless it receives an

interrupt signal or if it wants to check how many words have been transferred.

DMA Transfer

 The position of the DMA controller among the other components in a computer system is

illustrated in following fig.

 The CPU communicates with the DMA through the address and data buses as with any

interface unit. The DMA has its own address, which activates the DS and RS lines.

 The CPU initializes the DMA through the data bus. Once the DMA receives the start control

command, it can start the transfer between the peripheral device and the memory.

 When the peripheral device sends a DMA request, the DMA controller activates the BR line,

informing the CPU to relinquish the buses. The CPU responds with its BG line, informing the

DMA that its buses are disabled.

 The DMA then puts the current value of its address register into the address bus, initiates the

RD or WR signal, and sends a DMA acknowledge to the peripheral device.

UNIT-IV 1

COMPUTER ORGANIZATION AND ARCHITECTURE

 Note that the RD and WR lines in the DMA controller are bidirectional. The direction of

transfer depends on the status of the BG line. When BG = 0, the RD and WR are input lines

allowing the CPU to communicate with the internal DMA registers. When BG = 1, the RD and

WR and output lines from the DMA controller to the random-access memory to specify the

read or write operation for the data.

 When the peripheral device receives a DMA acknowledge, it puts a word in the data bus

(for write) or receives a word from the data bus (for read). Thus the DMA controls the read or

write operations and supplies the address for the memory.

 The peripheral unit can then communicate with memory through the data bus for direct transfer

between the two units while the CPU is momentarily disabled.

 For each word that is transferred, the DMA increments its address register and decrements its

word count register. If the word count does not reach zero, the DMA checks the request line

coming from the peripheral.

 For a high-speed device, the line will be active as soon as the previous transfer is completed. A

second transfer is then initiated, and the process continues until the entire block is transferred.

 If the peripheral speed is slower, the DMA request line may come somewhat later. In this case

the DMA disables the bus request line so that the CPU can continue to execute its program.

When the peripheral requests a transfer, the DMA requests the buses again.

 If the word count register reaches zero, the DMA stops any further transfer and removes its bus

request. It also informs the CPU of the termination by means of an interrupt.

 When the CPU responds to the interrupt, it reads the content of the word count register. The

zero value of this register indicates that all the words were transferred successfully. The CPU

can read this register at any time to check the number of words already transferred.

 A DMA controller may have more than one channel. In this case, each channel has a request

and acknowledges pair of control signals which are connected to separate peripheral devices.

Each channel also has its own address register and word count register within the DMA

controller.

 A priority among the channels may be established so that channels with high priority are

serviced before channels with lower priority.

 DMA transfer is very useful in many applications.

 It is used for fast transfer of information between magnetic disks and memory.

 It is also useful for updating the display in an interactive terminal.

UNIT-IV 2

COMPUTER ORGANIZATION AND ARCHITECTURE

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate

Memory, Cache Memory.

Memory Organization:

Memory Hierarchy

Main Memory

Auxiliary Memory

Associative Memory

Cache Memory

Virtual Memory.

UNIT-IV 3

COMPUTER ORGANIZATION AND ARCHITECTURE

MEMORY HIERARCHY

 The memory unit is an essential component in any digital computer since it is needed for

storing programs and data. A very small computer with a limited application may be able to

fulfill its intended task without the need of additional storage capacity.

 Most general-purpose computers would run more efficiently if they were equipped with

additional storage beyond the capacity of the main memory.

 It is more economical to use low-cost storage devices to serve as a backup for storing the

information that is not currently used by the CPU.

 The memory unit that communicates directly with the CPU is called the main memory.

Devices that provide backup storage are called auxiliary memory. The most common auxiliary

memory devices used in computer systems are magnetic disks and tapes. They are used for

storing system programs, large data files, and other backup information. Only programs and

data currently needed by the processor reside in main memory. All other information is stored

in auxiliary memory and transferred to main memory when needed.

 The memory hierarchy system consists of all storage devices employed in a computer system

from the slow but high-capacity auxiliary memory to a relatively faster main memory, to an

even smaller and faster cache memory accessible to the high-speed processing logic.

Memory hierarchy in computer system

 The main memory occupies a central position by being able to communicate directly with the

CPU and with auxiliary memory devices through an I/O processor.

 When programs not residing in main memory are needed by the CPU, they are brought in from

auxiliary memory. Programs not currently needed in main memory are transferred into auxiliary

memory to provide space for currently used programs and data.

 A special very-high speed memory called a cache is sometimes used to increase the speed of

processing by making current programs and data available to the CPU at a rapid rate. The cache

memory is employed in computer systems to compensate for the speed differential between

main memory access time and processor logic.

UNIT-IV 4

COMPUTER ORGANIZATION AND ARCHITECTURE

 CPU logic is usually faster than main memory access time, with the result that processing speed

is limited primarily by the speed of main memory.

 A technique used to compensate for the mismatch in operating speeds is to employ in extremely

fast, small cache between the CPU and main memory whose access time is close to processor

logic clock cycle time.

 The reason for having two or three levels of memory hierarchy is economics.

 As the storage capacity of the memory increases, the cost per bit for storing binary information

decreases and the access time of the memory becomes longer.

 The overall goal of using a memory hierarchy is to obtain the highest-possible average access

speed while minimizing the total cost of the entire memory system.

 Auxiliary and cache memories are used for different purposes. The cache holds those parts of

the program and data that are most heavily used, while the auxiliary memory holds those parts

that are not presently used by the CPU. Moreover, the CPU has direct access to both cache and

main memory but not to auxiliary memory. The transfer from auxiliary to main memory is

usually done by means of direct memory access of large blocks of data. The typical access time

ratio between cache and main memory is about 1 to 7. For example, a typical cache memory

may have an access time of 100ns, while main memory access time may be 700ns. Auxiliary

memory average access time is usually 1000 times that of main memory. Block size in auxiliary

memory typically ranges from256 to 2048 words, while cache block size is typically from 1 to

16 words.

 Many operating systems are designed to enable the CPU to process a number of independent

programs concurrently. This concept, called multiprogramming, refers to the existence of two

or more programs in different parts of the memory hierarchy at the same time.

 In a multiprogramming system, when one program is waiting for input or output transfer, there

is another program ready to utilize the CPU.

 Computer programs are sometimes too long to be accommodated in the total space available in

main memory.

 When the program or a segment of the program is to be executed, it is transferred to main

memory to be executed by the CPU.

 It is the task of the operating system to maintain in main memory a portion of this information

that is currently active.

 The part of the computer system that supervises the flow of information between auxiliary

memory and main memory is called the memory management system.

UNIT-IV 5

COMPUTER ORGANIZATION AND ARCHITECTURE

MAIN MEMORY

 The main memory is the central storage unit in a computer system. It is a relatively large and

fast memory used to store programs and data during the computer operation.

 The principal technology used for the main memory is based on semiconductor integrated

circuits.

 Integrated circuit RAM chips are available in two possible operating modes, static and

dynamic. The static RAM consists essentially of internal flip-flops that store the binary

information. The stored information remains valid as long as power is applied to unit. The

dynamic RAM stores the binary information in the form of electric charges that are applied to

capacitors. The capacitors are provided inside the chip by MOS transistors. The stored charge

on the capacitors tends to discharge with time and the capacitors must be periodically recharged

by refreshing the dynamic memory.

 The dynamic RAM offers reduced power consumption and larger storage capacity in a single

memory chip.

 The static RAM is easier to use and has shorted read and write cycles.

 Most of the main memory in a general-purpose computer is made up of RAM integrated circuit

chips, but a portion of the memory may be constructed with ROM chips.

 RAM refers to a random-access memory, but it is used to designate a read/write memory to

distinguish it from a read-only memory, although ROM is also random access.

 RAM is used for storing the bulk of the programs and data that are subject to change. ROM is

used for storing programs that are permanently resident in the computer

 The ROM portion of main memory is needed for storing an initial program called a bootstrap

loader. The bootstrap loader is a program whose function is to start the computer software

operating when power is turned on.

 Since RAM is volatile, its contents are destroyed when power is turned off. The contents of

ROM remain unchanged after power is turned off and on again.

 The startup of a computer consists of turning the power on and starting the execution of an

initial program. Thus when power is turned on, the hardware of the computer sets the program

counter to the first address of the bootstrap loader. The bootstrap program loads a portion of the

operating system from disk to main memory and control is then transferred to the operating

system, which prepares the computer for general use.

 RAM and ROM chips are available in a variety of sizes. If the memory needed for the computer

is larger than the capacity of one chip, it is necessary to combine a number of chips to form the

required memory size. Ex: 1024 × 8 memory can be constructed with 128 × 8 RAM chips and

512 × 8 ROM chips.

UNIT-IV 6

COMPUTER ORGANIZATION AND ARCHITECTURE

RAM AND ROM CHIPS

 A RAM chip is better suited for communication with the CPU if it has one or more control

inputs that select the chip only when needed. Another common feature is a bidirectional data

bus that allows the transfer of data either from memory to CPU during a read operation or from

CPU to memory during a write operation.

 A bidirectional bus can be constructed with three-state buffers.

 The block diagram of a RAM chip is shown in Fig.

 The capacity of the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

address and an 8-bit bidirectional data bus. The read and write inputs specify the memory

operation and the two chips select (CS) control inputs are for enabling the chip only when it is

selected by the microprocessor. The availability of more than one control input to select the

chip facilitates the decoding of the address lines when multiple chips are used in the

microcomputer.

 The read and write inputs are sometimes combined into one line labeled R/W. When the chip is

selected, the two binary states in this line specify the two operations or read or write.

 The unit is in operation only when CS1 = 1 and CS2 = 0.

 If the chip select inputs are not enabled, or if they are enabled but the read but the read or write

inputs are not enabled, the memory is inhibited and its data bus is in a high-impedance state.

 When CS1 = 1 and CS2 = 0, the memory can be placed in a write or read mode. When the WR

input is enabled, the memory stores a byte from the data bus into a location specified by the

address input lines.

UNIT-IV 7

COMPUTER ORGANIZATION AND ARCHITECTURE

 When the RD input is enabled, the content of the selected byte is placed into the data bus. The

RD and WR signals control the memory operation as well as the bus buffers associated with the

bidirectional data bus.

 A ROM chip is organized externally in a similar manner. ROM can only read, the data bus can

only be in an output mode. The block diagram of a ROM chip is shown in Fig.

 The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two

chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. Otherwise, the data bus

is in a high-impedance state. There is no need for a read or write control because the unit can

only read. Thus when the chip is enabled by the two select inputs, the byte selected by the

address lines appears on the data bus.

MEMORY ADDRESS MAP

 The designer of a computer system must calculate the amount of memory required for the

particular application and assign it to either RAM or ROM. The interconnection between

memory and processor is then established form knowledge of the size of memory needed and

the type of RAM and ROM chips available.

 A memory address map, is a pictorial representation of assigned address space for each chip in

the system.

 To demonstrate with a particular example, assume that a computer system needs 512 bytes of

RAM and 512 bytes of ROM.

 The memory address map for this configuration is shown in Table.

UNIT-IV 8

COMPUTER ORGANIZATION AND ARCHITECTURE

 The small x’s under the address bus lines designate those lines that must be connected to the

address inputs in each chip.

 The RAM chips have 128 bytes and need seven address lines. The ROM chip has 512 bytes and

needs 9 address lines.

 It is now necessary to distinguish between four RAM chips by assigning to each a different

address. For this particular example we choose bus lines 8 and 9 to represent four distinct

binary combinations.

 The distinction between a RAM and ROM address is done with another bus line. Here we

choose line 10 for this purpose. When line 10 is 0, the CPU selects a RAM, and when this line

is equal to 1, it selects the ROM.

 The first hexadecimal digit represents lines 13 to 16 and is always 0. The next hexadecimal

digit represents lines 9 to 12, but lines 11 and 12 are always 0. The range of hexadecimal

addresses for each component is determined from the x’s associated with it. These x’s represent

a binary number that can range from an all-0’s to an all-1’s value.

MEMORY CONNECTION TO CPU

 RAM and ROM chips are connected to a CPU through the data and address buses.

 The low-order lines in the address bus select the byte within the chips and other lines in the

address bus select a particular chip through its chip select inputs.

 The connection of memory chips to the CPU is shown in Fig. This configuration gives a

memory capacity of 512 bytes of RAM and 512 bytes of ROM.

 Each RAM receives the seven low-order bits of the address bus to select one of 128 possible

bytes. The particular RAM chip selected is determined from lines 8 and 9 in the address bus.

This is done through a 2 × 4 decoder whose outputs go to the CS1 input in each RAM chip.

Thus, when address lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the

second RAM chip is selected, and so on.

 The RD and WR outputs from the microprocessor are applied to the inputs of each RAM chip.

 The selection between RAM and ROM is achieved through bus line 10. The RAMs are selected

when the bit in this line is 0, and the ROM when the bit is 1. The other chip select input in the

ROM is connected to the RD control line for the ROM chip to be enabled only during a read

operation.

 Address bus lines 1 to 9 are applied to the input address of ROM without going through the

decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM.

 The data bus of the ROM has only an output capability, whereas the data bus connected to the

RAMs can transfer information in both directions.

UNIT-IV 9

COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT-IV 10

COMPUTER ORGANIZATION AND ARCHITECTURE

AUXILIARY MEMORY:

 The most common auxiliary memory devices used in computer systems are magnetic disks and

magnetic tapes. Other components used, but not as frequently, are magnetic drums, magnetic

bubble memory, and optical disks.

 The important characteristics of any device are its access mode, access time, transfer rate,

capacity, and cost.

 The average time required to reach a storage location in memory and obtain its contents is

called the access time. The access time consists of a seek time required to position the read-

write head to a location and a transfer time required to transfer data to or from the device.

 Auxiliary storage is organized in records or blocks. A record is a specified number of characters

or words. Reading or writing is always done on entire records. The transfer rate is the number

of characters or words that the device can transfer per second, after it has been positioned at the

beginning of the record.

 Magnetic drums and disks are quite similar in operation. Both consist of high-speed rotating

surfaces coated with a magnetic recording medium. The rotating surface of the drum is a

cylinder and that of the disk, a round flat plate. Bits are recorded as magnetic spots on the

surface as it passes a stationary mechanism called a write head. Stored bits are detected by a

change in magnetic field produced by a recorded spot on the surface as it passes through a read

head.

MAGNETIC DISKS

 A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized

material. Often both sides of the disk are used and several disks may be stacked on one spindle

with read/write heads available on each surface.

 All disks rotate together at high speed and are not stopped or started from access purposes.

 Bits are stored in the magnetized surface in spots along concentric circles called tracks. The

tracks are commonly divided into sections called sectors. In most systems, the minimum

quantity of information which can be transferred is a sector.

 Some units use a single read/write head from each

disk surface. The track address bits are used by a

mechanical assembly to move the head into the

specified track position before reading or writing.

UNIT-IV 11

COMPUTER ORGANIZATION AND ARCHITECTURE

 In other disk systems, separate read/write heads are provided for each track in each surface. The

address can then select a particular track electronically through a decoder circuit. This type of

unit is more expensive and is found only in very large computer systems.

 A disk system is addressed by address bits that specify the disk number, the disk surface, the

sector number and the track within the sector.

 After the read/write heads are positioned in the specified track, the system has to wait until the

rotating disk reaches the specified sector under the read/write head.

 Information transfer is very fast once the beginning of a sector has been reached.

 Disks may have multiple heads and simultaneous transfer of bits from several tracks at the same

time.

 A track in a given sector near the circumference is longer than a track near the center of the

disk. If bits are recorded with equal density, some tracks will contain more recorded bits than

others. To make all the records in a sector of equal length, some disks use a variable recording

density with higher density on tracks near the center than on tracks near the circumference. This

equalizes the number of bits on all tracks of a given sector.

 Disks that are permanently attached to the unit assembly and cannot be removed by the

occasional user are called hard disks. A disk drive with removable disks is called a

floppy disk.

 The disks used with a floppy disk drive are small removable disks made of plastic coated with

magnetic recording material. There are two sizes commonly used, with diameters of 5.25 and

3.5 inches. The 3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.

MAGNETIC TAPE

 The Magnetic tape itself is a strip of plastic coated with a magnetic recording medium. Bits are

recorded as magnetic spots on the tape along several tracks. Usually, seven or nine bits are

recorded simultaneously to form a character together with a parity bit.

 Read/write heads are mounted one in each track so that data can be recorded and read as a

sequence of characters.

 Magnetic tape units can be stopped, started to move forward or in reverse, or can be rewound.

 Gaps of unrecorded tape are inserted between records where the tape can be stopped. The tape

starts moving while in a gap and attains its constant speed by the time it reaches the next record.

 Each record on tape has an identification bit pattern at the beginning and end. By reading the bit

pattern at the beginning, the tape control identifies the record number. By reading the bit pattern

at the end of the record, the control recognizes the beginning of a gap. A tape unit is addressed

by specifying the record number of characters in the record. Records may be of fixed or

variable length.

UNIT-IV 12

COMPUTER ORGANIZATION AND ARCHITECTURE

ASSOCIATIVE MEMORY

 Many data-processing applications require the search of items in a table stored in memory. An

assembler program searches the symbol address table in order to extract the symbol’s binary

equivalent.

 The number of accesses to memory depends on the location of the item and the efficiency of the

search algorithm. Many search algorithms have been developed to minimize the number of

accesses while searching for an item in a random or sequential access memory.

 The time required to find an item stored in memory can be reduced considerably if stored data

can be identified for access by the content of the data itself rather than by an address.

 A memory unit accessed by content is called an associative memory or content addressable

memory (CAM).

 When a word is to be read from an associative memory, the content of the word, or part of the

word, is specified. The memory locates all words which match the specified content and marks

them for reading.

 An associative memory is more expensive than a random access memory because each cell

must have storage capability as well as logic circuits for matching its content with an external

argument. For this reason, associative memories are used in applications where the search time

is very critical and must be very short.

HARDWARE ORGANIZATION

 The block diagram of an associative memory is shown

in Fig.

 It consists of a memory array and logic for m words

with n bits per word. The argument register A and key

register K each have n bits, one for each bit of a word.

The match register M has m bits, one for each

memory word.

 Each word in memory is compared in parallel with the

content of the argument register. The words that

match the bits of the argument register set a

corresponding bit in the match register.

 After the matching process, those bits in the match register that have been set indicate the fact

that their corresponding words have been matched.

 Reading is accomplished by a sequential access to memory for those words whose

corresponding bits in the match register have been set.

UNIT-IV 13

COMPUTER ORGANIZATION AND ARCHITECTURE

 The key register provides a mask for choosing a particular field or key in the argument word.

The entire argument is compared with each memory word if the key register contains all 1’s.

Otherwise, only those bits in the argument that have 1’s in their corresponding position of the

key register are compared.

 To illustrate with a numerical example, suppose that the argument register A and the key

register K have the bit configuration shown below. Only the three leftmost bits of A are

compared with memory words because K has 1’s in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match

Word 2 101 000001 match

 The relation between the memory array and external registers in an associative memory is

shown in Fig.

 The cells in the array are marked by the letter C

with two subscripts. The first subscript gives the

word number and the second specifies the bit

position in the word. Thus cell Cij is the cell for bit

j in word i.

 A bit Aj in the argument register is compared with

all the bits in column j of the array provided that Kj

= 1. This is done for all columns j = 1, 2,…,n.

 If a match occurs between all the unmasked bits of the argument and the bits in word i, the

corresponding bit Mi in the match register is set to 1. If one or more unmasked bits of the

argument and the word do not match, Mi is cleared to 0

 The internal organization of a typical cell Cij is shown in Fig.

 It consists of a flipflop storage element Fij and the

circuits for reading, writing, and matching the cell.

 The input bit is transferred into the storage cell

during a write operation. The bit stored is read out

during a read operation.

 The match logic compares the content of the storage

cell with the corresponding unmasked bit of the

argument and provides an output for the decision

logic that sets the bit in Mi.

UNIT-IV 14

COMPUTER ORGANIZATION AND ARCHITECTURE

MATCH LOGIC

 The match logic for each word can be derived from the comparison algorithm for two binary

numbers. First, we neglect the key bits and compare the argument in A with the bits stored in

the cells of the words. Word i is equal to the argument in A if Aj = Fij for j = 1, 2,…, n. Two

bits are equal if they are both 1 or both 0. The equality of two bits can be expressed logically by

the Boolean function

xj= Aj Fij + A'jF'ij

where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 0.

 For a word i to be equal to the argument in A we must have all xj variables equal to 1.

 This is the condition for setting the corresponding match bit Mi to 1. The Boolean function for

this condition is

Mi= x1 x2 x3 … xn

 Include the key bit Kj in the comparison logic. The requirement is that if Kj = 0,the

corresponding bits of Aj and Fij need no comparison. Only when Kj = 1 must they be

compared. This requirement is achieved by ORing each term with K’j , thus:

xj + K’j = xj if Kj=1

1 if Kj=0

 When Kj = 1, we have Kj’ = 0 and xj + 0 = xj. When Kj = 0, then Kj’ = 1 xj + 1 = 1. A term

(xj +Kj’) will be in the 1 state if its pair of bitsis not compared. This is necessary because each

term is ANDed with all other terms so that an output of 1 will have no effect. The comparison

of the bits has an effect only when Kj = 1.

 The match logic for word i in an associative memory can now be expressed by the following

Boolean function:

Mi = (x1 + K '1) (x2 + K '2) (x3 + K '3) …. (xn + K 'n)

 Each term in the expression will be equal to 1 if its corresponding Kj = 0. If Kj = 1, the term

will be either 0 or 1 depending on the value of xj. A match will occur and Mi will be equal to 1

if all terms are equal to 1.

 If we substitute the original definition of xj. the Boolean function above can be expressed

as follows:

Mi = ∏𝑛 (Aj Fij + A′jF′ij + K′j)
j=1

 The circuit for matching one word is shown in Fig. Each cell requires two AND gates and one

OR gate. The inverters for Aj and Kj are needed once for each column and are used for all bits

in the column. The output of all OR gates in the cells of the same word go to the input of a

common AND gate to generate the match signal for Mi. Mi will be logic 1 if a match occurs

and 0 if no match occurs. Note that if the key register contains all 0’s, output Mi will be a 1

UNIT-IV 15

COMPUTER ORGANIZATION AND ARCHITECTURE

irrespective of the value of A or the word. This

occurrence must be avoided during normal

operation.

READ OPERATION

 If more than one word in memory matches the

unmasked argument field, all the matched words

will have 1’s in the corresponding bit position of

the match register. It is then necessary to scan the bits of the match register one at a time. The

matched words are read in sequence by applying a read signal to each word line whose

corresponding Mi bit is a 1.

 In most applications, the associative memory stores a table with no two identical items under a

given key. In this case, only one word may match the unmasked argument field. By connecting

output Mi directly to the read line in the same word position (instead of the M register), the

content of the matched word will be presented automatically at the output lines and no

specialread command signal is needed.

WRITE OPERATION

 An associative memory must have a write capability for storing the information to be searched.

 Writing in an associative memory can take different forms, depending on the application. If the

entire memory is loaded with new information at once prior to a search operation then the

writing can be done by addressing each location in sequence. This will make the device a

random-access memory for writing and a content addressable memory for reading. The

advantage here is that the address for input can be decoded as in a random-access memory.

Thus instead of having m address lines, one for each word in memory, the number of address

lines can be reduced by the decoder to d lines, where m = 2d.

 If unwanted words have to be deleted and new words inserted one at a time, there is a need for a

special register to distinguish between active and inactive words. This register, sometimes

called a tag register.

 For every active word stored in memory, the corresponding bit in the tag register is set to 1. A

word is deleted from memory by clearing its tag bit to 0.

 Words are stored in memory by scanning the tag register until the first 0 bit is encountered. This

gives the first available inactive word and a position for writing a new word. After the new

word is stored in memory it is made active by setting its tag bit to 1. An unwanted word when

deleted from memory can be cleared to all 0’s if this value is used to specify an empty location.

UNIT-IV 16

COMPUTER ORGANIZATION AND ARCHITECTURE

CACHE MEMORY

 Locality of Reference: The references to memory at any given time interval tends to be

confined within a localized area.

 When a program loop is executed, the CPU repeatedly refers to the set of instructions in

memory that constitute the loop.

 Every time a given subroutine is called, its set of instructions is fetched from memory. Thus

loops and subroutines tend to localize the references to memory for fetching instructions.

 Iterative procedures refer to common memory locations and array of numbers are confined

within a local portion of memory

 If the active portions of the program and data are placed in a fast small memory, the average

memory access time can be reduced, thus reducing the total execution time of the program.

Such a fast small memory is referred to as a cache memory. The cache is the fastest component

in the memory hierarchy and approaches the speed of CPU components.

 When the CPU needs to access memory, the cache is examined. If the word is found in the

cache, it is read from the fast memory. If the word addressed by the CPU is not found in the

cache, the main memory is accessed to read the word. A block of words containing the one just

accessed is then transferred from main memory to cache memory

 The performance of cache memory is frequently measured in terms of a quantity called

hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a

hit. If the word is not found in cache, it is in main memory and it counts as a miss. The ratio of

the number of hits divided by the total CPU references to memory (hits plus misses) is the

hit ratio.

 The average memory access time of a computer system can be improved considerably by use of

a cache.

 The transformation of data from main memory to cache memory is referred to as a mapping

process. Three types of mapping procedures are :

2. Associative mapping

3. Direct mapping

4. Set-associative mapping.

 Consider the following memory organization:

UNIT-IV 17

COMPUTER ORGANIZATION AND ARCHITECTURE

ASSOCIATIVE MAPPING

 The faster and most flexible cache organization use an associative memory. The associative

memory stores both the address and content (data) of the memory word. This permits any

location in cache to store any word from main memory.

 A CPU address of 15 bits is placed in the argument register and

the associative memory is searched for a matching address. If

the address is found, the corresponding 12-bit data is read and

sent to the CPU.

 If no match occurs, the main memory is accessed for the word.

The address-data pair is then transferred to the associative cache

memory. If the cache is full, an address−data pair must be

displaced to make room for a pair that is needed and not

presently in the cache.

 The decision as to what pair is replaced is determined from the replacement algorithm that the

designer chooses for the cache. A simple procedure is to replace cells of the cache in round-

robin order whenever a new word is requested from main memory. This constitutes a first-in

first-out (FIFO) replacement policy.

DIRECT MAPPING

 Associative memories are expensive compared to random-access memories because of the

added logic associated with each cell.

 Direct mapping uses RAM instead of CAM.

 The n-bit memory address is divided into two

fields: k bits for the index field and n-k bits for

the tag field. The direct mapping cache

organization uses the n-bit address to access the

main memory and the k-bit index to access the

cache.

 The internal organization of the words in the cache

memory is as shown in Fig

 Each word in cache consists of the data word and its

associated tag. When a new word is first brought into

the cache, the tag bits are stored alongside the data bits.

When the CPU generates a memory request, the index

field is used for the address to access the cache.

UNIT-IV 18

COMPUTER ORGANIZATION AND ARCHITECTURE

 The tag field of the CPU address is compared with the tag in the word read from the cache. If

the two tags match, there is a hit and the desired data word is in cache. If there is no match,

there is a miss and the required word is read from main memory. It is then stored in the cache

together with the new tag, replacing the previous value.

 The disadvantage of direct mapping is that the hit ratio can drop considerably if two or more

words whose addresses have the same index but different tags are accessed repeatedly.

 Suppose that the CPU now wants to access the word at address 02000. The index address is

000, so it is sued to access the cache. The two tags are then compared. The cache tag is 00 but

the address tag is 02, which does not produce a match. Therefore, the main memory is accessed

and the data word 5670 is transferred to the CPU. The cache word at index address 000 is then

replaced with a tag of 02 and data of 5670.

 The direct-mapping uses a block size of one word. The same organization but using a block size

of 8 words is shown in Fig.

 The index field is now divided into two parts: the block

field and the word field. The tag field stored within the

cache is common to all eight words of the same block.

 Every time a miss occurs, an entire block of eight words

must be transferred from main memory to cache

memory. Although this takes extra time, the hit ratio

will most likely improve with a larger block size

because of the sequential nature of computer programs.

SET-ASSOCIATIVE MAPPING

 Set-associative mapping is an improvement over the direct-mapping organization in that each

word of cache can store two or more words of memory under the same index address.

 Each data word is stored together with its tag and the number of

tag-data items in one word of cache is said to form a set.

 Each index address refers to two data words and their associated

tags. Each tag requires six bits and each data word has 12 bits, so

the word length is 2(6 + 12) = 36 bits. An index address of nine

bits can accommodate 512 words. Thus the size of cache

memory is 512 × 36. It can accommodate 1024

 The words stored at addresses 01000 and 02000 of main memory are stored in cache memory at

index address 000. Similarly, the words at addresses 02777 and 00777 are stored in cache at

index address 777.

UNIT-IV 19

COMPUTER ORGANIZATION AND ARCHITECTURE

 When the CPU generates a memory request, the index value of the address is used to access the

cache. The tag field of the CPU address is then compared with both tags in the cache to

determine if a match occurs.

 The hit ratio will improve as the set size increases because more words with the same index but

different tags can reside in cache.

 When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of

the tag-data items with a new value. The most common replacement algorithms used are:

random replacement, first-in first out (FIFO), and least recently used (LRU).

WRITING INTO CACHE

 An important aspect of cache organization is concerned with memory write requests. If the

operation is a write, there are two ways that the system can proceed.

 The simplest and most commonly used procedure is to up data main memory with every

memory write operation, with cache memory being updated in parallel if it contains the word at

the specified address. This is called the write-through method. This method has the advantage

that main memory always contains the same data as the cache,. This characteristic is important

in systems with direct memory access transfers.

 The second procedure is called the write-back method. In this method only the cache location is

updated during a write operation. The location is then marked by a flag so that later when the

words are removed from the cache it is copied into main memory. The reason for the write-back

method is that during the time a word resides in the cache, it may be updated several times;

however, as long as the word remains in the cache, it does not matter whether the copy in main

memory is out of date, since requests from the word are filled from the cache. It is only when

the word is displaced from the cache that an accurate copy need be rewritten into main memory.

CACHE INITIALIZATION

 The cache is initialized when power is applied to the computer or when the main memory is

loaded with a complete set of programs from auxiliary memory. After initialization the cache is

considered to be empty, built in effect it contains some non-valid data. It is customary to

include with each word in cache a valid bit to indicate whether or not the word contains valid

data.

 The cache is initialized by clearing all the valid bits to 0. The valid bit of a particular cache

word is set to 1 the first time this word is loaded from main memory and stays set unless the

cache has to be initialized again. The introduction of the valid bit means that a word in cache is

initialization condition has the effect of forcing misses from the cache until it fills with valid

data.

Pipelining and Vector Processing

Parallel Processing:
The term parallel processing indicates that the system is able to perform several operations in a single

time. Now we will elaborate the scenario, in a CPU we will be having only one Accumulator which will be storing
the results obtained from the current operation. Now if we are giving only one command such that “a+b” then the
CPU performs the operation and stores the result in the accumulator. Now we are talking about parallel
processing, therefore we will be issuing two instructions “a+b” and “c-d” in the same time, now if the result of
“a+b” operation is stored in the accumulator, then “c-d” result cannot be stored in the accumulator in the same
time. Therefore the term parallel processing in not only based on the Arithmetic, logic or shift operations. The
above problem can be solved in the following manner. Consider the registers R1 and R2 which will be storing the
operands before operation and R3 is the register which will be storing the results after the operations. Now the
above two instructions “a+b” and “c-d” will be done in parallel as follows.

• Values of “a” and “b” are fetched in to the registers R1 and R2
• The values of R1 and R2 will be sent into the ALU unit to perform the addition
• The result will be stored in the Accumulator
• When the ALU unit is performing the calculation, the next data “c” and “d” are brought into R1 and

R2.
• Finally the value of Accumulator obtained from “a+b” will be transferred into the R3
• Next the values of C and D from R1 and R2 will be brought into the ALU to perform the “c-d”

operation.
• Since the accumulator value of the previous operation is present in R3, the result of “c-d” can be

safely stored in the Accumulator.
This is the process of parallel processing of only one CPU. Consider several such CPU performing the
calculations separately. This is the concept of parallel processing.

In the above figure we can see that the data stored in the processor registers is being sent to separate
devices basing on the operation needed on the data. If the data inside the processor registers is requesting for
an arithmetic operation, then the data will be sent to the arithmetic unit and if in the same time another data is
requested in the logic unit, then the data will be sent to logic unit for logical operations. Now in the same time
both arithmetic operations and logical operations are executing in parallel. This is called as parallel processing.

Instruction Stream: The sequence of instructions read from the memory is called as an Instruction Stream

Data Stream: The operations performed on the data in the processor is called as a Data Stream.

The computers are classified into 4 types based on the Instruction Stream and Data Stream. They are called as
the Flynn's Classification of computers.

 Pipelining and Vector Processing Unit V

Flynn's Classification of Computers:

• Single Instruction Stream and Single Data Stream (SISD)
• Single Instruction Stream and Multiple Data Stream (SIMD)
• Multiple Instruction Stream and Single Data Stream (MISD)
• Multiple Instruction Stream and Multiple Data Stream (MIMD)

SISD represents the organization of a single computer containing a control unit, a processor unit and a memory
unit. Instructions are executed sequentially and the system may or may not have internal parallel processing
capabilities. Parallel processing in this case may be achieved by means of multiple functional units or by pipeline
processing.

SIMD represents an organization that includes many processing units under the supervision of a common
control unit. All processors receive the same instruction from the control unit but operate on different items of
data. The shared memory unit must contain multiple modules so that it can communicate with all the processors
simultaneously.
MISD structure is only of theoretical interest since no practical system has been constructed using this
organization because Multiple instruction streams means more no of instructions, therefore we have to perform
multiple instructions on same data at a time. This is practically impossible.
MIMD structure refers to a computer system capable of processing several programs at the same time operating
on different data.

Pipelining: Pipelining is a technique of decomposing a sequential process into sub operations, with each sub
process being executed in a special dedicated segment that operates concurrently with all other segments. We
can consider the pipelining concept as a collection of several segments of data processing programs which will
be processing the data and sending the results to the next segment until the end of the processing is reached.
We can visualize the concept of pipelining in the example below.
Consider the following operation: Result=(A+B)*C

• First the A and B values are Fetched which is nothing but a “Fetch Operation”.
• The result of the Fetch operations is given as input to the Addition operation, which is an Arithmetic

operation.
• The result of the Arithmetic operation is again given to the Data operand C which is fetched from the

memory and using another arithmetic operation which is Multiplication in this scenario is executed.
• Finally the Result is again stored in the “Result” variable.

In this process we are using up-to 5 pipelines which are the
→ Fetch Operation (A)| Fetch Operation(B) | Addition of (A & B) | Fetch Operation(C) |

Multiplication of ((A+B), C) | Load ((A+B)*C), Result);

The contents of the Registers in the above pipeline concept are given below. We are considering the
implementation of A[7] array with B[7] array.

Clock
Pulse

Number

Segment1 Segment 2 Segment 3

R1 R2 R3 R4 R5
1 A1 B1 - - -

2 A2 B2 A1*B1 C1 -
3 A3 B3 A2*B2 C2 A1*B1+C1
4 A4 B4 A3*B3 C3 A2*B2+C2

5 A5 B5 A4*B4 C4 A3*B3+C3
6 A6 B6 A5*B5 C5 A4*B4+C4
7 A7 B7 A6*B6 C6 A5*B5+C5
8 A7*B7 C7 A6*B6+C6
9 A7*B7+C7

 If the above concept is executed with out the pipelining, then each data operation will be taking 5 cycles,
totally they are 35 cycles of CPU are needed to perform the operation. But if are using the concept of pipeline,
we will be cutting off many cycles. Like given in the table below when the values of A1 and B1 are coming into
the registers R1 and R2, the registers R3, R4 and R5 are empty. Now in the second cycle the multiplication of A1
and B1 is transferred to register R3, now in this point the contents of the register R1 and R2 are empty.
Therefore the next two values A2 and B2 can be brought into the registers. Again in the third cycle after fetching
the C1 value the operation (A1*B1)+C1 will be performed. So in this way we can achieve the total concept in
only 9 cycles. Here we are assuming that the clock cycle timing is fixed. This is the concept of pipelining.

Below is the diagram of 4 segment pipeline.

The below table is the space time diagram for the execution of 6 tasks in the 4 segment pipeline.

Arithmetic pipeline:

The above diagram represents the implementation of arithmetic pipeline in the area of floating point
arithmetic operations. In the diagram, we can see that two numbers A and B are added together. Now the values
of A and B are not normalized, therefore we must normalize them before start to do any operations. The first
thing is we have to fetch the values of A and B into the registers. Here R denote a set of registers. After that the
values of A and B are normalized, therefore the values of the exponents will be compared in the comparator.
After that the alignment of mantissa will be taking place. Finally, we will be performing addition, since an addition
is happening in the adder circuit. The source registers will be free and the second set of values can be brought.
Like wise when the normalizing of the result is taking place, addition of the new values will be added in the adder

circuit and when addition is going on, the new data values will be brought into the registers in the start of the
implementation. We can see how the addition is being performed in the diagram.

Instruction Pipeline: Pipelining concept is not only limited to the data stream, but can also be applied on the
instruction stream. The instruction pipeline execution will be like the queue execution. In the queue the data that
is entered first, will be the data first retrieved. Therefore when an instruction is first coming, the instruction will be
placed in the queue and will be executed in the system. Finally the results will be passing on to the next
instruction in the queue. This scenario is called as Instruction pipelining. The instruction cycle is given below

• Fetch the instruction from the memory
• Decode the instruction
• calculate the effective address
• Fetch the operands from the memory
• Execute the instruction
• Store the result in the proper place.

In a computer system each and every instruction need not necessary to execute all the above phases. In a
Register addressing mode, there is no need of the effective address calculation. Below is the example of the four
segment instruction pipeline.

In the above diagram we can see that the instruction which is first executing has to be fetched from the memory,
there after we are decoding the instruction and we are calculating the effective address. Now we have two ways
to execute the instruction. Suppose we are using a normal instruction like ADD, then the operands for that
instruction will be fetched and the instruction will be executed. Suppose we are executing an instruction such as
Fetch command. The fetch command itself has internally three more commands which are like ACTDR, ARTDR
etc.., therefore we have to jump to that particular location to execute the command, so we are using the branch
operation. So in a branch operation, again other instructions will be executed. That means we will be updating
the PC value such that the instruction can be executed. Suppose we are fetching the operands to perform the
original operation such as ADD, we need to fetch the data. The data can be fetched in two ways, either from the
main memory or else from an input output devices. Therefore in order to use the input output devices, the
devices must generate the interrupts which should be handled by the CPU. Therefore the handling of interrupts
is also a kind of program execution. Therefore we again have to start from the starting of the program and
execute the interrupt cycle.

The different instruction cycles are given below:

• FI → FI is a segment that fetches an instruction
• DA → DA is a segment that decodes the instruction and identifies the effective address.
• FO → FO is a segment that fetches the operand.
• EX → EX is a segment that executes the instruction with the operand.

Pipelining Conflicts: There are different conflicts that are caused by using the pipeline concept. They are

• Resource Conflicts: These are caused by access to memory by two or more segments at the same
time. Most of these conflicts can be resolved by using separate instruction and data memories

• Data Dependency: These conflicts arise when an instruction depends on the result of a previous
instruction, but this result is not yet available.

• Branch difficulties: These difficulties arise from branch and other instructions that change the value
of PC.

Data Dependency Conflict: The data dependency conflict can be solved by using the following methods.

• Hardware Interlocks: The most straight forward method is to insert hardware interlocks. An interlock
is a circuit that detects instructions whose source operands are destination of instructions farther up
in the pipeline. Detection of this situation causes the instruction whose source is not available to be
delayed by enough clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delay.

• Operand Forwarding: Another technique called operand forwarding uses special hardware to detect
a conflict and avoid the conflict path by using a special path to forward the values between the
pipeline segments.

• Delayed Load: The delayed load operation is nothing but when executing an instruction in the
pipeline, simply delay the execution starting of the instruction such that all the data that is needed for
the instruction can be successfully updated before execution.

Branch Conflicts:
The following are the solutions for solving the branch conflicts that are obtained in the pipelining concept.

• Pre-fetch Target Instruction: In this the branch instructions which are to be executed are pre-fetched
to detect if any errors are present in the branch before execution.

• Branch Target Buffer: BTB is the associative memory implementation of the branch conditions.
• Loop buffer: The loop buffer is a very high speed memory device. Whenever a loop is to be executed

in the computer. The complete loop will be transferred in to the loop buffer memory and will be
executed as in the cache memory.

• Branch Prediction: The use of branch prediction is such that, before a branch is to be executed, the
instructions along with the error checking conditions are checked. Therefore we will not be going into
any unnecessary branch loops.

• Delayed Branch: The delayed branch concept is same as the delayed load process in which we are
delaying the execution of a branch process, before all the data is fetched by the system for
beginning the CPU.

RISC Pipeline:
The ability to use the instruction pipelining concept in the RISC architecture is very efficient. The

simplicity of the instruction set can be utilized to implement an instruction pipeline using a small number of sub
operations, with each being executed in one clock cycle. Due to fixed length instruction format, the decoding of
the operation can occur at the same time as the register selection. Since the arithmetic, logic and shift
operations are done on register basis, there is no need for extra fetching or effective address decoding steps to
perform the operation. So pipelining concept can be effectively used in this scenario. Therefore the total
operations can be categorized as one segment will be fetching the instruction from program memory, the other
segment executes the instruction in the ALU and the third segment may be used to store the result of the ALU
operation in a destination register. The data transfer instructions in RISC are limited to only Load and Store
instructions. To prevent conflicts in data transfer, we will be using two separate buses one for storing the
instructions and other for storing the data.

Example of three segment instruction pipeline:
We want to perform a operation in which there is some arithmetic, logic or shift operations. Therefore as per the
instruction cycle, we will be having the following steps:

• I: Instruction Fetch
• A: ALU Operation
• E: Execute Instruction.

The I segment will be fetching the instruction from program memory. The instruction is decoded and an ALU
operation is performed in the A segment. In the A segment the ALU operation instruction will be fetched and the
effective address will be retrieved and finally in the E segment the instruction will be executed.

Delayed Load:

Consider the following instructions:

1. LOAD: R1 ← M[address 1]
2. LOAD: R2 ← M[address 2]
3. ADD: R3 ← R1 + R2
4. STORE: M[address 3] ← R3

The below tables will be showing the pipelining concept with the data conflict and without data conflict.

Vector Processing:
Normal computational systems are not enough in some special processing requirements. Such as, in

special processing systems like artificial intelligence systems and some weather forecasting systems, terrain
analysis, the normal systems are not sufficient. In such systems the data processing will be involving on very
high amount of data, we can classify the large data as a very big arrays. Now if we want to process this data,
naturally we will need new methods of data processing. The vectors are considered as the large one
dimensional array of data. The term vector processing involves the data processing on the vectors of such large
data.
The vector processing system can be understand by the example below.
Consider a program which is adding two arrays A and B of length 100;

Machine level program

Initialize I=0
20 Read A(I)

Read B(I)
Store C(I)=A(I)+B(I)
Increment I=I+1
If I<=100 go to 20
continue

so in this above program we can see that the two arrays are being added in a loop format. First we are starting
from the value of 0 and then we are continuing the loop with the addition operation until the I value has reached
to 100. In the above program there are 5 loop statements which will be executing 100 times. Therefore the total
cycles of the CPU taken is 500 cycles. But if we use the concept of vector processing then we can reduce the
unnecessary fetch cycles, since the fetch cycles are used in the creation of the vector. The same program
written in the vector processing statement is given below.

C(1:100)=A(1:100)+B(1:100)
In the above statement, when the system is creating a vector like this the original source values are fetched from
the memory into the vector, therefore the data is readily available in the vector. So when a operation is initiated
on the data, naturally the operation will be performed directly on the data and will not wait for the fetch cycle. So
the total no of CPU Cycles taken by the above instruction is only 100.

Instruction format of Vector Instruction

Below we can see the implementation of the vector processing concept on the following matrix multiplication. In
the matrix multiplication, we will be multiplying the row of A matrix with the column of the B matrix elements
individually finally we will be adding the results.

In the above diagram we can see that how the values of A vector and B Vector which represents the matrix are
being multiplied. Here we will be considering a 4x4 matrix A and B. Now the from the source A vector we will be
taking the first 4 values and will be sending to the multiplier pipeline along with the 4 values from the vector B.
The resultant 1 value is stored in the adder pipeline. Like wise remaining values from a row and column
multiplication will be brought into the adder pipeline, which will be performing the addition of all the things finally
we will have the result of one row to column multiplication. When addition operation is taking place in the adder
pipeline the next set of values will be brought into the multiplier pipeline, so that all the operations can be
performed simultaneously using the parallel processing concepts by the implementation of pipeline.

Memory Interleaving:

Pipelining and vector processing naturally requires the several data elements for processing. So instead of using
the same memory and selecting one at a time, we will be using several modules of the memory such that we can
have separate data for each processing unit. As we can see in the above in the diagram each memory array is
designed independently of the next memory array. Such that when the data needed for a operation is stored in
the first memory array, another data for another operation can be safely stored in the next memory array, so that
the operations can be performed concurrently. This process is called as memory interleaving.

Array Processors: In a distributed computing we will be having several computers working on the same task
such that their processing power will be shared among all the systems so that they can perform the task fast. But
the disadvantage of the distributed computing is that we have to give separate resources for each system and
every system need to be controlled by a task initiating system or can be called as a central control unit. The
management of this kind of systems is very hard. In order to perform a specific operation involving a large
processing there is no need of distributed computing. The alternate for this kind of scenarios is array processors
or attached array processors. The simplest is the SIMD Attached array processor.

Attached Array processor
The above diagram shows that the system is attached a separate processor which will be used for operation
specific purpose. If the array processor is designed for solving floating point arithmetic, then it will only perform
that operations. The detailed figure of the attached array processor is given in the diagram below. This will be
having the SIMD architecture. In this we will be having a master control unit which will be coordinating all the
process in the array processor. Each processing unit in the array processor is having a local memory unit as in
the memory interleaving concept on which it performs the operations. Finally we will be having a main memory in
which the original source data and the results that are obtained from the array processor will be stored. This is

the working principle of the SIMD array processor technology.

SIMD Array Processor Technology

1

Characteristics of multiprocessors – Interconnection structures – Inter processor
arbitration – Inter processor communication and synchronization – Cache coherence

5.1 Multiprocessor:

• A set of processors connected by a communications network

Fig. 5.1 Basic multiprocessor architecure

• A multiprocessor system is an interconnection of two or more CPU’s with

memory and input-output equipment.

• Multiprocessors system are classified as multiple instruction stream,

multiple data stream systems(MIMD).

• There exists a distinction between multiprocessor and multicomputers that

though both support concurrent operations.

• In multicomputers several autonomous computers are connected through

a network and they may or may not communicate but in a multiprocessor

system there is a single OS Control that provides interaction between

processors and all the components of the system to cooperate in the

solution of the problem.

• VLSI circuit technology has reduced the cost of the computers to such a

low Level that the concept of applying multiple processors to meet system

performance requirements has become an attractive design possibility.

UNIT V MULTIPROCESSORS

2

Fig. 5.2 Taxonomy of mono- mulitporcessor organizations

Characteristics of Multiprocessors:

Benefits of Multiprocessing:

1. Multiprocessing increases the reliability of the system so that a failure or error

in one part has limited effect on the rest of the system. If a fault causes one processor

to fail, a second processor can be assigned to perform the functions of the disabled

one.

2. Improved System performance. System derives high performance from the

fact that computations can proceed in parallel in one of the two ways:

a) Multiple independent jobs can be made to operate in parallel.

 b) A single job can be partitioned into multiple parallel tasks.

This can be achieved in two ways:

- The user explicitly declares that the tasks of the program be executed in

parallel

3

- The compiler provided with multiprocessor s/w that can automatically

detect parallelism in program. Actually it checks for Data dependency

COUPLING OF PROCESSORS

Tightly Coupled System/Shared Memory:

- Tasks and/or processors communicate in a highly synchronized fashion

- Communicates through a common global shared memory

- Shared memory system. This doesn’t preclude each processor from having

its own local memory(cache memory)

Loosely Coupled System/Distributed Memory

- Tasks or processors do not communicate in a synchronized fashion.

- Communicates by message passing packets consisting of an address, the

data content, and some error detection code.

- Overhead for data exchange is high

- Distributed memory system

Loosely coupled systems are more efficient when the interaction between tasks is

minimal, whereas tightly coupled system can tolerate a higher degree of interaction

between tasks.

Shared (Global) Memory

- A Global Memory Space accessible by all processors

- Processors may also have some local memory

 Distributed (Local, Message-Passing) Memory

- All memory units are associated with processors

- To retrieve information from another processor's memory a message must be

sent there

Uniform Memory

- All processors take the same time to reach all memory locations

Non-uniform (NUMA) Memory

- Memory access is not uniform

4

Fig. 5.3 Shared and distributed memory

Shared memory multiprocessor:

Fig 5.4 Shared memory multiprocessor

Characteristics

- All processors have equally direct access to one large memory address

space

 Limitations

- Memory access latency; Hot spot problem

5.2 Interconnection Structures:

The interconnection between the components of a multiprocessor System can

have different physical configurations depending n the number of transfer paths that are

available between the processors and memory in a shared memory system and among

the processing elements in a loosely coupled system.

5

Some of the schemes are as:

- Time-Shared Common Bus

- Multiport Memory

- Crossbar Switch

- Multistage Switching Network

- Hypercube System

a. Time shared common Bus

- All processors (and memory) are connected to a common bus or busses

- Memory access is fairly uniform, but not very scalable

- A collection of signal lines that carry module-to-module communication

- Data highways connecting several digital system elements

- Operations of Bus

Fig. 5.5 Time shared common bus organization

Fig. 5.6 system bus structure for multiprocessor

6

In the above figure we have number of local buses to its own local memory and to one

or more processors. Each local bus may be connected to a CPU, an IOP, or any

combinations of processors. A system bus controller links each local bus to a common

system bus. The I/O devices connected to the local IOP, as well as the local memory,

are available to the local processor. The memory connected to the common system bus

is shared by all processors. If an IOP is connected directly to the system bus the I/O

devices attached to it may be made available to all processors

Disadvantage.:

• Only one processor can communicate with the memory or another

processor at any given time.

• As a consequence, the total overall transfer rate within the system is

limited by the speed of the single path

b. Multiport Memory:

Multiport Memory Module

- Each port serves a CPU

Memory Module Control Logic

- Each memory module has control logic

- Resolve memory module conflicts Fixed priority among CPUs

Advantages

- The high transfer rate can be achieved because of the multiple paths.

 Disadvantages:

- It requires expensive memory control logic and a large number of cables

and connections

Fig. 5.7 Multiport memory

7

c. Crossbar switch:

- Each switch point has control logic to set up the transfer path between a

processor and a memory.

- It also resolves the multiple requests for access to the same memory on

the predetermined priority basis.

- Though this organization supports simultaneous transfers from all memory

modules because there is a separate path associated with each Module.

- The H/w required to implement the switch can become quite large and

complex

a) b)

Fig. 5.8 a) cross bar switch b) Block diagram of cross bar switch

Advantage:

- Supports simultaneous transfers from all memory modules

Disadvantage:

- The hardware required to implement the switch can become quite large and

complex.

d. Multistage Switching Network:

- The basic component of a multi stage switching network is a two-input, two-

output interchange switch.

8

Fig. 5.9 operation of 2X2 interconnection switch

Using the 2x2 switch as a building block, it is possible to build a multistage network to

control the communication between a number of sources and destinations.

- To see how this is done, consider the binary tree shown in Fig. below.

- Certain request patterns cannot be satisfied simultaneously.

i.e., if P1 � 000~011, then P2 � 100~111

Fig 5.10 Binary tree with 2x2 switches

Fig. 5.11 8X8 Omega switching network

9

- Some request patterns cannot be connected simultaneously. i.e., any two

sources cannot be connected simultaneously to destination 000 and 001

- In a tightly coupled multiprocessor system, the source is a processor and the

destination is a memory module.

- Set up the path � transfer the address into memory � transfer the data

- In a loosely coupled multiprocessor system, both the source and destination are

Processsing elements.

e. Hypercube System:

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled

system composed of N=2n processors interconnected in an n-dimensional binary

cube.

- Each processor forms a node of the cube, in effect it contains not only a CPU

but also local memory and I/O interface.

- Each processor address differs from that of each of its n neighbors by exactly

one bit position.

- Fig. below shows the hypercube structure for n=1, 2, and 3.

- Routing messages through an n-cube structure may take from one to n links

from a source node to a destination node.

- A routing procedure can be developed by computing the exclusive-OR of the

source node address with the destination node address.

- The message is then sent along any one of the axes that the resulting binary

value will have 1 bits corresponding to the axes on which the two nodes differ.

- A representative of the hypercube architecture is the Intel iPSC computer

complex.

- It consists of 128(n=7) microcomputers, each node consists of a CPU, a

floating point processor, local memory, and serial communication interface

units

10

Fig. 5.12 Hypercube structures for n=1,2,3

5.3 Inter-processor Arbitration

- Only one of CPU, IOP, and Memory can be granted to use the bus at a time

- Arbitration mechanism is needed to handle multiple requests to the shared

resources to resolve multiple contention

- SYSTEM BUS:

o A bus that connects the major components such as CPU’s, IOP’s and

memory

o A typical System bus consists of 100 signal lines divided into three

functional groups: data, address and control lines. In addition there are

power distribution lines to the components.

- Synchronous Bus

o Each data item is transferred over a time slice

o known to both source and destination unit

o Common clock source or separate clock and synchronization signal is

transmitted periodically to synchronize the clocks in the system

- Asynchronous Bus

o Each data item is transferred by Handshake mechanism

� Unit that transmits the data transmits a control signal that indicates

the presence of data

� Unit that receiving the data responds with another control signal to

acknowledge the receipt of the data

11

o Strobe pulse -supplied by one of the units to indicate to the other unit

when the data transfer has to occur

Table 5.1 IEEE standard 796 multibus signals

Fig. 5.13 Inter-processor arbitration static arbitration

12

Interprocessor Arbitration Dynamic Arbitration

- Priorities of the units can be dynamically changeable while the system is in

operation

- Time Slice

o Fixed length time slice is given sequentially to each processor, round-

robin fashion

- Polling

o Unit address polling -Bus controller advances the address to identify the

requesting unit. When processor that requires the access recognizes its

address, it activates the bus busy line and then accesses the bus. After a

number of bus cycles, the polling continues by choosing a different

processor.

- LRU

o The least recently used algorithm gives the highest priority to the

requesting device that has not used bus for the longest interval.

- FIFO

o The first come first serve scheme requests are served in the order

received. The bus controller here maintains a queue data structure.

- Rotating Daisy Chain

o Conventional Daisy Chain -Highest priority to the nearest unit to the bus

controller

o Rotating Daisy Chain –The PO output of the last device is connected to

the PI of the first one. Highest priority to the unit that is nearest to the unit

that has most recently accessed the bus(it becomes the bus controller)

5.4 Inter processor communication and synchronization:

- The various processors in a multiprocessor system must be provided with a

facility for communicating with each other.

o A communication path can be established through a portion of memory or

a common input-output channels.

13

- The sending processor structures a request, a message, or a procedure, and

places it in the memory mailbox.

o Status bits residing in common memory

o The receiving processor can check the mailbox periodically.

o The response time of this procedure can be time consuming.

- A more efficient procedure is for the sending processor to alert the receiving

processor directly by means of an interrupt signal.

- In addition to shared memory, a multiprocessor system may have other shared

resources.

o e.g., a magnetic disk storage unit.

- To prevent conflicting use of shared resources by several processors there must

be a provision for assigning resources to processors. i.e., operating system.

- There are three organizations that have been used in the design of operating

system for multiprocessors: master-slave configuration, separate operating

system, and distributed operating system.

- In a master-slave mode, one processor, master, always executes the operating

system functions.

- In the separate operating system organization, each processor can execute the

operating system routines it needs. This organization is more suitable for loosely

coupled systems.

- In the distributed operating system organization, the operating system routines

are distributed among the available processors. However, each particular

operating system function is assigned to only one processor at a time. It is also

referred to as a floating operating system.

Loosely Coupled System

- There is no shared memory for passing information.

- The communication between processors is by means of message passing

through I/O channels.

- The communication is initiated by one processor calling a procedure that resides

in the memory of the processor with which it wishes to communicate.

14

- The communication efficiency of the interprocessor network depends on the

communication routing protocol, processor speed, data link speed, and the

topology of the network.

Interprocess Synchronization

- The instruction set of a multiprocessor contains basic instructions that are used

to implement communication and synchronization between cooperating

processes.

o Communication refers to the exchange of data between different

processes.

o Synchronization refers to the special case where the data used to

communicate between processors is control information.

- Synchronization is needed to enforce the correct sequence of processes and to

ensure mutually exclusive access to shared writable data.

- Multiprocessor systems usually include various mechanisms to deal with the

synchronization of resources.

o Low-level primitives are implemented directly by the hardware.

o These primitives are the basic mechanisms that enforce mutual exclusion

for more complex mechanisms implemented in software.

o A number of hardware mechanisms for mutual exclusion have been

developed.

� A binary semaphore

Mutual Exclusion with Semaphore

- A properly functioning multiprocessor system must provide a mechanism that will

guarantee orderly access to shared memory and other shared resources.

o Mutual exclusion: This is necessary to protect data from being changed

simultaneously by two or more processors.

o Critical section: is a program sequence that must complete execution

before another processor accesses the same shared resource.

- A binary variable called a semaphore is often used to indicate whether or not a

processor is executing a critical section.

15

- Testing and setting the semaphore is itself a critical operation and must be

performed as a single indivisible operation.

- A semaphore can be initialized by means of a test and set instruction in

conjunction with a hardware lock mechanism.

- The instruction TSL SEM will be executed in two memory cycles (the first to

read and the second to write) as follows:

 R M[SEM], M[SEM] 1

5.5 Cache Coherence

cache coherence is the consistency of shared resource data that ends up stored in

multiple local caches. When clients in a system maintain caches of a common memory

resource, problems may arise with inconsistent data, which is particularly the case with

CPUs in a multiprocessing system.

Fig. 5.14 cache coherence

16

Shared Cache

-Disallow private cache

-Access time delay

Software Approaches

* Read-Only Data are Cacheable

- Private Cache is for Read-Only data

- Shared Writable Data are not cacheable

- Compiler tags data as cacheable and noncacheable

- Degrade performance due to software overhead

* Centralized Global Table

- Status of each memory block is maintained in CGT: RO(Read-Only);

RW(Read and Write)

- All caches can have copies of RO blocks

- Only one cache can have a copy of RW block

- Hardware Approaches

* Snoopy Cache Controller

- Cache Controllers monitor all the bus requests from CPUs and IOPs

- All caches attached to the bus monitor the write operations

- When a word in a cache is written, memory is also updated (write through)

- Local snoopy controllers in all other caches check their memory to

determine if they have a copy of that word; If they have, that location is

marked invalid(future reference to this location causes cache miss)

	COA -Unit 1 Digital Computers Register Transfer Language and Micro operations.pdf
	Ok print Digital Computer.pdf
	Ok Print Register Transfer Language.pdf

	Ok Print BASIC.pdf
	Ok Print Microprogrammed Control.pdf
	Ok - Print Central-Processing-Unit.pdf
	Ok Print Data Representation.pdf
	Ok Print Computer Arithmetic.pdf
	UNIT-IV
	Priority Interrupt

	INPUT-OUTPUT INTERFACE
	I/O BUS AND INTERFACE MODULES
	I/O VERSUS MEMORY BUS
	ISOLATED VERSUS MEMORY-MAPPED I/O
	EXAMPLE OF I/O INTERFACE

	ASYNCHRONOUS DATA TRANSFER
	STROBE CONTROL
	HANDSHAKING
	ASYNCHRONOUS SERIAL TRANSFER
	Asynchronous Communication Interface
	First-In, First-Out Buffer
	EXAMPLE OF PROGRAMMED I/O
	INTERRUPT-INITIATED I/O
	SOFTWARE CONSIDERATIONS
	PRIORITY INTERRUPT
	DAISY-CHAINING PRIORITY
	PARALLEL PRIORITY INTERRUPT
	Priority Encoder
	Interrupt Cycle
	Software Routines
	Initial and Final Operations
	 Initial Sequence
	 Final Sequence

	DIRECT MEMORY ACCESS (DMA):
	DMA CONTROLLER
	DMA Transfer
	Memory Organization: Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory.

	MEMORY HIERARCHY
	MAIN MEMORY
	RAM AND ROM CHIPS
	MEMORY ADDRESS MAP
	MEMORY CONNECTION TO CPU

	AUXILIARY MEMORY:
	MAGNETIC DISKS
	MAGNETIC TAPE

	ASSOCIATIVE MEMORY
	HARDWARE ORGANIZATION
	MATCH LOGIC
	xj= Aj Fij + A'jF'ij
	Mi= x1 x2 x3 … xn
	Mi = (x1 + K '1) (x2 + K '2) (x3 + K '3) …. (xn + K 'n)
	READ OPERATION
	WRITE OPERATION
	CACHE MEMORY
	ASSOCIATIVE MAPPING
	DIRECT MAPPING

