

(An Autonomous Institution under UGC, New Delhi)

(Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi and Accredited by NBA, NAAC)
Sheriguda Village, Ibrahimpatnam Mandal, Ranga Reddy Dist. – 501 510

BACHELOR OF TECHNOLOGY CSE(CYBER SECURITY)

CHOICE BASED CREDIT SYSTEM (CBCS)

ACADEMIC REGULATIONS, COURSE STRUCTURE AND SYLLABI FOR

I TO IV YEARS – I & II SEMESTERS

UNDER AUTONOMOUS STATUS FOR THE BATCHES ADMITTED FROM

THE ACADEMIC YEAR 2022 – 23

B.Tech. Regular Four Year Degree Programme (For the batches admitted from the academic year 2022–23)

B.Tech. (Lateral Entry Scheme)
(For the batches admitted from the academic year 2023 - 24)

Note: The regulations here under are subject to amendments as may be made by the Academic Council of the College from time to time. Any or all such amendments will be effective from such date and to such batches of candidates (including those already undergoing the program) as may be decided by the Academic Council.

(An Autonomous Institution under UGC, New Delhi)

(Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi and Accredited by NBA, NAAC)
Sheriguda Village, Ibrahimpatnam Mandal, Ranga Reddy Dist. – 501 510

Vision of the Institute

To be a premier institution in engineering & technology and management for competency, values and social consciousness

Mission of the Institute

IM₁: Provide high quality academic programs, training activities and research facilities.

IM₂: Promote continuous industry – institute interaction aimed at promoting employability, entrepreneurship, leadership and research aptitude among stakeholders

IM₃: Contribute the economic and technological development of the region, state and Nation.

(An Autonomous Institution under UGC, New Delhi)

(Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi and Accredited by NBA, NAAC)
Sheriguda Village, Ibrahimpatnam Mandal, Ranga Reddy Dist. – 501 510

VISION of the Department

To be a technologically adaptive centre for computing by grooming the students as top notch professionals.

MISSION of the Department

DM1: To offer quality education in computing.

DM2: To provide an environment that enables overall

development of all the stakeholders.

DM3: To impart training on emerging technologies

DM4: To encourage participation of stakeholders in

Research and Development.

PROGRAM OUTCOMES (POs):

PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
P06	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
P07	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs):

- PSO1 Communication, Web Technology and Operating Systems for building IOT and Cloud Computing applications.
- PSO2 Design, develop and test software systems for worldwide network of computers to provide solutions to real world Problems.
- PSO3 Analyze and recommend the appropriate IT infrastructure required for the implementation of a project.

PROGRAM EDUCATIONAL OBJECTIVES (PEOS)

- **PEO1: Higher Studies:** Graduate with an ability to pursue higher studies and get employment in reputed institutions and organizations.
- **PEO2: Domain Knowledge:** Graduate with an ability to design and develop a product.
- **PEO3: Professional Career:** Graduate with excellence by multidisciplinary approach to achieve successful professional career.
- **PEO4:** Life Long Learning: Graduate with an ability to learn advanced skills to face professional competence through life long learning.

(An Autonomous Institution under UGC, New Delhi)

ACADEMIC REGULATIONS 2022 (BR22) FOR CHOICE BASED CREDIT SYSTEM (CBCS) B.TECH. DEGREE COURSES

(Applicable for Students admitted from the academic year 2022-2023)

PRELIMINARY DEFINITIONS AND NOMENCLATURES

- "Autonomous Institute / College" means an institute / college designated as autonomous institute / college by the UGC, New Delhi and JNTUH Statutes, 2014.
- "Academic Autonomy" means freedom to a College in all aspects of conducting its academic programs granted by the University for promoting excellence.
- "Commission" means University Grants Commission (UGC), New Delhi.
- *AICTE" means All India Council for Technical Education.
- "University" means the Jawaharlal Nehru Technological University, Hyderabad.
- "College" means SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY, Hyderabad unless indicated otherwise by the context.
- * "Programme" means: Bachelor of Technology (B.Tech) degree programme
- "Branch" means specialization in a programme like B.Tech degree programme in Electronics and Communication Engineering, B.Tech degree programme in Computer Science and Engineering etc
- "Course" or "Subject" means a theory or practical subject, identified by its course number and course-title, which is normally studied in a semester. For example, R22MTH1111: Matrices and Calculus, R22CSE2112: Data Structures etc.
- ➤ T Tutorial, P Practical, D Drawing, L Theory, C Credits

(An Autonomous Institution under UGC, New Delhi)

ACADEMIC REGULATIONS 2022 (BR22) FOR CHOICE BASED CREDIT SYSTEM (CBCS) B.TECH. DEGREE COURSES

(Applicable for Students admitted from the academic year 2022-2022)

1.0 Under-Graduate Degree Programme in Engineering & Technology (UGP in E&T)

Sri Indu College of Engineering & Technology (SICET) offers a 4-year (8 semesters) Bachelor of Technology (B.Tech.) degree programme, under Choice Based Credit System (CBCS) with effect from the academic year 2022-23.

1.1 Courses of study

The following courses of study (Branches) are offered at present by the college with specialization in the B. Tech. Course:

SI. No.	Branch Code	Branch
1	1	CIVIL ENGINEERING
2	2	ELECTRICAL & ELECTRONICS ENGINEERING
3	3	MECHANICAL ENGINEERING
4	4	ELECTRONICS & COMMUNICATION ENGINEERING
5	5	COMPUTER SCIENCE & ENGINEERING
6	12	INFORMATION TECHNOLOGY
7.	33	COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
8.	67	CSE (DATA SCIENCE)
9.	66	CSE (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)
10.	62	CSE (CYBER SECURITY)
11.	69	CSE – INTERNET OF THINGS (IoT)
12.	72	ARTIFICIAL INTELLIGENCE & DATA SCIENCE

2.0 Eligibility for Admission

2.1 Admission to the undergraduate(UG) programme shall be made either on the basis of the merit rank obtained by the qualified student in entrance test conducted by the Telangana State Government (EAMCET) or the University or on the basis of any other order of merit approved by the University, subject to reservations as prescribed by the government from time to time.

2.2 The medium of instructions for the entire undergraduate programme in Engineering & Technology will be English only.

3.0 B.Tech Program Structure

- 3.1 A student after securing admission shall complete the B.Tech. programme in a minimum period of four academic years (8 semesters), and a maximum period of eight academic years (16 semesters) starting from the date of commencement of first year first semester, failing which student shall forfeit seat in B.Tech course. Each student shall secure 160 credits (with CGPA ≥ 5) required for the completion of the undergraduate programme and award of the B.Tech. degree.
- **3.2** UGC/ AICTE specified definitions/ descriptions are adopted appropriately for various terms and abbreviations used in these academic regulations/ norms, which are listed below.

3.2.1 Semester Scheme

Each undergraduate programme is of 4 academic years (8 semesters) with the academic year divided into two semesters of 22 weeks (□ 90 instructional days) each and in each semester - 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)' under Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) indicated by UGC, and curriculum/course structure suggested by AICTE are followed.

3.2.2 Credit Courses

All subjects/ courses are to be registered by the student in a semester to earn credits which shall be assigned to each subject/ course in an L: T: P: C (Lecture Periods: Tutorial Periods: Practical Periods: Credits) structure based on the following general pattern.

- One credit for one hour/ week/ semester for theory/ lecture (L) courses or Tutorials.
- One credit for two hours/ week/ semester for laboratory/ practical (P) courses.

Courses like Environmental Science, Constitution of India, Intellectual Property Rights, and Gender Sensitization lab are mandatory courses. These courses will not carry any credits.

3.2.3 Subject Course Classification

All subjects/ courses offered for the undergraduate programme in E&T (B.Tech. degree programmes) are broadly classified as follows. The College has followed almost all the guidelines issued by AICTE/UGC.

S. No.	Broad Course Classification	Course Group/ Category	Course Description
1		BS – Basic	Includes mathematics, physics
'		Sciences	and chemistry subjects
2	Foundation	ES - Engineering	Includes fundamental
	Courses (FnC)	Sciences	engineering subjects
		HS – Humanities	Includes subjects related to
3		and Social sciences	humanities, social sciences
		and Goolal Goloriogo	and management
			Includes core subjects related
4	Core Courses	PC – Professional	to the parent discipline/
-	(CoC)	Core	department/ branch of
			Engineering.
5		PE – Professional Electives	Includes core subjects related to the parent discipline/ department/ branch of Engineering.
6	Elective Courses (E{C)	OE – Open Electives	Elective subjects which include inter- disciplinary subjects or subjects in an area outside the parent discipline/ department/ branch of Engineering.
7		Project Work	B.Tech. project or UG project or UG major project or Project Stage I & II
8	Core Courses	Industry Training/ Internship/ Industry Oriented Mini- project/ Mini- Project/ Skill Development Courses	Industry Training/ Internship/ Industry Oriented Mini-Project/ Mini-Project/ Skill Development Courses
9		Seminar	Seminar/ Colloquium based on core contents related to parent discipline/ department/ branch of Engineering.
10	Minor courses	-	1 or 2 Credit courses (subset of HS)
11	Mandatory Courses (MC)	-	Mandatory courses (non-credit)

Page 9

4.0 Course Registration

- 4.1 A 'faculty advisor or counselor' shall be assigned to a group of 20 students, who will advise the students about the undergraduate programme, its course structure and curriculum, choice/option for subjects/ courses, based on their competence, progress, pre- requisites and interest.
- 4.2 The academic section of the college invites 'registration forms' from students before the beginning of the semester through 'on-line registration', ensuring 'date and time stamping'. The on-line registration requests for any 'current semester' shall be **completed before the commencement of SEEs (Semester End Examinations) of the 'preceding semester'.**
- 4.3 A student can apply for **on-line** registration, **only after** obtaining the 'written approval' from faculty advisor/counselor, which should be submitted to the college academic section through the Head of the Department. A copy of it shall be retained with the Head of the Department, Faculty Advisor/ Counselor and the student.
- 4.4 A student may be permitted to register for all the subjects/ courses in a semester as specified in the course structure with maximum additional subject(s)/course(s) limited to 6 Credits (any 2 elective subjects), based on **progress** and SGPA/ CGPA, and completion of the 'pre-requisites' as indicated for various subjects/ courses, in the department course structure and syllabus contents.
- 4.5 Choice for 'additional subjects/ courses', not more than any 2 elective subjects in any Semester, must be clearly indicated, which needs the specific approval and signature of the Faculty Advisor/Mentor/HOD.
- 4.6 If the student submits ambiguous choices or multiple options or erroneous entries during on-line registration for the subject(s) / course(s) under a given/ specified course group/ category as listed in the course structure, only the first mentioned subject/ course in that category will be taken into consideration.
- 4.7 Subject/ course options exercised through on-line registration are final and cannot be changed or inter-changed; further, alternate choices also will not be considered. However, if the subject/ course that has already been listed for registration by the Head of the Department in a semester could not be offered due to any inevitable or unexpected reasons, then the student shall be allowed to have alternate choice either for a new subject (subject to offering of such a subject), or for another existing subject (subject to availability of seats). Such alternate arrangements will be made by the Head of the Department, with due notification and time-framed schedule, within a week after the commencement of class-work for that semester.
- 4.8 Dropping of subjects/ courses may be permitted, only after obtaining prior approval from the faculty advisor/ counselor 'within a period of 15 days' from the beginning of the current semester.

- 4.9 **Open Electives:** The students have to choose three Open Electives (OE-I, II & III) from the list of Open Electives given by other departments. However, the student can opt for an Open Elective subject offered by his own (parent) department, if the student has not registered and not studied that subject under any category (Professional Core, Professional Electives, Mandatory Courses etc.) offered by parent department in any semester. Open Elective subjects already studied should not repeat/should not match with any category (Professional Core, Professional Electives, Mandatory Courses etc.) of subjects even in the forthcoming semesters.
- 4.10 **Professional Electives:** The students have to choose six Professional Electives (PE-I to VI) from the list of professional electives given.

5.0 Subjects/ courses to be offered

- 5.1 A subject/ course may be offered to the students, **only if** a minimum of 15 students opt for it.
- 5.2 More than **one faculty member** may offer the **same subject** (lab/ practical may be included with the corresponding theory subject in the same semester) in any semester. However, selection of choice for students will be based on '**first come first serve** basis and CGPA criterion' (i.e. the first focus shall be on early **on-line entry** from the student for registration in that semester, and the second focus, if needed, will be on CGPA of thestudent).
- 5.3 If more entries for registration of a subject come into picture, then the Head of the Department concerned shall decide, whether or not to offer such a subject/course for **two(or multiple) sections**.
- 5.4 In case of options coming from students of other departments/ branches/ disciplines (not considering **open electives**), first **priority** shall be given to the student of the 'parent department'.

6.0 Attendance requirements:

- 6.1 A student shall be eligible to appear for the semester end examinations, if the student acquires a minimum of 75% of attendance in aggregate of all the subjects/ courses (including attendance in mandatory courses like Environmental Science, Constitution of India, Intellectual Property Rights, and Gender Sensitization Lab) for that semester. Two periods of attendance for each theory subject shall be considered, if the student appears for the mid-term examination of that subject. This attendance should also be included in the attendance uploaded every fortnight in the University Website.
- 6.2 Shortage of attendance in aggregate upto 10% (65% and above, and below 75%) in each semester may be condoned by the college academic committee on genuine and valid grounds, based on the student's representation with supporting evidence.

- 6.3 A stipulated fee shall be payable for condoning of shortage of attendance.
- 6.4 Shortage of attendance below 65% in aggregate shall in **NO** case be condoned.
- 6.5 Students whose shortage of attendance is not condoned in any semester are not eligible to take their end examinations of that semester. They get detained and their registration for that semester shall stand cancelled, including all academic credentials (internal marks etc.) of that semester. They will not be promoted to the next semester. They may seek re-registration for all those subjects registered in that semester in which the student is detained, by seeking re-admission into that semester as and when offered; if there are any professional electives and/ or open electives, the same may also be re-registered if offered. However, if those electives are not offered in later semesters, then alternate electives may be chosen from the same set of elective subjects offered under that category.
- 6.6 A student fulfilling the attendance requirement in the present semester shall not be eligible for readmission into the same class.

7.0 Academic Requirements

The following academic requirements have to be satisfied, in addition to the attendancerequirements mentioned in Item No. 6.

- 7.1 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course, if student secures not less than 35% (14 marks out of 40 marks including minimum 35% of average Mid-Term examinations for 25 marks) in the internal examinations, not less than 35% (21 marks out of 60 marks) in the semester end examination, and a minimum of 40% (40 marks out of 100 marks) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of letter grades, this implies securing 'C' grade or above in that subject/ course.
- 7.2 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to Real-time Research Project (or) Field Based Research Project (or) Industry Oriented Mini Project (or) Internship (or) Seminar, if the student secures not less than 40% marks (i.e. 40 out of 100 allotted marks) in each of them. The student is deemed to have failed, if he (i) does not submit a report on Industry Oriented Mini Project/Internship, or (ii) not make a presentation of the same before the evaluation committee as per schedule, or (iii) secures less than 40% marks in Real-time Research Project (or) Field Based Research Project (or) Industry Oriented Mini Project (or) Internship evaluations. A student may reappear once for each of the above evaluations, when they are scheduled again; if the student fails in such 'one reappearance' evaluation also, the student has to reappear for the same in the next subsequent semester, as and when it is scheduled.

7.3 **Promotion Rules**

S. No.	Promotion	Conditions to be fulfilled
1	First year first semester to firstyear second semester	Regular course of study of first yearfirst semester.
2	First year second semester to Second year first semester	(i) Regular course of study of first year second semester. (ii) Must have secured at least 20 credits out of 40 credits i.e., 50% credits up to first year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
3.	Second year first semester toSecond year second semester	Regular course of study of second yearfirst semester.
4	Second year second semester toThird year first semester	 (i) Regular course of study of secondyear second semester. (ii) Must have secured at least 48 credits out of 80 credits i.e., 60% credits up to second year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
5	Third year first semester to Thirdyear second semester	Regular course of study of third yearfirst semester.
6	Third year second semester toFourth year first semester	(i) Regular course of study of thirdyear second semester. (ii) Must have secured at least 72 credits out of 120 credits i.e., 60% credits up to third year second semester from all the relevant regular and supplementary examinations, whether the student takes those examinations or not.
7.	Fourth year first semester to Fourth year second semester	Regular course of study of fourth year first semester.

- A student (i) shall register for all courses/subjects covering 160 credits as specified and listed in the course structure, (ii) fulfills all the attendance and academic requirements for 160 credits, (iii) earn all 160 credits by securing SGPA ≥ 5.0 (in each semester), and CGPA ≥ 5 (at the end of 8 semesters), (iv) passes all the mandatory courses, to successfully complete the undergraduate programme. The performance of the student in these 160 credits shall be considered for the calculation of the final CGPA (at the end of undergraduate programme), and shall be indicated in the grade card / marks memo of IV-year II semester.
- 7.5 If a student registers for 'extra subjects' (in the parent department or other departments/branches of Engg.) other than those listed subjects totaling to 160 credits as specified in the course structure of his department, the performances in those 'extra subjects' (although evaluated and graded using the same procedure as that of the required 160 credits) will not be considered while calculating the SGPA and CGPA. For such 'extra subjects' registered, percentage of marks and letter grade alone will be indicated in the grade card / marks memo as a performance measure, subject to completion of the attendance and academic requirements as stated in regulations Items 6 and 7.1 7.4 above.
- 7.6 A student eligible to appear in the semester end examination for any subject/course, but absent from it or failed (thereby failing to secure 'C' grade or above) may reappear for that subject/course in the supplementary examination as and when conducted. In such cases, internal marks (CIE) assessed earlier for that subject/course will be carried over, and added to the marks to be obtained in the SEE supplementary examination for evaluating performance in that subject.
- 7.7 A student detained in a semester due to shortage of attendance may be readmitted in the same semester in the next academic year for fulfillment of academic requirements. The academic regulations under which a student has been re-admitted shall be applicable. Further, no grade allotments or SGPA/CGPA calculations will be done for the entire semester in which the student has been detained.
- 7.8 A student detained due to lack of credits, shall be promoted to the next academic year only after acquiring the required number of academic credits. The academic regulations under which the student has been readmitted shall be applicable to him.

8.0 Evaluation - Distribution and Weightage of Marks

8.1 The performance of a student in every subject/course (including practicals and Project Stage – I & II) will be evaluated for 100 marks each, with 40 marks allotted for CIE (Continuous Internal Evaluation) and 60 marks for SEE (Semester End-Examination).

- 8.2 In CIE, for theory subjects, during a semester, there shall be two mid-term examinations. Each Mid-Term examination consists of two parts i) Part A for 10 marks, ii) Part B for 20 marks with a total duration of 2 hours as follows:
 - 1. Mid Term Examination for 30 marks:
 - a. Part A: Objective/quiz paper for 10 marks.
 - b. Part B : Descriptive paper for 20 marks.

The objective/quiz paper is set with multiple choice, fill-in the blanks and match the following type of questions for a total of 10 marks. The descriptive paper shall contain 6 full questions out of which, the student has to answer 4 questions, each carrying 5 marks. The average of the two Mid Term Examinations shall be taken as the final marks for Mid Term Examination (for 30 marks).

The remaining 10 marks of Continuous Internal Evaluation are distributed as:

- 1. Assignment for 5 marks. (Average of 2 Assignments each for 5 marks)
- 2. Subject Viva-Voce/PPT/Poster Presentation/ Case Study on a topic in the concerned subject for 5 marks.

While the first mid-term examination shall be conducted on 50% of the syllabus, the second mid-term examination shall be conducted on the remaining 50% of the syllabus.

Five (5) marks are allocated for assignments (as specified by the subject teacher concerned). The first assignment should be submitted before the conduct of the first mid-term examination, and the second assignment should be submitted before the conduct of the second mid-term examination. The average of the two assignments shall be taken as the final marks for assignment (for 5 marks).

Subject Viva-Voce/PPT/Poster Presentation/ Case Study on a topic in the subject concerned for 5 marks before II Mid-Term Examination.

The Student, in each subject, shall have to earn 35% of marks (i.e. 14 marks out of 40 marks) in CIE, 35% of marks (i.e. 21 marks out of 60) in SEE and Over all 40% of marks (i.e. 40 marks out of 100 marks) both CIE and SEE marks put together.

The student is eligible to write Semester End Examination of the concerned subject, if the student scores ≥ 35% (14 marks) of 40 Continuous Internal Examination (CIE) marks.

In case, the student appears for Semester End Examination (SEE) of the concerned subject but not scored minimum 35% of CIE marks (14 marks out of 40 internal marks), his performance in that subject in SEE shall stand cancelled in spite of appearing the SEE.

There is NO Remedial Mid Test (RMT) for R22 regulations.

The details of the end semester question paper pattern are as follows:

- **8.2.1** The semester end examinations (SEE), for theory subjects, will be conducted for 60 marks consisting of two parts viz. i) Part- A for 10 marks, ii) Part B for 50 marks.
 - Part-A is a compulsory question which consists of ten subquestions from all units carrying equal marks.
 - Part-B consists of five questions (numbered from 2 to 6) carrying 10 marks each. Each of these questions is from each unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
 - The duration of Semester End Examination is 3 hours.
- 8.3 For practical subjects there shall be a Continuous Internal Evaluation (CIE) during the semester for 40 marks and 60 marks for semester end examination.

 Out of the 40 marksfor internal evaluation:
 - A write-up on day-to-day experiment in the laboratory (in terms of aim, components/procedure, expected outcome) which shall be evaluated for 10 marks
 - 2. **10 marks for viva-voce (**or) tutorial (or) case study (or) application (or) poster presentation of the course concerned.
 - 3. Internal practical examination conducted by the laboratory teacher concerned shallbe evaluated for 10 marks.
 - 4. The remaining 10 marks are for Laboratory Project, which consists of the Design (or) Software / Hardware Model Presentation (or) App Development (or) Prototype Presentation submission which shall be evaluated after completion of laboratory course and before semester end practical examination.

The Semester End Examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the cluster / other colleges which will be decided by the examination branch of the University.

In the Semester End Examination held for 3 hours, total 60 marks are divided and allocated as shown below:

- 1. 10 marks for write-up
- 2. 15 for experiment/program
- 15 for evaluation of results.
- 4. 10 marks for presentation on another experiment/program in the same laboratory course and
- 5. 10 marks for viva-voce on concerned laboratory course
- 8.4 The evaluation of courses having ONLY internal marks in I-Year I Semester and II- Year II Semester is as follows:
 - 1. I Year I Semester course (ex., Elements of CE/ME/EEE/ECE/CSE): The

- internal evaluation is for 50 marks and it shall take place during I Mid-Term examination and II Mid-Term examination. The average marks of two Mid-Term examinations is the final for 50 marks. Student shall have to earn 40%, i.e 20 marks out of 50 marks from average of the two examinations. There shall be NO external evaluation. The student is deemed to have failed, if he (i) is absent as per schedule, or (ii) secures less than 40% marks in this course.
- 2. If Year II Semester Real-Time (or) Field-based Research Project course: The internal evaluation is for 50 marks and it shall take place during I Mid-Term examination and II Mid-Term examination. The average marks of two Mid-Term examinations is the final for 50 marks. Student shall have to earn 40%, i.e 20 marks out of 50 marks from average of the two examinations. There shall be NO external evaluation. The student is deemed to have failed, if he (i) does not submit a report on the Project, or (ii) does not make a presentation of the same before the internal committee as per schedule, or (ii) secures less than 40% marks in this course.
- 8.5 There shall be an Industry training (or) Internship (or) Industry oriented Miniproject (or) Skill Development Courses (or) Paper presentation in reputed journal (or) Industry Oriented Mini Project in collaboration with an industry of their specialization. Students shall register for this immediately after II-Year II Semester Examinations and pursue it during summer vacation/semester break & during III Year without effecting regular course work. Internship at reputed organization (or) Skill development courses (or) Paper presentation in reputed journal (or) Industry Oriented Mini Project shall be submitted in a report form and presented before the committee in III-year II semester before end semester examination. It shall be evaluated for 100 external marks. The committee consists of an External Examiner, Head of the Department, Supervisor of the Industry Oriented Mini Project (or) Internship etc, Internal Supervisor and a Senior Faculty Member of the Department. There shall be **NO internal marks** for Industry Training (or) Internship (or) Mini-Project (or) Skill Development Courses (or) Paper Presentation in reputed journal (or) Industry Oriented Mini Project.
- 8.6 The UG project shall be initiated at the end of the IV Year I Semester and the duration of the project work is one semester. The student must present Project Stage I during IV Year I Semester before II Mid examinations, in consultation with his Supervisor, the title, objective and plan of action of his Project work to the departmental committee for approval before commencement of IV Year II Semester. Only after obtaining the approval of the departmental committee, the student can start his project work.
- 8.7 UG project work shall be carried out in two stages: Project Stage I for approval of project before Mid-II examinations in IV Year I Semester and Project Stage II during IV Year II Semester. Student has to submit project work report at the end

- of IV Year II Semester. The project shall be evaluated for 100 marks before commencement of SEETheory examinations.
- 8.8 For Project Stage I, the departmental committee consisting of Head of the Department, project supervisor and a senior faculty member shall approve the project work to begin before II Mid-Term examination of IV Year I Semester. The student is deemed to be not eligible to register for the Project work, if he does not submit a report on Project Stage I or does not make a presentation of the same before the evaluation committee as per schedule. A student who has failed may reappear once for the above evaluation, when it is scheduled again; if he fails in such 'one reappearance' evaluation also, he has to reappear for the same in the next subsequent semester, as and when it is scheduled.
- 8.9 For Project Stage II, the external examiner shall evaluate the project work for 60 marks and the internal project committee shall evaluate it for 40 marks. Out of 40 internal marks, the departmental committee consisting of Head of the Department, Project Supervisor and a Senior Faculty Member shall evaluate the project work for 20 marks and Project Supervisor shall evaluate for 20 marks. The topics for Industry Oriented Mini Project/ Internship/SDC etc. and the main Project shall be different from the topic already taken. The student is deemed to have failed, if he (i) does not submit a report on the Project, or (ii) does not make a presentation of the same before the External Examiner as per schedule, or (iii) secures less than 40% marks in the sum total of the CIE and SEE taken together.

For conducting viva-voce of project, University selects an external examiner from the list of experts in the relevant branch submitted by the Principal of the College.

A student who has failed, may reappear once for the above evaluation, when it is scheduled again; if student fails in such 'one reappearance' evaluation also, he has to reappear for the same in the next subsequent semester, as and when it is scheduled.

- 8.10 A student shall be given one time chance to re-register for a maximum of two subjects:
 - If the internal marks secured by a candidate in Mid examinations (average
 of two mid-term examinations consisting of Objective & descriptive parts)
 are less than 35% and failed in those subjects (or)
 - failed in Assignment & Subject Viva-voce/ PPT/Poster Presentation/ Case Study on a topic in the concerned subject but fulfilled the attendance requirement.

A student must re-register for the failed subject(s) for 40 marks within four weeks of commencement of the classwork in next academic year. Also, the student has to earn 35% of total internal marks (14 out of 40 marks including Mid-Term examinations, Assignment & Subject Viva-voce/PPT/ Poster presentation/ Case Study on a topic in the concerned subject).

In the event of the student taking this chance, his Continuous Internal Evaluation

marks for 40 and Semester End Examination marks for 60 obtained in the previous attempt stand cancelled.

9.0 Grading Procedure

- 9.1 Grades will be awarded to indicate the performance of students in each Theory Subject, Laboratory/Practicals/ Industry-Oriented Mini Project/Internship/SDC and Project Stage. Based on the percentage of marks obtained (Continuous Internal Evaluation plus Semester End Examination, both taken together) as specified in item 8 above, a corresponding letter grade shall be given.
- 9.2 As a measure of the performance of a student, a 10-point absolute grading system using the following letter grades (as per UGC/AICTE guidelines) and corresponding percentage of marks shall be followed:

% of Marks Secured in a Subject/Course (Class Intervals)	Letter Grade (UGC Guidelines)	Grade Points
Greater than or equal to 90%	O (Outstanding)	10
80 and less than 90%	A ⁺ (Excellent)	9
70 and less than 80%	A (Very Good)	8
60 and less than 70%	B ⁺ (Good)	7
50 and less than 60%	B (Average)	6
40 and less than 50%	C (Pass)	5
Below 40%	F (FAIL)	0
Absent	Ab	0

- 9.3 A student who has obtained an 'F' grade in any subject shall be deemed to have 'failed' and is required to reappear as a 'supplementary student' in the semester end examination, as and when offered. In such cases, internal marks in those subjects will remain the same as those obtained earlier.
- 9.4 To a student who has not appeared for an examination in any subject, 'Ab' grade will be allocated in that subject, and he is deemed to have 'Failed'. A student will be required to reappear as a 'supplementary student' in the semester end examination, as and when offered next. In this case also, the internal marks in those subjects will remainthe same as those obtained earlier.
- 9.5 A letter grade does not indicate any specific percentage of marks secured by the student, but it indicates only the range of percentage of marks.

9.6 A student earns Grade Point (GP) in each subject/ course, on the basis of the letter grade secured in that subject/ course. The corresponding 'Credit Points' (CP) are computed by multiplying the grade point with credits for that particular subject/ course.

Credit Points (CP) = Grade Point (GP) x Credits For a course

- 9.7 A student passes the subject/ course only when GP ≥ 5 ('C' grade or above)
- 9.8 The Semester Grade Point Average (SGPA) is calculated by dividing the sum of credit points (ΣCP) secured from all subjects/ courses registered in a semester, by the total number of credits registered during that semester. SGPA is rounded off to two decimalplaces. SGPA is thus computed as

SGPA =
$$\left\{\sum_{i=1}^{N} C_i G_i\right\} / \left\{\sum_{i=1}^{N} C_i\right\} \dots$$
 For each semester,

where 'i' is the subject indicator index (considering all subjects in a semester), 'N' is the no. of subjects '**registered'** for the semester (as specifically required and listed under the course structure of the parent department), C_i is the no. of credits allotted to the ith subject, and G_i represents the grade points (GP) corresponding to the letter gradeawarded for that ith subject.

9.9 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student in all semesters considered for registration. The CGPA is the ratio of the total credit points secured by a student in all registered courses (of 160) in all semesters, and the total number of credits registered in all the semesters. CGPA is rounded off to **two** decimal places. CGPA is thus computed from the I year II semester onwards at the end of each semester as per the formula

CGPA =
$$\{\sum_{j=1}^{M} C_j G_j\} / \{\sum_{j=1}^{M} C_j\} ...$$
 for all S semesters registered (i.e., up to and inclusive of S semesters, $S \ge 2$),

where 'M' is the total no. of subjects (as specifically required and listed under the course structure of the parent department) the student has 'registered' i.e., from the 1st semester onwards up to and inclusive of the 8th semester, 'j' is the subject indicator index (takes into account all subjects from 1 to 8 semesters), C_j is the no. of credits allotted to the jth subject, and G_j represents the grade points (GP) corresponding to the letter grade awarded for that jth subject. After registration and completion of I year I semester, the SGPA of that semester itself may be taken as the CGPA, as there are no cumulative effects. Illustration of calculation of SGPA:

Course/Subject	Credits	Letter	Grade	Credit
		Grade	Points	Points
Course 1	4	А	8	$4 \times 8 = 32$
Course 2	4	0	10	4 x 10 = 40
Course 3	4	С	5	$4 \times 5 = 20$
Course 4	3	В	6	$3 \times 6 = 18$
Course 5	3	A+	9	$3 \times 9 = 27$
Course 6	3	С	5	$3 \times 5 = 15$
	21			152

SGPA = 152/21 = 7.24
Illustration of Calculation of CGPA up to 3rd Semester:

_	Course/	Credits	Letter	Corresponding	Credit
Semester	Subject Title	Allotted	Grade	Grade Point	Points
			Secured	(GP)	(CP)
I	Course 1	3	Α	8	24
I	Course 2	3	0	10	30
I	Course 3	3	В	6	18
I	Course 4	4	Α	8	32
I	Course 5	3	A+	9	27
I	Course 6	4	С	5	20
II	Course 7	4	В	6	24
II	Course 8	4	Α	8	32
II	Course 9	3	С	5	15
II	Course 10	3	0	10	30
II	Course 11	3	B+	7	21
II	Course 12	4	В	6	24
II	Course 13	4	Α	8	32
II	Course 14	3	0	10	30
III	Course 15	2	Α	8	16
III	Course 16	1	С	5	5
III	Course 17	4	0	10	40
III	Course 18	3	B+	7	21
III	Course 19	4	В	6	24
III	Course 20	4	Α	8	32
III	Course 21	3	B+	7	21
	Total	69		Total Credit	518
	Credits			Points	

CGPA = 518/69 = 7.51

The calculation process of CGPA illustrated above will be followed for each subsequent semester until 8th semester. The CGPA obtained at the end of 8th semester will becomethe final CGPA secured for entire B.Tech. programme.

9.10 For merit ranking or comparison purposes or any other listing, only the

'rounded off' values of the CGPAs will be used.

9.11 SGPA and CGPA of a semester will be mentioned in the semester Memorandum of Grades if all subjects of that semester are passed in first attempt. Otherwise the SGPA and CGPA shall be mentioned only on the Memorandum of Grades in which sitting he passed his last exam in that semester. However, mandatory courses will not be taken into consideration.

10.0 Passing Standards

- 10.1 A student shall be declared successful or 'passed' in a semester, if he secures a GP ≥ 5 ('C' grade or above) in every subject/course in that semester (i.e. when the student gets an SGPA ≥ 5.0 at the end of that particular semester); and he shall be declared successful or 'passed' in the entire undergraduate programme, only when gets a CGPA ≥ 5.00 ('C' grade or above) for the award of the degree as required.
- After the completion of each semester, a grade card or grade sheet shall be issued to all the registered students of that semester, indicating the letter grades and credits earned. It will show the details of the courses registered (course code, title, no. of credits, grade earned, etc.) and credits earned. There is NO exemption of credits in any case.

11.0 Declaration of results

- 11.1 Computation of SGPA and CGPA are done using the procedure listed in 9.6 to 9.9.
- For final percentage of marks equivalent to the computed final CGPA, the following formula may be used.

% of Marks = $(final CGPA - 0.5) \times 10$

12.0 Award of Degree

- 12.1 A student who registers for all the specified subjects/ courses as listed in the course structure and secures the required number of 160 credits (with CGPA ≥ 5.0), within 8 academic years from the date of commencement of the first academic year, shall be declared to have 'qualified' for the award of B.Tech. degree in the branch of Engineering selected at the time of admission.
- A student who qualifies for the award of the degree as listed in item 12.1 shall be placed in the following classes.
- A student with final CGPA (at the end of the undergraduate programme) > 8.00, and fulfilling the following conditions shall be placed in 'First Class with Distinction'. However, he
 - (i) Should have passed all the subjects/courses in 'First Appearance' within the first 4 academic years (or 8 sequential semesters) from the date of commencement of first year first semester.
 - (ii) Should not have been detained or prevented from writing the semester end examinations in any semester due to shortage of attendance or any other reason.

A student not fulfilling any of the above conditions with final CGPA > 8 shall be

placed in 'First Class'.

- 12.4 Students with final CGPA (at the end of the undergraduate programme) ≥ 7.0 but < 8.00 shall be placed in 'First Class'.
- 12.5 Students with final CGPA (at the end of the undergraduate programme) ≥ 6.00 but < 7.00, shall be placed in 'Second Class'.
- 12.6 All other students who qualify for the award of the degree (as per item 12.1), with final CGPA (at the end of the undergraduate programme) ≥ 5.00 but < 6, shall be placed in 'pass class'.
- A student with final CGPA (at the end of the undergraduate programme) < 5.00 will not be eligible for the award of the degree.
- 12.8 Students fulfilling the conditions listed under item 12.3 alone will be eligible for awardof '**Gold Medal**'.
- 12.9 Award of 2-Year B.Tech. Diploma Certificate
 - A student is awarded 2-Year UG Diploma Certificate in the concerned engineering branch on completion of all the academic requirements and earned all the 80 credits (with in 4 years from the date of admission) upto B. Tech. II Year II Semester, if the student want to exit the 4-Year B. Tech. program. The student once opted and awarded for 2-Year UG Diploma Certificate, the student will not be permitted to join in B. Tech. III Year I Semester and continue for completion of remaining years of study for 4-Year B. Tech. Degree.
 - 2. A student may be permitted to take one year break after completion of II Year II Semester or B. Tech. III Year II Semester (with university permission through the principal of the college well in advance) and can re-enter the course in **next Academic Year in the same college** and complete the course on fulfilling all the academic credentials within a stipulated duration i.e. double the duration of the course (Ex. within 8 Years for 4-Year program).

13.0 Withholding of results

1.3.1 If the student has not paid the fees to the University at any stage, or has dues pending due to any reason whatsoever, or if any case of indiscipline is pending, the result of the student may be withheld, and the student will not be allowed to go into the next higher semester. The award or issue of the degree may also be withheld in such cases.

14.0 Transitory Regulations

A. For students detained due to shortage of attendance:

- A Student who has been detained in I year of R18 Regulations due to lack of attendance, shall be permitted to join I year I Semester of R22 Regulations and he is required to complete the study of B.Tech./B. Pharmacy programme within the stipulated period of eight academic years from the date of first admission in IYear.
- 2. A student who has been detained in any semester of II, III and IV years of R18 regulations for want of attendance, shall be permitted to join the corresponding semester of R22 Regulations and is required to complete the study of B.Tech./B. Pharmacy within the stipulated period of eight academic years from the date of first admission in I Year. The R22 Academic Regulations under which a student has been readmitted shall be applicable to that student from that semester. See rule (C) for further Transitory Regulations.

B. For students detained due to shortage of credits:

3. A student of R18 Regulations who has been detained due to lack of credits, shall be promoted to the next semester of R22 Regulations only after acquiring the required number of credits as per the corresponding regulations of his/her first admission. The total credits required are 160 including both R18 & R22 regulations. The student is required to complete the study of B.Tech. within the stipulated period of eight academic years from the year of first admission. The R22 Academic Regulations are applicable to a student from the year of readmission. See rule (C) for further Transitory Regulations.

C. For readmitted students in R22 Regulations:

- 4. A student who has failed in any subject under any regulation has to pass those subjects in the same regulations.
- 5. The maximum credits that a student acquires for the award of degree, shall be the sum of the total number of credits secured in all the regulations of his/her study including R22 Regulations. There is NO exemption of credits in any case.
- 6. If a student is readmitted to R22 Regulations and has any subject with 80% of syllabus common with his/her previous regulations, that particular subject in R22 Regulations will be substituted by another subject to be suggested by the University.

Note: If a student readmitted to R22 Regulations and has not studied any subjects/topics in his/her earlier regulations of study which is prerequisite for further subjects in R22 Regulations, the College Principals concerned shall conduct remedial classes to cover those subjects/topics for the benefit of the students.

15.0 Student Transfers

- There shall be no branch transfers after the completion of admission process.
- There shall be no transfers from one college/stream to another within the constituent colleges and units of Jawaharlal Nehru Technological University Hyderabad.
- The students seeking transfer to colleges affiliated to JNTUH from various other Universities/institutions have to pass the failed subjects which are equivalent to the subjects of JNTUH, and also pass the subjects of JNTUH which the students have not studied at the earlier institution. Further, though the students have passed some of the subjects at the earlier institutions, if the same subjects are prescribed in different semesters of JNTUH, the students have to study those subjects in JNTUH in spite of the fact that those subjects are repeated.
- The transferred students from other Universities/Institutions to JNTUH affiliated colleges who are on rolls are to be provided one chance to write the CBT (for internal marks) in the **equivalent subject(s)** as per the clearance letter issued by the University.
- The autonomous affiliated colleges have to provide one chance to write the internal examinations in the equivalent subject(s) to the students transferred from other universities/ institutions to JNTUH autonomous affiliated colleges who are on rolls, asper the clearance (equivalence) letter issued by the University.

16.0 Scope

The academic regulations should be read as a whole, for the purpose of any interpretation.

In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

The University may change or amend the academic regulations, course structure or syllabi at any time, and the changes or amendments made shall be applicable to all students with effect from the dates notified by the University authorities.

Where the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".

(An Autonomous Institution)
Sheriguda(V), Ibrahimpatnam(M), R.R.Dist. - 501510

ACADEMIC REGULATIONS FOR B.TECH (LATERAL ENTRY SCHEME) FROMTHE AY 2023-24

1. Eligibility for the award of B.Tech Degree (LES)

The LES students after securing admission shall pursue a course of study for not less than three academic years and not more than six academic years.

- 2. The student shall register for 120 credits and secure 120 credits with CGPA ≥ 5 from II year to IV-year B.Tech. programme (LES) for the award of B.Tech. degree.
- 3. The students, who fail to fulfil the requirement for the award of the degree in six academic years from the year of admission, shall forfeit their seat in B.Tech.
- **4.** The attendance requirements of B. Tech. (Regular) shall be applicable to B.Tech. (LES).

5. Promotion rule

S. No	Promotion	Conditions to be fulfilled
1	Second year first semester to second year second semester	Regular course of study of second year first semester.
2	Second year second semester tothird year first semester	i. Regular course of study of secondyear second semester.
		ii. Must have secured at least 24 credits out of 40 credits i.e., 60% credits up to second year second semester from all therelevant regular and supplementary examinations, whether the student takesthose examinations or not.
3	Third year first semester to thirdyear second semester	Regular course of study of third year first semester.

4	Third year second semester to fourth year first semester	 i. Regular course of study of third year second semester. ii. Must have secured at least 48 credits out of 80 credits i.e., 60% credits up to third year second semester from all the relevant regular and supplementary examinations, whether the student
		takes those examinations or not.
5	Fourth year first	Regular course of study of fourth year
	semester to fourth year second semester	first semester.

- 6. All the other regulations as applicable to B. Tech. 4-year degree course (Regular)will hold good for B. Tech. (Lateral Entry Scheme).
- 7. LES students are not eligible for 2-Year B. Tech. Diploma Certificate.

Malpractices Rules

Disciplinary Action For / Improper Conduct in Examinations

	Nature of Malpractices/Improper conduct	Punishment
	If the student:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which student is appearing but has not made use of (material shall include any marks on the body of the student which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other student orally or by any other body language methods or communicates through cell phones with any student or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the students involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the student is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The hall ticket of the student is to be cancelled and
3.	Impersonates any other student in connection with the examination.	The student who has impersonated shall be expelled from examination hall. The student is also debarred and forfeits the seat. The performance of the original student who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The student is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered againsthim.

Page 28

4.	Smuggles in the answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the chief superintendent/assistant — superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-incharge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the college campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the student(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The students also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears off the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the student is subject to the academic regulations in connection with forfeiture of seat.

8.	Possesses any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat.
9.	If student of the college, who is not a student for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The student is also debarred and forfeits the seat. Person(s) who do not belong to the college will be handed over to the police and, a police case will
10.	Comes in a drunken condition to the examination hall.	be registered against them. Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the student has already appeared for including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the student has appeared for including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award a suitable punishment.	

Malpractices identified by squad or special invigilators

- 1. Punishments to the students as per the above guidelines.
- 2. Punishment for Institutions: (if the squad reports that the college is also involved inencouraging malpractices)
 - a. A show-cause notice shall be issued to the college.
 - b. Impose a suitable fine on the college.
 - c. Shifting the examination center from one college to another college for a specific period of not less than one year.

* * * * *

Frequently asked Questions and Answers about autonomy

1. Who grants Autonomy? UGC, Govt., AICTE or University

In case of Colleges affiliated to a university and where statutes for grant of autonomy are ready, it is the respective University that finally grants autonomy.

2. Shall SICET award its own Degrees?

No. Degree will be awarded by Jawaharlal Nehru Technological University, Hyderabad with a mention of the name SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY on the Degree Certificate.

3. What is the difference between a Deemed University and an Autonomy College?

A Deemed University is fully autonomous to the extent of awarding its own Degree. A Deemed University is usually a Non-Affiliating version of a University and has similar responsibilities like any University. An Autonomous College enjoys Academic Autonomy alone. The University to which an autonomous college is affiliated will have checks on the performance of the autonomous college.

4. How will the Foreign Universities or other stake – holders know that we are an Autonomous College?

Autonomous status, once declared, shall be accepted by all the stake holders. Foreign Universities and Indian Industries will know our status through our college website.

5. What is the change of Status for Students and Teachers if we become Autonomous?

An autonomous college carries a prestigious image. Autonomy is actually earned out of continued past efforts on academic performances, capability of self-governance and the kind of quality education we offer.

6. Who will check whether the academic standard is maintained / improved after Autonomy? How will it be checked?

There is a built in mechanism in the autonomous working for this purpose. An Internal Committee called Academic Programme Evaluation Committee is a Non – Statutory body, which will keep a watch on the academics and keep its reports and recommendations every year. In addition to Academic Council, the highest academic body also supervises the academic matters. At the end of three years, there is an external inspection by the University for this purpose. The standards of our question papers, the regularity of academic calendar, attendance of students, speed and transparency of result declaration and such other parameters are involved in this process.

7. Will the students of SICET as an Autonomous College qualify for University Medals and Prizes for academic excellence?

No, SICET has instituted its own awards, medals, etc. for the academic performance of the students. However for all other events like sports, cultural and co-curricular organized by the University the students shall qualify.

8. Can SICET have its own Convocation?

No, since the University awards the Degree the Convocation will be that of the University.

9. Can SICET give a provisional degree certificate?

Since the examinations are conducted by SICET and the results are also declared by SICET, the college sends a list of successful candidates with their final percentage of marks to the University. Therefore with the prior permission of the University the college will be entitled to give the provisional certificate.

10. Will Academic Autonomy make a positive impact on the Placements or Employability?

Certainly. The number of students qualifying for placement interviews is expected to improve, due to rigorous and repetitive classroom teaching and continuous assessment, besides the autonomous status is more responsive to the needs of the industry. As a result, there will be a lot of scope for industry oriented skill development built-in into the system. The graduates from an autonomous college will therefore represent better employability.

11. What is the proportion of Internal and External Assessment as an Autonomous College?

Presently, it is 30% for internal assessment and 70% for external assessment. As the autonomy matures the internal assessment component shall be increased at the cost of external assessment.

12. Will there be any Revaluation or Re-Examination System?

No. There will not be any Revaluation system or Re-examination. But, there is a personal verification of the answer scripts.

13. How fast Syllabi can be and should be changed?

Autonomy allows us the freedom to change the syllabi as often as we need.

14. Will the Degree be awarded on the basis of only final year performance?

No. The percentage of marks will reflect the average performance of all the semesters put together.

15. Who takes Decisions on Academic matters?

The Academic Council of College is the top academic body and is responsible for all the academic decisions. Many decisions are also taken at the lower level like the BOS which are like Boards of Studies of the University.

16. What is the role of Examination committee?

The Exam Committee is responsible for the smooth conduct of inter and external examinations. All matters involving the conduct of examinations, spot valuations, tabulations, preparation of Memorandum of Marks etc fall within the duties of the Examination Committee.

17. Is there any mechanism for Grievance Redressal?

Yes, the college has grievance redressal committee, headed by a senior faculty member of the college.

18. How many attempts are permitted for obtaining a Degree?

All such matters are defined in Rules & Regulations.

19. Who declares the result?

The result declaration process is also defined. After tabulation work the entire result is reviewed by the Moderation Committee. Any unusual deviations or gross level discrepancies are deliberated and removed. The entire result is discussed in the College Academic Council for its approval. The result is then declared on the college notice boards as well put on the web site of the college. It is eventually sent to the University.

20. What is our relationship with the Jawaharlal Nehru Technological University, Hyderabad?

We remain an affiliated college of the Jawaharlal Nehru Technological University, Hyderabad. The University has the right to nominate its members on the academic bodies of the college.

21. Shall we require University approval if we want to start any New Courses?

Yes, It is expected that approvals or such other matters from an autonomous college will receive priority.

22. Shall we get autonomy for PG and Doctoral Programmes also?

Yes, presently our PG programmes are also enjoying autonomous status.

23. How many exams will be there as an autonomous college?

This is defined in the Rules & Regulations.

24 Is the College adapting Choice Based Credit System (CBCS) or Not ?
Yes, this College has adapted CBCS system with effect from the Academic Year 2016-17.

25. Note: What is Choice Based Credit System (CBCS)?

Choice Based Credit System (CBCS): The CBCS provides choice for students to select from the prescribed courses (core, elective or minor or soft skill courses).

(An Autonomous Institution under UGC, New Delhi)

Choice Based Credit System (CBCS)

REGULATIONS – BR22

B. Tech. CSE (CYBER SECURITY)

I YEAR I SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits
1.	R22MTH1111	Matrices and Calculus	3	1	0	4
2.	R22CHE1112	Engineering Chemistry	3	1	0	4
3.	R22CSE1113	Programming for Problem Solving	3	0	0	3
4.	R22EEE1114	Basic Electrical Engineering	2	0	0	2
5.	R22MED1125	Computer Aided Engineering Graphics	1	0	4	3
6.	R22CSE1126	Elements of Computer Science & Engineering	0	0	2	1
7.	R22CHE1127	Engineering Chemistry Laboratory	0	0	2	1
8.	R22CSE1128	Programming for Problem Solving Laboratory	0	0	2	1
9.	R22EEE1227	Basic Electrical Engineering Laboratory	0	0	2	1
		Total	12	2	12	20

I YEAR II SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits
1.	R22MTH1211	Ordinary Differential Equations and Vector Calculus	3	1	0	4
2.	R22APH1112	Applied Physics	3	1	0	4
3.	R22MED1124	Engineering Workshop	0	1	3	2.5
4.	R22HAS1115	English for Skill Enhancement	2	0	0	2
5.	R22ECE1215	Electronic Devices and Circuits	2	0	0	2
6.	R22APH1127	Applied Physics Laboratory	0	0	3	1.5
7.	R22CSE1227	Python Programming Laboratory	0	1	2	2
8.	R22HAS1128	English Language and Communication Skills	0	0	2	1
		Laboratory				
9.	R22INF1229	IT Workshop	0	0	2	1
		Total	10	4	12	20

(An Autonomous Institution under UGC, New Delhi)

Choice Based Credit System (CBCS)

REGULATIONS – BR22

B. Tech. CSE (CYBER SECURITY)

II YEAR I SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits
1	R22ECE2112	Digital Electronics	3	0	0	3
2	R22CSE2112	Data Structures	3	0	0	3
3	R22MTH2114	Computer Oriented Statistical Methods	3	1	0	4
4	R22CSE2114	Computer Organization and Architecture	3	0	0	3
5	R22CSE2115	Object Oriented Programming through Java	3	0	0	3
6	R22CSE2126	Data Structures Lab	0	0	3	1.5
7	R22CSE2127	Object Oriented Programming through Java Lab	0	0	3	1.5
8	R22MAC2120	Gender Sensitization Lab	0	0	2	0
9	R22CSE2129	Skill Development Course (Data visualization-	0	0	2	1
		R Programming/ Power BI)				
	_	Total	15	1	10	20

II YEAR II SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits
1	R22CSE2111	Discrete Mathematics	3	0	0	3
2	R22HMS1212	Business Economics & Financial Analysis	3	0	0	3
3	R22CSE2213	Operating Systems	3	0	0	3
4	R22CSE3112	Computer Networks	3	0	0	3
5	R22CSE2215	Software Engineering	3	0	0	3
6	R22CSE2226	Operating Systems Lab	0	0	2	1
7	R22CSE3126	Computer Networks Lab	0	0	2	1
8	R22CSC2268	Real-time Research Project/ Field Based Project	0	0	4	2
9	R22MAC2110	Constitution of India	3	0	0	0
10	R22CSE2221	Skill Development Course (Node JS/ React JS/	0	0	2	1
		Django)				
		Total	18	0	10	20

(An Autonomous Institution under UGC, New Delhi)

Choice Based Credit System (CBCS)

REGULATIONS – BR22

B. Tech. CSE(CYBER SECURTY)

III YEAR I SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits	
1	R22CSC3111	Network Security and Cryptography	3	1	0	4	
2	R22CSE2214	Database Management Systems	3	0	0	3	
3	R22CSE3212	Formal Languages and Automata Theory	3	0	0	3	
4							
	R22CSE4112	Compiler Design	3	0	0	3	
	R22CSM4143	Artificial Intelligence					
	R22CSD3143	Data warehousing and Data Mining					
	R22CSE4141	Ad-hoc & Sensor Networks					
	R22CSE4143	Cloud Computing					
5	Professional Ele	ective - II					
	R22CSC3145	Ethical Hacking	3	0	0	3	
	R22CSD3145	Data Science					
	R22CSE4242	Distributed Systems					
	R22CSC3144	Cyber Laws					
	R22CSO4112	IoT Security					
6	R22CSC3126	Network Security and Cryptography Lab	0	0	2	1	
7	R22CSE2227	Database Management Systems Lab	0	0	2	1	
8	R22HAS3128	Advanced Communication Skills Lab	0	0	2	1	
9	R22MAC3110	Intellectual Property Rights	3	0	0	0	
10	R22CSE3121	Skill Development Course (UI design-	0	0	2	1	
		Flutter)					
		Total	18	1	8	20	

III YEAR II SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits
1	R22CSC3211	Cyber Security	3	0	0	3
2	R22CSC3212	Cyber Crime Investigation & Digital	3	0	0	3
		Forensics				
3	R22INF3212	Algorithm Design and Analysis	3	0	0	3
4	Professional Ele					
	R22CSC3242	Mobile Application Security	3	0	0	3
	R22CSM3112	Machine Learning				
	R22CSE3113	DevOps				
	R22CSE3247	Mobile Application Development				
	R22CSE4244	Blockchain Technology				
5	Open Elective	- I	3	0	0	3
6	R22CSC3221	Cyber Security Lab	0	0	2	1
7	R22CSC3227	Cyber Crime Investigation & Digital	0	0	2	1
		Forensics Lab				
8	Professional El	lective – III Lab	0	0	2	1
	R22CSC3252	Mobile Application Security Lab				
	R22CSM3126	Machine Learning Lab				
	R22CSE3127	DevOps Lab				
	R22CSE3258	Mobile Application Development Lab				
	R22CSC4221	Blockchain Technology Lab				
9	R22MAC1110	Environmental Science	3	0	0	0
10	R22CSC3268	Industrial Oriented Mini Project / Summer	0	0	4	2
		Internship/ Skill Development Course (Big				
		data-Spark)				
		Total	18	0	10	20

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

Choice Based Credit System (CBCS)

REGULATIONS – BR22

B. Tech. CSE(CYBER SECURITY)

IV YEAR I SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title	L	T	P	Credits
1	R22CSC4111	Vulnerability Assessment & Penetration Testing	3	0	0	3
2	R22CSE3246	Web Technologies	3	0	0	3
3	Professional E	lective - IV				
	R22CSO4141	Edge Analytics	3	0	0	3
	R22CSC4145	Web & Database Security				
	R22CSC4142	Computer Security & Audit Assurance				
	R22CSC4143	Social Media Security				
	R22CSM4111	Deep Learning				
4	Professional E	lective - V				
	R22EEE4144	Quantum Computing	3	0	0	3
	R22CSC4146	Data Analytics for Fraud Detection				
	R22CSC4141	5G Technologies				
	R22INF4145	Security Incident & Response Management (SOC)				
	R22CSC4144	Authentication Techniques				
5	Open Elective	- II	3	0	0	3
6	R22CSC4126	Vulnerability Assessment & Penetration Testing	0	0	2	1
		Lab				
7	R22CSE3257	Web Technologies Lab	0	0	2	1
8	R22CSC4168	Project Stage - I	0	0	6	3
9	R22CSC4119	Skill Development Course (Infection Monkey/	0	0	4	0
		Conjur)				
		Total	15	0	14	20

IV YEAR II SEMESTER

COURSE STRUCTURE

S. No.	Course Code	Course Title		L	T	P	Credits
1	R22HMS4211	Organizational Behaviour		3	0	0	3
2	Professional E	lective – VI					
	R22CSC4246	Quantum Cryptography		3	0	0	3
	R22CSO4111	IoT Cloud Processing and Analytics					
	R22CSC4243	Cloud Security					
	R22CSC4245	Digital Watermarking and Steganography					
	R22CSC4244	Data Privacy					
3	Open Elective	e-III		3	0	0	3
4	R22CSC4264	Project Stage – II including Seminar		0	0	22	9+2
			Total	9	0	22	20

^{*}MC – Satisfactory/Unsatisfactory

#Skill Course - 1 credit with 2 Practical Hours

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 3 1 0 4

(R22MTH1111) MATRICES AND CALCULUS

Course Objectives: To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of surface areas and volumes of revolutions of curves.
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.
- Evaluation of multiple integrals and their applications

Course outcomes: After learning the contents of this paper the student must be able to

- 1. Write the matrix representation of a set of linear equations and to analyse the solution of the system of equations
- 2. Find the Eigenvalues and Eigen vectors, Reduce the quadratic form to canonical form using orthogonal transformations.
- 3. Solve the applications on the mean value theorems.
- 4. Evaluate the improper integrals using Beta and Gamma functions
- 5. Find the extreme values of functions of two variables with/ without constraints.
- 6. Evaluate the multiple integrals and apply the concept to find areas, volumes

UNIT-I: Matrices

Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, LU Decomposition method, Gauss Jacobi's and Gauss Seidel Iteration Method.

UNIT-II: Eigen values and Eigen vectors

Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties with reference to inverse, Transpose, Symmetric, Skew-Symmetric, Hermetian, Skew-Hermetian, Orthogonal and Unitary matrices, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III: Calculus

Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem, Taylor's Series.

Applications of definite integrals to evaluate surface areas and volumes of revolutions of curves (Only in Cartesian coordinates), Definition of Improper Integral: Beta and Gamma functions and their applications.

UNIT-IV: Multivariable Calculus (Partial Differentiation and applications)

Definitions of Limit and continuity.

Partial Differentiation: Euler's Theorem, Total derivative, Jacobian, Functional dependence & independence. Taylor's series for two variables. Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

UNIT-V: Multivariable Calculus (Integration)

Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals.

Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Editon, 2016.

- 1. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.
- 3. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and CompanyLimited, New Delhi.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 3 1 0 4

(R22CHE1112) ENGINEERING CHEMISTRY

Course Objectives:

- 1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skillsrequired to become a perfect engineer.
- 2. To include the importance of water in industrial usage, fundamental aspects of batterychemistry, significance of corrosion it's control to protect the structures.
- 3. To imbibe the basic concepts of petroleum and its products.
- 4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes: After learning the contents of this paper the student must be able to

- 1. Acquire the basic knowledge of electrochemical procedures related to corrosionand its control.
- 2. Understand the basic properties of water and its usage in domesticand industrial purposes.
- 3. Learn the fundamentals and general properties of polymers and other engineering materials.
- 4. Predict potential applications of chemistry and practical utility in order to become good engineers and entrepreneurs.
- 5. Understand the synthesis of Synthetic petrol.

UNIT - I: Water and its treatment:

Introduction to hardness of water – Estimation of hardness of water by complexometric method and related numerical problems. Potable water and its specifications - Steps involved in the treatment of potable water - Disinfection of potable water by chlorination and break - point chlorination. Defluoridation- Determination of F ion by ion- selective electrode method. Boiler troubles: Sludges, Scales and Caustic embrittlement. Internal treatment of Boiler feed water - Calgon conditioning - Phosphate conditioning - Colloidal conditioning, External treatment methods - Softening of water by ion- exchange processes. Desalination of water – Reverse osmosis.

UNIT – II Battery Chemistry & Corrosion

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of: Zn-air and Lithium ion battery, Applications of Li-ion battery to electrical vehicles. Fuel Cells- Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells.

Corrosion: Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode and impressed current methods.

UNIT - III: Polymeric materials:

Definition – Classification of polymers with examples – Types of polymerization – addition (free radical addition) and condensation polymerization with examples – Nylon 6:6, Terylene

Plastics: Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties and engineering applications of PVC and Bakelite, Teflon, Fiber reinforced plastics (FRP). Rubbers: Natural rubber and its vulcanization.

Elastomers: Characteristics –preparation – properties and applications of Buna-S, Butyl and Thiokol rubber.

Conducting polymers: Characteristics and Classification with examples-mechanism of trans-polyacetylene and applications of conducting polymers.

Biodegradable polymers: Concept and advantages - Polylactic acid and poly vinyl alcohol and their applications.

UNIT - IV: Energy Sources:

Introduction, Calorific value of fuel – HCV, LCV- Dulongs formula. Classification- solid fuels: coal – analysis of coal – proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch's process; Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Transesterification, advantages.

UNIT - V: Engineering Materials:

Cement: Portland cement, its composition, setting and hardening.

Smart materials and their engineering applications

Shape memory materials- Poly L- Lactic acid. Thermoresponse materials- Polyacryl amides, Poly vinyl amides

Lubricants: Classification of lubricants with examples-characteristics of a good lubricants - mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants: viscosity, cloud point, pour point, flash point and fire point.

TEXT BOOKS:

- 1. Engineering Chemistry by P.C. Jain and M. Jain, Dhanpatrai Publishing Company, 2010
- 2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage learning, 2016
- 3. A text book of Engineering Chemistry by M. Thirumala Chary, E. Laxminarayana and K.Shashikala, Pearson Publications, 2021.
- 4. Textbook of Engineering Chemistry by Java Shree Anireddy, Wiley Publications.

- 1. Engineering Chemistry by Shikha Agarwal, Cambridge University Press, Delhi (2015)
- 2. Engineering Chemistry by Shashi Chawla, Dhanpatrai and Company (P) Ltd. Delhi (2011)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 3 0 0 3

(R22CSE1113) PROGRAMMING FOR PROBLEM SOLVING

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of the C programming language.
- To learn the usage of structured programming approaches in solving problems.

Course Outcomes: The student will learn

- To write algorithms and to draw flowcharts for solving problems.
- To convert the algorithms/flowcharts to C programs.
- To code and test a given logic in the C programming language.
- To decompose a problem into functions and to develop modular reusable code.
- To use arrays, pointers, strings and structures to write C programs.
- Searching and sorting problems.

UNIT - I: Introduction to Programming

Compilers, compiling and executing a program.

Representation of Algorithm - Algorithms for finding roots of a quadratic equations, finding minimum and maximum numbers of a given set, finding if a number is prime number Flowchart/Pseudocode with examples, Program design and structured programming

Introduction to C Programming Language: variables (with data types and space requirements), Syntax and Logical Errors in compilation, object and executable code, Operators, expressions and precedence, Expression evaluation, Storage classes (auto, extern, static and register), type conversion, The main method and command line arguments Bitwise operations: Bitwise AND, OR, XOR and NOT operators

Conditional Branching and Loops: Writing and evaluation of conditionals and consequent branching with if, if-else, switch-case, ternary operator, goto, Iteration with for, while, do- while loops I/O: Simple input and output with scanf and printf, formatted I/O, Introduction to stdin, stdout and stderr. Command line arguments

UNIT - II: Arrays, Strings, Structures and Pointers:

Arrays: one and two dimensional arrays, creating, accessing and manipulating elements of arrays Strings: Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings

Structures: Defining structures, initializing structures, unions, Array of structures

Pointers: Idea of pointers, Defining pointers, Pointers to Arrays and Structures, Use of Pointers in self-referential structures, usage of self referential structures in linked list (no implementation) Enumeration data type

UNIT - III: Preprocessor and File handling in C:

Preprocessor: Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef Files: Text and Binary files, Creating and Reading and writing text and binary files, Appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

UNIT - IV: Function and Dynamic Memory Allocation:

Functions: Designing structured programs, Declaring a function, Signature of a function, Parameters and return type of a function, passing parameters to functions, call by value, Passing arrays to functions, passing pointers to functions, idea of call by reference, Some C standard functions and libraries

Recursion: Simple programs, such as Finding Factorial, Fibonacci series etc., Limitations of Recursive functions Dynamic memory allocation: Allocating and freeing memory, Allocating memory for arrays of different data types

UNIT - V: Searching and Sorting:

Basic searching in an array of elements (linear and binary search techniques), Basic algorithms to sort array of elements (Bubble, Insertion and Selection sort algorithms), Basic concept of order of complexity through the example programs

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rd Edition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 2 0 0 2

(R22EEE1114) BASIC ELECTRICAL ENGINEERING

Course Objectives:

- To understand DC and Single & Three phase AC circuits
- To study and understand the different types of DC, AC machines and Transformers.
- To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.

Course Outcomes: After learning the contents of this paper the student must be able to

- Understand and analyze basic Electrical circuits
- Study the working principles of Electrical Machines and Transformers
- Introduce components of Low Voltage Electrical Installations.

Course Objectives		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To understand DC and Single & Three phase AC circuits.	3	2	1		2	0	0	1	2	0	1	2
To study and understand the different types of DC,AC machinesand Transformers.		2	1	1	3	0	0	0	2	0	1	1
To import the knowledge of various electrical installations and the concept of power, power factor and its improvement.		2	0		3	0	0	0	1	2	1	1

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Understand and analyse basic Electrical circuits	3	2	1	0	1	0	0	0	2	0	2	2
Study the workingprinciples of Electrical Machines and Transformers	3	2	1	0	3	1	0	1	1	2	1	2
Introduce components of Low Voltage Electrical Installations.	3	2	1	1	3	2	0	0	1	0	2	2

UNIT-I:

D.C. Circuits: Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation. Superposition, Thevenin and Norton Theorems. Time-domain analysis of first-order RL and RC circuits.

UNIT-II:

A.C. Circuits: Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), resonance in series R-L-C circuit. Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT-III:

Transformers: Ideal and practical transformer, equivalent circuit, losses in transformers, regulation and efficiency. Auto-transformer and three-phase transformer connections.

UNIT-IV:

Electrical Machines: Construction and working principle of dc machine, performance characteristics of dc shunt machine. Generation of rotating magnetic field, Construction and working of a three-phase induction motor, Significance of torque-slip characteristics. Single-phase induction motor, Construction and working. Construction and working of synchronous generator.

UNIT-V:

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

TEXT BOOKS:

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019.
- 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

- 1. P. Ramana, M. Suryakalavathi, G.T. Chandrasheker, "Basic Electrical Engineering", S. Chand, 2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic ElectricalEngineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 1 0 4 3

(R22MED1125) COMPUTER AIDED ENGINEERING GRAPHICS

Course Objectives:

- To develop the ability of visualization of different objects through technical drawings
- To acquire computer drafting skill for communication of concepts, ideas in the design of engineering products

Course Outcomes: At the end of the course, the student will be able to:

- Apply computer aided drafting tools to create 2D and 3D objects
- sketch conics and different types of solids
- Appreciate the need of Sectional views of solids and Development of surfaces of solids
- Read and interpret engineering drawings
- Conversion of orthographic projection into isometric view and vice versa manually and by using computer aided drafting

UNIT – I:

Introduction to Engineering Graphics: Principles of Engineering Graphics and their Significance, Scales – Vernier, Plain & Diagonal, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid, Hypocycloid and Involute, Introduction to Computer aided drafting – views, commands and conics

UNIT-II:

Orthographic Projections: Principles of Orthographic Projections – Conventions – Projections of Points and Lines, Projections of Plane regular geometric figures. Auxiliary Planes. Computer aided orthographic projections – points, lines and planes

UNIT - III:

Projections of Regular Solids –Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Computer aided projections of solids – sectional views

IINIT - IV:

Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone, Development of surfaces using computer aided drafting

UNIT - V:

Isometric Projections: Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa –Conventions. Conversion of orthographic projection into isometric view using computer aided drafting.

TEXT BOOKS:

- 1. Engineering Drawing N.D. Bhatt / Charotar
- 2. Engineering Drawing and graphics Using AutoCAD Third Edition, T. Jeyapoovan, Vikas: S. Chand and company Ltd.

REFERENCE BOOKS:

- 1. Engineering Drawing, Basant Agrawal and C M Agrawal, Third Edition McGraw Hill
- 2. Engineering Graphics and Design, WILEY, Edition 2020
- 3. Engineering Drawing, M. B. Shah, B.C. Rane / Pearson.
- 4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford
- 5. Computer Aided Engineering Drawing K Balaveera Reddy et al CBS Publishers

Note: - External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer aided drafting.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 0 0 2 1

(R22CSE1126) ELEMENTS OF COMPUTER SCIENCE & ENGINEERING

Course Objective: To provide an overview of the subjects of computer science and engineering.

Course Outcomes:

- 1. Know the working principles of functional units of a basic Computer
- 2. Understand program development, the use of data structures and algorithms in problemsolving.
- 3. Know the need and types of operating system, database systems.
- 4. Understand the significance of networks, internet, WWW and cyber security.
- 5. Understand Autonomous systems, the application of artificial intelligence.

UNIT - I

Basics of a Computer – Hardware, Software, Generations of computers. Hardware - functional units, Components of CPU, Memory – hierarchy, types of memory, Input and output devices. Software – systems software, application software, packages, frameworks, IDEs.

UNIT - II

Software development – waterfall model, Agile, Types of computer languages – Programming, markup, scripting Program Development – steps in program development, flowcharts, algorithms, data structures – definition, types of data structures

UNIT - III

Operating systems: Functions of operating systems, types of operating systems, Device & Resource management

Database Management Systems: Data models, RDBMS, SQL, Database Transactions, data centers, cloud services

UNIT - IV

Computer Networks: Advantages of computer networks, LAN, WAN, MAN, internet, WiFi, sensor networks, vehicular networks, 5G communication.

World Wide Web – Basics, role of HTML, CSS, XML, Tools for web designing, Social media, Online social networks.

Security – information security, cyber security, cyber laws

UNIT - V

Autonomous Systems: IoT, Robotics, Drones, Artificial Intelligence – Learning, Game Development, natural language processing, image and video processing. Cloud Basics

TEXT BOOK:

1. Invitation to Computer Science, G. Michael Schneider, Macalester College, Judith L. Gersting University of Hawaii, Hilo, Contributing author: Keith Miller University of Illinois, Springfield.

- 1. Fundamentals of Computers, Reema Thareja, Oxford Higher Education, Oxford University Press.
- 2. Introduction to computers, Peter Norton, 8th Edition, Tata McGraw Hill.
- 3. Computer Fundamentals, Anita Goel, Pearson Education India, 2010.
- 4. Elements of computer science, Cengage.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year – I Semester

L T P C 0 0 2 1

(R22CHE1127) ENGINEERING CHEMISTRY LABORATORY

Course Objectives: The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

- Estimation of hardness of water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids and bases using conductometry, potentiometry method.
- Students will learn to prepare polymers such as Bakelite and nylon-6 in the laboratory.
- Students will learn skills related to the lubricant properties such as saponification value, surfacetension and viscosity of oils.

Course Outcomes: The experiments will make the student gain skills on:

- 1. Determination of parameters like hardness of water and rate of corrosion of mild steel invarious conditions.
- 2. Able to perform methods such as conductometry, potentiometry and pH metry in order to findout the concentrations or equivalence points of acids and bases.
- 3. Students are able to prepare polymers like bakelite and nylon-6.
- 4. Estimations saponification value, surface tension and viscosity of lubricant oils.

List of Experiments:

I. Volumetric Analysis:

- 1. Estimation of Hardness of water by Complexometry using EDTA.
- 2. Estimation of Fe⁺² by Dichrometry.
- 3. Estimation of Ferrous by Permanganometry.
- **II. Conductometry:** Estimation of the concentration of an acid by Conductometry.

III. Potentiometry:

- 1. Estimation of the amount of Fe⁺² by Potentiomentry.
- 2. Estimation of the concentration of an acid by Potentiomentry.

IV.Preparations:

- 1. Preparation of Bakelite.
- 2. Preparation Nylon -6.

V. Lubricants:

- 1. Estimation of acid value of given lubricant oil.
- 2. Estimation of Viscosity of lubricant oil using Ostwald's Viscometer.

VI. Virtual lab experiments

- 1. Construction of Fuel cell and its working.
- 2. Smart materials for Biomedical applications
- 3. Batteries for electrical vehicles.
- 4. Functioning of solar cell and its applications.

- 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
- 2. Vogel's text book of practical organic chemistry 5th edition
- 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.
- 4. College Practical Chemistry by V.K. Ahluwalia, Narosa Publications Ltd. New Delhi (2007).

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 0 0 2 1

(R22CSE1128) PROGRAMMING FOR PROBLEM SOLVING LABORATORY

[Note: The programs may be executed using any available Open Source/ Freely available IDE

Some of the Tools available are:

CodeLite: https://codelite.org/

Code:Blocks:

http://www.codeblocks.org/

DevCpp:

http://www.bloodshed.net/devcpp.htmlEclipse:

http://www.eclipse.org

This list is not exhaustive and is NOT in any order of preference]

Course Objectives: The students will learn the following:

- To work with an IDE to create, edit, compile, run and debug programs
- To analyze the various steps in program development.
- To develop programs to solve basic problems by understanding basic concepts in C likeoperators, control statements etc.
- To develop modular, reusable and readable C Programs using the concepts like functions, arrays etc.
- To Write programs using the Dynamic Memory Allocation concept.
- To create, read from and write to text and binary files

Course Outcomes: The candidate is expected to be able to:

- formulate the algorithms for simple problems
- translate given algorithms to a working and correct program
- correct syntax errors as reported by the compilers
- identify and correct logical errors encountered during execution
- represent and manipulate data with arrays, strings and structures
- use pointers of different types
- create, read and write to and from simple text and binary files
- modularize the code with functions so that they can be reused

Practice sessions:

- a. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
- b. Write a simple program that converts one given data type to another using auto conversion andcasting. Take the values from standard input.

Simple numeric problems:

- a. Write a program for finding the max and min from the three numbers.
- b. Write the program for the simple, compound interest.
- c. Write a program that declares Class awarded for a given percentage of marks, where mark <40%= Failed, 40% to <60% = Second class, 60% to <70%=First class, >= 70% = Distinction.Read percentage from standard input.
- d. Write a program that prints a multiplication table for a given number and the number of

rows in the table. For example, for a number 5 and rows = 3, the output should be:

- e. $5 \times 1 = 5$
- f. $5 \times 2 = 10$
- g. $5 \times 3 = 15$
- h. Write a program that shows the binary equivalent of a given positive number between 0 to 255.

Expression Evaluation:

- a. A building has 10 floors with a floor height of 3 meters each. A ball is dropped from the top of the building. Find the time taken by the ball to reach each floor. (Use the formula $s = ut + (1/2)at^2$ where u and a are the initial velocity in m/sec (= 0) and acceleration in m/sec^2 (= 9.8 m/s^2)).
- b. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)
- c. Write a program that finds if a given number is a prime number
- d. Write a C program to find the sum of individual digits of a positive integer and test given number is palindrome.
- e. A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Writea C program to generate the first n terms of the sequence.
- f. Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.
- g. Write a C program to find the roots of a Quadratic equation.
- h. Write a C program to calculate the following, where x is a fractional value.
- i. $1-x/2 + x^2/4-x^3/6$
- j. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: $1+x+x^2+x^3+ +x^n$. For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

Arrays, Pointers and Functions:

- a. Write a C program to find the minimum, maximum and average in an array of integers.
- b. Write a function to compute mean, variance, Standard Deviation, sorting of n elements in a single dimension array.
- c. Write a C program that uses functions to perform the following:
- d. Addition of Two Matrices
- e. Multiplication of Two Matrices
- f. Transpose of a matrix with memory dynamically allocated for the new matrix as row and column counts may not be the same.
- g. Write C programs that use both recursive and non-recursive functions
- h. To find the factorial of a given integer.
- i. To find the GCD (greatest common divisor) of two given integers.
- j. To find x^n
- k. Write a program for reading elements using a pointer into an array and display the values using the array.
- I. Write a program for display values reverse order from an array using a pointer.
- m. Write a program through a pointer variable to sum of n elements from an array.

Files:

- a. Write a C program to display the contents of a file to standard output device.
- b. Write a C program which copies one file to another, replacing all lowercase characters

- withtheir uppercase equivalents.
- c. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.
- d. Write a C program that does the following:
 - It should first create a binary file and store 10 integers, where the file name and 10 values are given in the command line. (hint: convert the strings using atoi function)
 - Now the program asks for an index and a value from the user and the value at that index shouldbe changed to the new value in the file. (hint: use fseek function)

The program should then read all 10 values and print them back

e. Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file).

Strings:

- a. Write a C program to convert a Roman numeral ranging from I to L to its decimal equivalent.
- b. Write a C program that converts a number ranging from 1 to 50 to Roman equivalent
- c. Write a C program that uses functions to perform the following operations:
- d. To insert a sub-string into a given main string from a given position.
- e. To delete n Characters from a given position in a given string.
- f. Write a C program to determine if the given string is a palindrome or not (Spelled same in both directions with or without a meaning like madam, civic, noon, abcba, etc.)
- g. Write a C program that displays the position of a character ch in the string S or -1 if S doesn'tcontain ch.
- h. Write a C program to count the lines, words and characters in a given text.

Miscellaneous:

- a. Write a menu driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalidchoice is entered.
- b. Write a C program to construct a pyramid of numbers as follows:

1	*	1	1	*
1 2	* *	2 3	2 2	* *
1 2 3	* * *	4 5 6	3 3 3	* *
				*
			4 4 4 4	* *
				*

Sorting and Searching:

- a. Write a C program that uses non recursive function to search for a Key value in a given
- b. list of integers using linear search method.
- c. Write a C program that uses non recursive function to search for a Key value in a given
- d. sorted list of integers using binary search method.
- e. Write a C program that implements the Bubble sort method to sort a given list of
- f. integers in ascending order.
- g. Write a C program that sorts the given array of integers using selection sort in descending order
- h. Write a C program that sorts the given array of integers using insertion sort in ascending order
- i. Write a C program that sorts a given array of names

TEXT BOOKS:

- 1. Jeri R. Hanly and Elliot B.Koffman, Problem solving and Program Design in C 7th Edition, Pearson
- 2. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage Learning, (3rdEdition)

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, PHI
- 2. E. Balagurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill
- 3. Yashavant Kanetkar, Let Us C, 18th Edition, BPB
- 4. R.G. Dromey, How to solve it by Computer, Pearson (16th Impression)
- 5. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 6. Herbert Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition
- 7. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - I Semester

L T P C 0 0 2 1

(R22EEE1227) BASIC ELECTRICAL ENGINEERING LABORATORY

Course Objectives:

- To measure the electrical parameters for different types of DC and AC circuits using conventional and theorems approach.
- To study the transient response of various R, L and C circuits using different excitations.
- To determine the performance of different types of DC, AC machines and Transformers.

Course Outcomes: After learning the contents of this paper the student must be able to

- Verify the basic Electrical circuits through different experiments.
- Evaluate the performance calculations of Electrical Machines and Transformers throughvarious testing methods.
- Analyze the transient responses of R, L and C circuits for different input conditions.

Course Objectives	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
To measure the electrical parameters for different types of DC and AC circuitsusing conventional and theorems approach	3	2	1		2	0	0	1	2	0	1	2
To study the transient response of various R, L and C circuits using different excitations	3	2	1	1	3	0	0	0	2	0	1	1
To determine the performance of different types of DC, AC machines and Transformers	3	2	0		3	0	0	0	1	2	1	1

Course Outcomes	Prog	ram O	utcom	es								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Verify the basic Electrical circuitsthrough different experiments	3	2	1	0	1	0	0	0	2	0	2	2
Evaluate the performance calculations of Electrical Machinesand Transformers through various testing methods	3	2	1	0	3	1	0	1	1	2	1	2
Analyse the transient responses of R, Land C circuits for different input conditions	3	2	1	1	3	2	0	0	1	0	2	2

List of experiments/demonstrations:

PART- A (compulsory)

- 1. Verification of KVL and KCL
- 2. Verification of Thevenin's and Norton's theorem
- 3. Transient Response of Series RL and RC circuits for DC excitation
- 4. Resonance in series RLC circuit
- 5. Calculations and Verification of Impedance and Current of RL, RC and RLC seriescircuits
- 6. Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
- 7. Performance Characteristics of a DC Shunt Motor
- 8. Torque-Speed Characteristics of a Three-phase Induction Motor.

PART-B (any two experiments from the given list)

- 1. Verification of Superposition theorem.
- 2. Three Phase Transformer: Verification of Relationship between Voltages and Currents(Star-Delta, Delta-Delta, Delta-star, Star-Star)
- 3. Load Test on Single Phase Transformer (Calculate Efficiency and Regulation)
- 4. Measurement of Active and Reactive Power in a balanced Three-phase circuit
- 5. No-Load Characteristics of a Three-phase Alternator

TEXT BOOKS:

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 4th Edition, 2019
- 2. MS Naidu and S Kamakshaiah, "Basic Electrical Engineering", Tata McGraw Hill, 2nd Edition, 2008.

- 1. P. Ramana, M. Suryakalavathi, G.T.Chandrasheker,"Basic Electrical Engineering", S. Chand,2nd Edition, 2019.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009
- 3. M. S. Sukhija, T. K. Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford, 1st Edition, 2012.
- 4. Abhijit Chakrabarthi, Sudipta Debnath, Chandan Kumar Chanda, "Basic ElectricalEngineering", 2nd Edition, McGraw Hill, 2021.
- 5. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 6. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C

(R22MTH1211) ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

Course Objectives: To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions
- The basic properties of vector valued functions and their applications to line, surface andvolume integrals

Course outcomes: After learning the contents of this paper the student must be able to

- Identify whether the given differential equation of first order is exact or not
- Solve higher differential equation and apply the concept of differential equation to real worldproblems.
- Use the Laplace transforms techniques for solving ODE's.
- Evaluate the line, surface and volume integrals and converting them from one to another

UNIT-I: First Order ODE

Exact differential equations, Equations reducible to exact differential equations, linear and Bernoulli's equations, Applications: Orthogonal Trajectories (only in Cartesian Coordinates), Newton's law of cooling, Law of natural growth and decay.

UNIT-II: Ordinary Differential Equations of Higher Order

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , sin , cos ax, polynomials in x, $e^{ax}V(x)$ and x V(x), method of variation of parameters, Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation. Applications: Electric Circuits both first and second order.

UNIT-III: Laplace transforms

Laplace Transforms: Laplace Transform of standard functions, First shifting theorem, Second shifting theorem, Unit step function, Dirac delta function, Laplace transforms of functions when they are multiplied and divided by 't', Laplace transforms of derivatives and integrals of function, Evaluation of integrals by Laplace transforms, Laplace transform of periodic functions, Inverse Laplace transform by different methods, convolution theorem (without proof). Applications: Solving Ordinary Differential Equations with constant coefficient and with given initial conditions by Laplace Transform method.

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions, Gradient, Divergence and Curl, Directional derivatives, Tangent plane and normal line, Vector Identities, Scalar potential functions, Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

Line, Surface and Volume Integrals, Theorems of Green, Gauss and Stokes (without proofs) and their applications.

TEXT BOOKS:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010
- 2. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publications, 5th Edition, 2016.

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 3. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S Chand and CompanyLimited, New Delhi.
- 4. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 3 1 0 4

(R22APH1112) APPLIED PHYSICS

Course Objectives: The objectives of this course for the student are to:

- 1. Understand the basic principles of quantum physics and band theory of solids.
- 2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- 3. Study the fundamental concepts related to the dielectric, magnetic and energy materials.
- 4. Identify the importance of nano scale, quantum confinement and various fabricationstechniques.
- 5. Study the characteristics of lasers and optical fibres.

Course Outcomes: At the end of the course the student will be able to:

- 1. Understand physical world from fundamental point of view by the concepts of Quantum mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- 2. Identify the role of semiconductor devices in science and engineering Applications.
- 3. Explore the fundamental properties of dielectric, magnetic materials and energy for their applications.
- 4. Appreciate the features and applications of Nano materials.
- 5. Understand various aspects of Lasers and Optical fiber and their applications in diverse fields.
- 6. Understand the relation between various parameters or variables.

UNIT - I: QUANTUM PHYSICS AND SOLIDS

Quantum Mechanics: Introduction to quantum physics, blackbody radiation – Stefan-Boltzmann's law, Wien's and Rayleigh-Jean's law, Planck's radiation law - photoelectric effect – de Broglie concept of matter waves - Davisson and Germer experiment –Heisenberg uncertainty principle – Physical significance of the wave function – time independent Schrodinger wave equation - particle in one dimensional potential box.

Solids: Symmetry in solids, free electron theory (Drude & Lorentz, Summerfield) - Fermi-Dirac distribution - Bloch's theorem -Kronig-Penney model – E-K diagram- effective mass of electron-origin of energy bands- classification of solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT) – Operation of PNP and NPN Transistors. LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics.

UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS

Dielectric Materials: Basic definitions- types of polarizations (qualitative) - ferroelectric, piezoelectric, and Pyro electric materials - applications - liquid crystal displays (LCD) and crystal oscillators.

Magnetic Materials: Introduction-Hysteresis-soft and hard magnetic materials - magneto striction, magneto resistance - applications - bubble memory devices, magnetic field sensors and multi ferroics. Energy Materials: Conductivity of liquid and solid electrolytes (qualitative) - super ionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells.

UNIT - IV: NANOTECHNOLOGY

Introduction, Nano scale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods. Top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD). Characterization techniques - XRD, SEM &TEM. Applications of nano materials.

UNIT - V: LASER AND FIBER OPTICS

Lasers: Laser beam characteristics-three quantum processes(Stimulated absorption, spontaneous emission and stimulated emission) -Einstein coefficients and their relations- lasing action - pumping methods- ruby laser, He-Ne laser, CO2 laser, - semiconductor laser-applications of laser.

Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection-construction of optical fiber - acceptance angle - numerical aperture- classification of optical fibers- losses in optical fiber - optical fiber for communication system - applications.

TEXT BOOKS:

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill, 4thEdition,2021.
- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition,2022.
- 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.

- 1. Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
- 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons, 11th Edition, 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019.
- 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1stEdition, 2007.
- 6. Energy Materials a Short Introduction to Functional Materials for Energy Conversion and Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group Energy Materials Taylor & Francis Group, 1st Edition, 2022.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 0 1 3 2.5

(R22MED1124) ENGINEERING WORKSHOP

Course Objectives:

- To Study of different hand operated power tools, uses and their demonstration.
- To gain a good basic working knowledge required for the production of various engineering products.
- To provide hands on experience about use of different engineering materials, tools, equipments and processes those are common in the engineering field.
- To develop a right attitude, team working, precision and safety at work place.
- It explains the construction, function, use and application of different working tools, equipmentand machines.
- To study commonly used carpentry joints.
- To have practical exposure to various welding and joining processes.
- Identify and use marking out tools, hand tools, measuring equipment and to work to prescribed tolerances.

Course Outcomes: At the end of the course, the student will be able to:

- 1. Study and practice on machine tools and their operations
- 2. Practice on manufacturing of components using workshop trades including pluming, fitting, carpentry.
- 3. To understand the foundry, house wiring and welding Trades.
- 4. Identify and apply suitable tools for different trades of Engineering processes including drilling, material removing, measuring, chiseling.
- 5. Apply basic electrical engineering knowledge for house wiring practice.

Syllabus:

- Introduction to Carpentry: Types Wood, Sizes of Wood or Timber, Characteristics of Wood, Types of Marking and Measuring Tools, Holding Tools, Cutting Tools, Planing Tools, Types of Chisels and their specifications, Drilling and Boring Tools and their Sketches, Wood Working Lathe and its parts, Drilling Machine and its parts, Types of saws, Sawing Machines such as Jigsaw, Bandsaw, Scrollsaw etc., Care and Maintenance of Tools.
- Introduction to Fitting: Holding Tools, Marking and Measuring Tools, Cutting Tools, Taps and Tap Wrenches, Dies and Die Holders, Bench Drilling Machine with Sketch and Specifications, Types of Files, File Card, Types of Hammers, Spanners, Screwdrivers, Fitting operations, Forms of Materials, Care and Maintenance of Tools
- Introduction of Tin-Smithy: Sheet Materials, Hand Tools, Hammers, Stakes, Sheet Metal Joints, Revets and Screws, Soldering and Brazing.
- Introduction to Foundry: Casting and its components such as Molding sands and their types, Properties, Types patterns, Pattern making materials, Tools used for the Molding, Melting Furnaces such as Cupola, Pot Furnace, Crucible Furnace
- Introduction to Welding: Various Welding processes such as Arc Welding, Gas Welding, Resistance Welding, Thermit Welding, Friction Welding, Elementary Symbols of the Welding, Transformers, Motor Generators, Rectifyers, Welding cables, Electrodes and their types, Electrode Holders, Techniques of Welding, Gas Welding their Types
- Introduction to House-wiring: Types of the Tools using House-wiring, Types of Housewiring System, Fuses, Circuit Breakers, Switches, Sockets and Common House-wiring Methods, Various Symbol for Electrical Items.

- Introduction to Black Smithy: Tools and equipment used in the Black Smithy, Forging Temperatures of metals.
- Introduction to the Plumbing, Machine Shop, Metal Cutting, Power Tools.

1. TRADES FOR EXERCISES:

At least two exercises from each trade:

- I. Carpentry (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
- II. Fitting (V-Fit, Dovetail Fit & Semi-circular fit)
- III. Tin-Smithy (Square Tin, Rectangular Tray & Conical Funnel)
- IV. Foundry (Preparation of Green Sand Mould using Single Piece and Split Pattern)
- V. Welding Practice (Arc Welding & Gas Welding)
- VI. House-wiring (Parallel & Series, Two-way Switch and Tube Light)
- VII. Black Smithy (Round to Square, Fan Hook and S-Hook)

2. TRADES FOR DEMONSTRATION & EXPOSURE:

Plumbing, Machine Shop, Metal Cutting (Water Plasma), Power tools in construction and Wood Working

TEXT BOOKS:

- 1. Workshop Practice /B. L. Juneja / Cengage
- 2. Workshop Manual / K. Venugopal / Anuradha.

- 1. Work shop Manual P. Kannaiah/ K.L. Narayana/ Scitech
- 2. Workshop Manual / Venkat Reddy/ BSP

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 2 0 0 2

(R22HAS1115) ENGLISH FOR SKILL ENHANCEMENT

Course Objectives: This course will enable the students to:

- 1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
- 2. Develop study skills and communication skills in various professional situations.
- 3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.

Course Outcomes: Students will be able to:

- 1. Understand the importance of vocabulary and sentence structures.
- 2. Choose appropriate vocabulary and sentence structures for their oral and written communication.
- 3. Demonstrate their understanding of the rules of functional grammar.
- 4. Develop comprehension skills from the known and unknown passages.
- 5. Take an active part in drafting paragraphs, letters, essays, abstracts, précis and reports invarious contexts.
- 6. Acquire basic proficiency in reading and writing modules of English.

UNIT - I

Chapter entitled 'Toasted English' by R.K.Narayan from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Acquaintance with Prefixes and Suffixes from Foreign Languages to form Derivatives - Synonyms and

Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Writing: Sentence Structures -Use of Phrases and Clauses in Sentences- Importance of Proper Punctuation- Techniques for Writing precisely – Paragraph Writing – Types, Structures and

Features of a Paragraph - Creating Coherence-Organizing Principles of Paragraphs in

Documents.

UNIT - II

Chapter entitled 'Appro JRD' by Sudha Murthy from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Misspelt - Homophones, Homonyms and Homographs

Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and

Subject-verb Agreement.

Reading: Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

Writing: Nature and Style of Writing- Defining /Describing People, Objects, Places and Events-Classifying- Providing Examples or Evidence.

UNIT - III

Chapter entitled 'Lessons from Online Learning' by F.Haider Alvi, Deborah Hurst et al from

"English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses. **Reading:** Sub-Skills of Reading – Intensive Reading and Extensive Reading – Exercises forPractice. **Writing:** Format of a Formal Letter-Writing Formal Letters E.g.., Letter of Complaint, Letter of

Requisition, Email Etiquette, Job Application with CV/Resume.

UNIT - IV

Chapter entitled 'Art and Literature' by Abdul Kalam from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion -Précis Writing.

UNIT - V

Chapter entitled 'Go, Kiss the World' by Subroto Bagchi from "English: Language, Context and Culture" published by Orient BlackSwan, Hyderabad.

Vocabulary: Technical Vocabulary and their Usage

Grammar: Common Errors in English (*Covering all the other aspects of grammar which were not*

covered in the previous units)

Reading: Reading Comprehension-Exercises for Practice

Writing: Technical Reports- Introduction – Characteristics of a Report – Categories of Reports

Formats- Structure of Reports (Manuscript Format) - Types of Reports - Writing a Report.

<u>Note</u>: Listening and Speaking Skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course.

- Note: 1. As the syllabus of English given in AICTE *Model Curriculum-2018 for B.Tech First Year is Open-ended*, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.
- > <u>Note</u>: 2.Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents .They are advised to teach 40 percent of each topic from the syllabus in blended mode.

TEXT BOOK:

1. "English: Language, Context and Culture" by Orient BlackSwan Pvt. Ltd, Hyderabad. 2022. Print.

- 1. Effective Academic Writing by Liss and Davis (OUP)
- 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 4. Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of Functional Language, Grammar and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd.
- 5. (2019). Technical Communication. Wiley India Pvt. Ltd.
- 6. Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students.Mc Graw-Hill Education India Pvt. Ltd.
- 7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C

(R22ECE1215) ELECTRONIC DEVICES AND CIRCUITS

Course Objectives:

- 1. To introduce components such as diodes, BJTs and FETs.
- 2. To know the applications of devices.
- 3. To know the switching characteristics of devices.

Course Outcomes: Upon completion of the Course, the students will be able to:

- 1. Acquire the knowledge of various electronic devices and their use on real life.
- 2. Know the applications of various devices.
- 3. Acquire the knowledge about the role of special purpose devices and their applications.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	-	-	1	1	-	-	-	-	1
CO2	3	2	3	•	-	2	1	-	-	-	-	1
CO3	3	3	3	ı	ı	2	1	-	-	-	-	1

UNIT - I

Diodes: Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics, Diode as a switch-switching times.

UNIT - II

Diode Applications: Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive and Inductive Filters, Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clampers.

UNIT - III

Bipolar Junction Transistor (BJT): Principle of Operation, Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch, switching times,

UNIT - IV

Junction Field Effect Transistor (FET): Construction, Principle of Operation, Pinch-Off Voltage, Voltampere Characteristic, Comparison of BJT and FET, FET as Voltage Variable Resistor, MOSFET, MOSTET as a capacitor.

UNIT - V

Special Purpose Devices: Zener Diode - Characteristics, Zener diode as Voltage Regulator, Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode, Photo diode, Solar cell, LED, Schottky diode.

TEXT BOOKS:

- 1. Jacob Millman Electronic Devices and Circuits, McGraw Hill Education
- 2. Robert L. Boylestead, Louis Nashelsky- Electronic Devices and Circuits theory, 11th Edition, 2009, Pearson.

- 1. Horowitz -Electronic Devices and Circuits, David A. Bell 5thEdition, Oxford.
- 2. Chinmoy Saha, Arindam Halder, Debaati Ganguly Basic Electronics-Principles and Applications, Cambridge, 2018.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 0 0 3 1.5

(R22APH1127) APPLIED PHYSICS LABORATORY

Course Objectives: The objectives of this course for the student to

- 1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements.
- 2. Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials.
- 3. Able to measure the characteristics of dielectric constant of a given material.
- 4. Study the behavior of B-H curve of ferromagnetic materials.
- 5. Understanding the method of least squares fitting.

Course Outcomes: The students will be able to:

- 1. Know the determination of the Planck's constant using Photo electric effect and identify thematerial whether it is n-type or p-type by Hall experiment.
- 2. Appreciate quantum physics in semiconductor devices and optoelectronics.
- 3. Gain the knowledge of applications of dielectric constant.
- 4. Understand the variation of magnetic field and behavior of hysteresis curve.
- 5. Carried out data analysis by the method of least squares.
- 6. Understanding the characteristics of laser and signal transmission in optical fiber.

LIST OF EXPERIMENTS:

- 1. Determination of work function and Planck's constant using photoelectric effect.
- 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
- 3. Characteristics of series and parallel LCR circuits.
- 4. V-I characteristics of a p-n junction diode and Zener diode
- 5. Input and output characteristics of BJT (CE, CB & CC configurations)
- 6. a) V-I and L-I characteristics of light emitting diode (LED)
 - b) V-I Characteristics of solar cell
- 7. Determination of Energy gap of a semiconductor.
- 8. Determination of the resistivity of semiconductor by two probe method (Demonstration).
- 9. Study B-H curve of a magnetic material.
- 10. Determination of dielectric constant of a given material (Demonstration).
- 11. a) Determination of the beam divergence of the given LASER beam
 - b) Determination of Acceptance Angle and Numerical Aperture of an optical fiber.
- 12. Understanding the method of least squares torsional pendulum as an example.

Note: Any 8 experiments are to be performed.

REFERENCE BOOK:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 0 1 2 2

(R22CSE1227) PYTHON PROGRAMMING LABORATORY

Course Objectives:

- To install and run the Python interpreter
- To learn control structures.
- To Understand Lists, Dictionaries in python
- To Handle Strings and Files in Python

Course Outcomes: After completion of the course, the student should be able to

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Verify programs using modular approach, file I/O, Python standard library
- Implement Digital Systems using Python

Note: The lab experiments will be like the following experiment examples

Week -1:

- 1. i) Use a web browser to go to the Python website http://python.org. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
 - ii) Start the Python interpreter and type help() to start the online help utility.
- 2. Start a Python interpreter and use it as a Calculator.

3.

- i) Write a program to calculate compound interest when principal, rate and number of periods are given.
- ii) Given coordinates (x1, y1), (x2, y2) find the distance between two points
- **4.** Read name, address, email and phone number of a person through keyboard and print the details.

Week - 2:

- 1. Print the below triangle using for loop.5
 - 44
 - 3 3 3
 - 2222
 - 11111
- 2. Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)
- 3. Python Program to Print the Fibonacci sequence using while loop
- 4. Python program to print all prime numbers in a given interval (use break)

Week - 3:

- 1. i) Write a program to convert a list and tuple into arrays.
 - ii) Write a program to find common values between two arrays.
- 2. Write a function called gcd that takes parameters a and b and returns their greatest common divisor.
- 3. Write a function called palindrome that takes a string argument and returnsTrue if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string.

Week - 4:

- 1. Write a function called is_sorted that takes a list as a parameter and returns True if the list is sortedin ascending order and False otherwise.
- 2. Write a function called has_duplicates that takes a list and returns True if there is any element that appears more than once. It should not modify the original list
 - i). Write a function called remove_duplicates that takes a list and returns a new list with only the unique elements from the original. Hint: they don't have to be in the same order.
 - ii). The wordlist I provided, words.txt, doesn't contain single letter words. So you might want to add "I", "a", and the empty string.
 - iii). Write a python code to read dictionary values from the user. Construct a function to invert its content. i.e., keys should be values and values should be keys.
- 3. i) Add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e' ii) Remove the given word in all the places in a string?
 - iii) Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?
- 4. Writes a recursive function that generates all binary strings of n-bit length

Week - 5:

- 1. i) Write a python program that defines a matrix and prints
 - ii) Write a python program to perform addition of two square matrices
 - iii) Write a python program to perform multiplication of two square matrices
- 2. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.
- 3. Use the structure of exception handling all general purpose exceptions.

Week-6:

- 1. a. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments anddraws a representation of the Rectangle on the Canvas.
 - b. Add an attribute named color to your Rectangle objects and modify draw_rectangle so that ituses the color attribute as the fill color.
 - c. Write a function called draw_point that takes a Canvas and a Point as arguments and draws a representation of the Point on the Canvas.
 - d. Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas.
- 2. Write a Python program to demonstrate the usage of Method Resolution Order (MRO) in multiple levels of Inheritances.
- 3. Write a python code to read a phone number and email-id from the user and validate it for correctness.

Week-7

- 1. Write a Python code to merge two given file contents into a third file.
- 2. Write a Python code to open a given file and construct a function to check for given words present init and display on found.
- 3. Write a Python code to Read text from a text file, find the word with most number of occurrences
- 4. Write a function that reads a file *file1* and displays the number of words, number of vowels, blank spaces, lower case letters and uppercase letters.

Week - 8:

- 1. Import numpy, Plotpy and Scipy and explore their functionalities.
- 2. a) Install NumPy package with pip and explore it.
- 3. Write a program to implement Digital Logic Gates AND, OR, NOT, EX-OR
- 4. Write a program to implement Half Adder, Full Adder, and Parallel Adder
- 5. Write a GUI program to create a window wizard having two text labels, two text fields and two buttons as Submit and Reset.

TEXT BOOKS:

- 1. Supercharged Python: Take your code to the next level, Overland
- 2. Learning Python, Mark Lutz, O'reilly

- 1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 2. Python Programming A Modular Approach with Graphics, Database, Mobile, and Web Applications, Sheetal Taneja, Naveen Kumar, Pearson
- 3. Programming with Python, A User's Book, Michael Dawson, Cengage Learning, India Edition
- 4. Think Python, Allen Downey, Green Tea Press
- 5. Core Python Programming, W. Chun, Pearson
- 6. Introduction to Python, Kenneth A. Lambert, Cengage

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 0 0 2 1

(R22HAS1128) ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

The English Language and Communication Skills (ELCS) Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Course Objectives:

- ✓ To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- ✓ To sensitize the students to the nuances of English speech sounds, word accent,intonation and rhythm
- ✓ To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking
- ✓ To improve the fluency of students in spoken English and neutralize the impact of dialects.
- ✓ To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes: Students will be able to:

- ✓ Understand the nuances of English language through audio- visual experience and groupactivities
- ✓ Neutralise their accent for intelligibility
- ✓ Speak with clarity and confidence which in turn enhances their employability skills

Syllabus: English Language and Communication Skills Lab (ELCS) shall have two parts:

- a. Computer Assisted Language Learning (CALL) Lab
- b. Interactive Communication Skills (ICS) Lab

Listening Skills:

Objectives

- 1. To enable students develop their listening skills so that they may appreciate the role in the LSRW skills approach to language and improve their pronunciation
- 2. To equip students with necessary training in listening, so that they can comprehend the speechof people of different backgrounds and regions

Students should be given practice in listening to the sounds of the language, to be able to recognize them and find the distinction between different sounds, to be able to mark stress and recognize and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

Speaking Skills:

Objectives

- 1. To involve students in speaking activities in various contexts
- 2. To enable students express themselves fluently and appropriately in social and professional contexts
- Oral practice
- Describing objects/situations/people

- Role play Individual/Group activities
- Just A Minute (JAM) Sessions

The following course content is prescribed for the English Language and Communication Skills Lab.

Exercise – I

CALL Lab:

Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening. *Practice*: Introduction to Phonetics – Speech Sounds – Vowels and Consonants – Minimal Pairs-Consonant Clusters- Past Tense Marker and Plural Marker- *Testing Exercises*

ICS Lab:

Understand: Spoken vs. Written language- Formal and Informal English.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others.

Exercise -II

CALL Lab:

Understand: Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences – Intonation.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress pattern in sentences - Intonation - *Testing Exercises*

ICS Lab:

Understand: Features of Good Conversation – Strategies for Effective Communication.

Practice: Situational Dialogues – Role Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette.

Exercise - III

CALL Lab:

Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI).

Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation -Testing Exercises

ICS Lab:

Understand: Descriptions- Narrations- Giving Directions and Guidelines – Blog Writing

Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise - IV

CALL Lab:

Understand: Listening for General Details.

Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:

Understand: Public Speaking – Exposure to Structured Talks - Non-verbal Communication-Presentation Skills.

Practice: Making a Short Speech – Extempore- Making a Presentation.

Exercise - V

CALL Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises

ICS Lab:

Understand: Group Discussion *Practice:* Group Discussion

Minimum Requirement of infrastructural facilities for ELCS Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio- visual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio & video system and camcorder etc.

Source of Material (Master Copy):

• Exercises in Spoken English. Part 1,2,3. CIEFL and Oxford University Press

Note: Teachers are requested to make use of the master copy and get it tailor-made to suit the contents of the syllabus.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge UniversityPress.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All
- Orell Digital Language Lab (Licensed Version)

- 1. (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd.
- 2. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English A workbook*. Cambridge University Press
- 3. Kumar, Sanjay & Lata, Pushp. (2019). *Communication Skills: A Workbook*. Oxford University Press
- 4. Board of Editors. (2016). ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities. Orient Black Swan Pvt. Ltd.
- 5. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach*. Cambridge University Press.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - I Year - II Semester

L T P C 0 0 2 1

(R22INF1229) IT WORKSHOP

Course Objectives: The IT Workshop for engineers is a training lab course spread over 60 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, PowerPoint and Publisher.

Course Outcomes:

- Perform Hardware troubleshooting
- Understand Hardware components and inter dependencies
- Safeguard computer systems from viruses/worms
- Document/ Presentation preparation
- Perform calculations using spreadsheets

PC Hardware

- **Task 1:** Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.
- **Task 2:** Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.
- **Task 3:** Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.
- **Task 4:** Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

- **Task1:** Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.
- **Task 2:** Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.
- **Task 3:** Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.
- **Task 4:** Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

- **Task 1** Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.
- **Task 2:** Using LaTeX and Word to create a project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.
- **Task 3:** Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.
- **Task 4:** Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

- **Excel Orientation:** The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel Accessing, overview of toolbars, saving excel files, Using help and resources.
- **Task 1: Creating a Scheduler -** Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text
- **Task 2 : Calculating GPA -** Features to be covered:- Cell Referencing, Formulae in excel average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP.
- **Task 3:** Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Powerpoint

- **Task 1:** Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.
- **Task 2:** Interactive presentations Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.
- **Task 3:** Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting Background, textures, Design Templates, Hidden slides.

- 1. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
- 2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, WILEY Dreamtech
- 3. Introduction to Information Technology, ITL Education Solutions limited, *Pearson Education*.
- 4. PC Hardware A Handbook Kate J. Chase *PHI* (Microsoft)
- 5. LaTeX Companion Leslie Lamport, *PHI/Pearson*.
- 6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinsonand Ken Quamme. *CISCO Press, Pearson Education*.
- 7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan—CISCO Press, *Pearson Education*.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 3 0 0 3

(R22ECE2112) DIGITAL ELECTRONICS

Course Objectives: This course aims at through understanding of binary number system, logic gates, combination logic and synchronous and asynchronous logic.

UNIT - I:

BOOLEAN ALGEBRA AND LOGIC GATES: Digital Systems, Binary Numbers, Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes, Binary Storage and Registers, Binary logic.

Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean algebra, Boolean functions, canonical and standard forms, other logic operations, Digital logic gates.

UNIT - II:

GATE – LEVEL MINIMIZATION: The map method, Four-variable map, Five-Variable map, product of sums simplification Don't-care conditions, NAND and NOR implementation other Two-level implementations, Exclusive – Or function.

UNIT - III:

COMBINATIONAL LOGIC: Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL for combinational circuits.

UNIT - IV:

SEQUENTIAL LOGIC: Sequential circuits, latches, Flip-Flops Analysis of clocked sequential circuits, state Reduction and Assignment, Design Procedure. Registers, shift Registers, Ripple counters, synchronous counters, other counters.

UNIT - V

MEMORIES AND ASYNCHRONOUS SEQUENTIAL LOGIC: Introduction, Random-Access Memory, Memory Decoding, Error Detection and correction Read-only memory, Programmable logic Array programmable Array logic, Sequential Programmable Devices.

Introduction, Analysis Procedure, Circuits with Latches, Design Procedure, Reduction of state and Flow Tables, Race-Free state Assignment Hazards, Design Example.

TEXT BOOKS:

- 1. Digital Design Third Edition, M. Morris Mano, Pearson Education/PHI.
- 2. Digital Principles and Applications Albert Paul Malvino Donald P. Leach TATA McGraw Hill Edition.
- 3. Fundamentals of Logic Design, Roth, 5th Edition, Thomson.

- 1. Switching and Finite Automata Theory by Zvi. Kohavi, Tata McGraw Hill.
- 2. Switching and Logic Design, C.V.S. Rao, Pearson Education
- 3. Digital Principles and Design Donald D.Givone, Tata McGraw Hill, Edition.
- 4. Fundamentals of Digital Logic and Microcomputer Design, 5TH Edition, M. Rafiquzzaman John Wiley.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 3 0 0 3

(R22CSE2112) DATA STRUCTURES

Course Objectives

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms

Course Outcomes

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and generaltree structures, search trees, tries, heaps, graphs, and AVL-trees.

UNIT - I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks- Operations, array and linked representations of stacks, stack applications, Queues- operations, array and linked representations.

UNIT - II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

UNIT - III

Search Trees: Binary Search Trees, Definition, Implementation, Operations- Searching, Insertion and Deletion, B- Trees, B+ Trees, AVL Trees, Definition, Height of an AVL Tree, Operations – Insertion, Deletion and Searching, Red –Black, Splay Trees.

UNIT - IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Heap Sort, External Sorting- Model for external sorting, Merge Sort.

UNIT - V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan AndersonFreed, Universities Press.
- 2. Data Structures using C A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/PearsonEducation.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 3 1 0 4

(R22MTH2114) COMPUTER ORIENTED STATISTICAL METHODS

Course Objectives: To learn

- The theory of Probability, Probability distributions of single and multiple random variables
- The sampling theory, testing of hypothesis and making statistical inferences
- Stochastic process and Markov chains.

Course outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and distributions to case studies.
- Formulate and solve problems involving random variables and apply statistical methods for analyzing experimental data.
- Apply concept of estimation and testing of hypothesis to case studies.
- Correlate the concepts of one unit to the concepts in other units.

UNIT - I: Probability

Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Baye's Rule.

Random Variables and Probability Distributions: Concept of a Random Variable, Probability Density Function and Probability Mass Function for Discrete and Continuous Random Variables.

UNIT - II: Expectation and discrete distributions

Mean of a Random Variable for Discrete and continuous Random Variables. Variance and Covariance for Discrete and continuous Random Variables. Mean and Variance of Linear Combinations of Random Variables, Chebyshev's Theorem.

Discrete Probability Distributions: Binomial Distribution, Poisson distribution.

UNIT - III: Continuous and Sampling Distributions

Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, t - Distribution, F-Distribution.

UNIT - IV: Sample Estimation & Tests of Hypotheses

Introduction, Statistical Inference, Classical Methods of Estimation, Single Sample: Estimating the mean, standard error of a point estimate, prediction interval. Two sample: Estimating the difference between two means, Single sample: Estimating a proportion, Two samples: Estimating the difference between two proportions, Two samples: Estimating the ratio of two variances.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Single sample: Tests concerning a single mean, Two samples: tests on two means, One sample: test on a single proportion. Two samples: tests on two proportions, Two- sample tests concerning variances.

UNIT-V: Stochastic Processes and Markov Chains

Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & StatisticsFor Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
- 3. S.D.Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi.

- 1. T.T. Soong, Fundamentals of Probability and Statistics For Engineers, John Wiley & Sons, Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, academic press.

 Miller and Freund's, Probability and Statistics for Engineers, 8th Edition, Pearson Educations

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year – I Semester

L T P C 3 0 0 3

(R22CSE2114) COMPUTER ORGANIZATION AND ARCHITECTURE

Course Objectives

- The purpose of the course is to introduce principles of computer organization and the basic architectural concepts.
- It begins with basic organization, design, and programming of a simple digital computer and introduces simple register transfer language to specify various computer operations.
- Topics include computer arithmetic, instruction set design, microprogrammed control unit, pipelining and vector processing, memory organization and I/O systems, and multiprocessors

Course Outcomes

- Understand the basics of instruction sets and their impact on processor design.
- Demonstrate an understanding of the design of the functional units of a digital computer system.
- Evaluate cost performance and design trade-offs in designing and constructing a computer processor including memory.
- Design a pipeline for consistent execution of instructions with minimum hazards.
- Recognize and manipulate representations of numbers stored in digital computers

UNIT - I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT-II

Microprogrammed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT - III

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating—point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT - IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT - V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Interprocessor arbitration, Interprocessor communication and synchronization, Cache Coherence.

TEXT BOOK:

1. Computer System Architecture – M. Morris Mano, Third Edition, Pearson/PHI.

- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, SafeaZaky, V th Edition, McGrawHill.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 3 0 0 3

(R22CSE2115) OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Course Objectives

- To Understand the basic object-oriented programming concepts and apply them in problemsolving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling
- To Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes

- Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT orswings.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT-II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance. Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, Exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets. Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

- 1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley& sons.
- 2. An Introduction to OOP, third edition, T. Budd, Pearson education.
- 3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
- 4. An introduction to Java programming and object-oriented application development, R.A.Johnson-Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.
- 6. Core Java 2, Vol 2, Advanced Features, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education
- 7. Object Oriented Programming with Java, R.Buyya, S.T.Selvi, X.Chu, TMH.
- 8. Java and Object Orientation, an introduction, John Hunt, second edition, Springer. 9. Maurach's Beginning Java2 JDK 5, SPD.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 0 0 3 1.5

(R22CSE2126) DATA STRUCTURES LAB

Course Objectives:

- It covers various concepts of C programming language
- It introduces searching and sorting algorithms
- It provides an understanding of data structures such as stacks and queues.

Course Outcomes:

- Ability to develop C programs for computing and real-life applications using basic elements like control statements, arrays, functions, pointers and strings, and data structures like stacks, queues and linked lists.
- Ability to Implement searching and sorting algorithms

List of Experiments:

- 1. Write a program that uses functions to perform the following operations on singly linked list.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 2. Write a program that uses functions to perform the following operations on doubly linked list.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 3. Write a program that uses functions to perform the following operations on circular linked list.:
 - i) Creation ii) Insertion iii) Deletion iv) Traversal
- 4. Write a program that implement stack (its operations) using
 - i) Arrays ii) Pointers
- 5. Write a program that implement Queue (its operations) using
 - i) Arrays ii) Pointers
- 6. Write a program that implements the following sorting methods to sort a given list of integers in ascending order
 - i) Quick sort iii) Heap sort iii) Merge sort
- 7. Write a program to implement the tree traversal methods (Recursive and Non Recursive).
- 8. Write a program to implement
 - i) Binary Search tree Red - Black trees
- ii) B Trees
- iii) B+ Trees iv) AV
 - AVLtrees v)

- 9. Write a program to implement the graph traversal methods.
- 10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan AndersonFreed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/PearsonEducation.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 0 0 3 1.5

(R22CSE2127) OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

Course Objectives:

- To write programs using abstract classes.
- To write programs for solving real world problems using the java collection framework.
- To write multithreaded programs.
- To write GUI programs using swing controls in Java.
- To introduce java compiler and eclipse platform.
- To impart hands-on experience with java programming.

Course Outcomes:

- Able to write programs for solving real world problems using the java collection framework.
- Able to write programs using abstract classes.
- Able to write multithreaded programs.
- Able to write GUI programs using swing controls in Java.

Note:

- 1. Use LINUX and MySQL for the Lab Experiments. Though not mandatory, encourage the use of the Eclipse platform.
- 2. The list suggests the minimum program set. Hence, the concerned staff is requested to addmore problems to the list as needed.

List of Experiments:

- 1. Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 2. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 3. A) Develop an applet in Java that displays a simple message.
- B) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked.
- 4. Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num 2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
- 5. Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer every 1 second and if the value is even, the second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of the cube of the number.

- 6. Write a Java program for the following: Create a doubly linked list of elements.Delete a given element from the above list.Display the contents of the list after deletion.
- 7. Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in the selected color. Initially, there is no message shown.
- 8. Write a Java program to create an abstract class named Shape that contains two integers and an empty method named print Area (). Provide three classes named Rectangle, Triangle, and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method print Area () that prints the area of the given shape.
- 9. Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas.

Write a java program to display the table using Labels in Grid Layout.

- 10. Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).
- 11. Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (\t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint:use hash tables).
- 12. Write a Java program that correctly implements the producer consumer problem using the concept of inter thread communication.
- 13. Write a Java program to list all the files in a directory including the files present in all its subdirectories.

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
- 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 0 0 2 0

(R22MAC2120) GENDER SENSITIZATION LAB

COURSE DESCRIPTION

This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions aboutsex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes

- > Students will have developed a better understanding of important issues related to gender in contemporary India.
- > Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- > Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- > Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- > Students will develop a sense of appreciation of women in all walks of life.
- > Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

Unit-I: UNDERSTANDING GENDER

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men-Preparing for Womanhood. Growing up Male. First lessons in Caste.

Unit – II: GENDER ROLES AND RELATIONS

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles- Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences- Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

Unit – III: GENDER AND LABOUR

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work.-Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

Unit – IV: GENDER - BASED VIOLENCE

The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment-Further Reading: "Chupulu".

Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

Unit – V: GENDER AND CULTURE

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature-Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks-The Brave Heart.

<u>Note</u>: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- > Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on "Gender".
- □ ESSENTIAL READING: The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.

ASSESSMENT AND GRADING:

- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - I Semester

L T P C 0 0 2 1

(R22CSE2129) SKILL DEVELOPMENT COURSE (DATA VISUALIZATION-R PROGRAMMING/POWER BI)

Course Objectives:

- Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization
- To discern patterns and relationships in the data.
- To build Dashboard applications.
- To communicate the results clearly and concisely.
- To be able to work with different formats of data sets.

Course Outcomes: At the end of the course a student should be able to

- Understand How to import data into Tableau.
- Understand Tableau concepts of Dimensions and Measures.
- Develop Programs and understand how to map Visual Layouts and Graphical Properties.
- Create a Dashboard that links multiple visualizations.
- Use graphical user interfaces to create Frames for providing solutions to real world
- problems.

Lab Problems:

- 1. Understanding Data, What is data, where to find data, Foundations for building Data Visualizations, Creating Your First visualization?
- 2. Getting started with Tableau Software using Data file formats, connecting your Data to Tableau, creating basic charts(line, bar charts, Tree maps), Using the Show me panel.
- 3. Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custom calculations and fields.
- 4. Applying new data calculations to your visualizations, Formatting Visualizations, Formatting Tools and Menus, Formatting specific parts of the view.
- 5. Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data.
- 6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data.
- 7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.
- 8. Creating Dashboards & Dashboards amp; Storytelling, creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & Distributing amp; Publishing your Visualization.
- 9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting.
- 10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

- 1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
- 2. R Programming for Data Science by Roger D. Peng (References)
- 3. The Art of R Programming by Norman Matloff Cengage Learning India.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - II Semester

L T P C 3 0 0 3

(R22CSE2111) DISCRETE MATHEMATICS

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations, algebraic structures, elementary graph theory, permutations and combinations, counting principles; recurrence relations and generating functions.

Course Outcomes:

- Understand and construct precise mathematical proofs
- Apply logic and set theory to formulate precise statements
- Analyze and solve counting problems on finite and discrete structures
- Describe and manipulate sequences
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions, Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multi-graphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

- 1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe l. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

- 1. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald, Pearson education, 5th edition.
- 2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year – II Semester

L T P C 3 0 0 3

(R22HMS1212) BUSINESS ECONOMICS & FINANCIAL ANALYSIS

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

Unit – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT - III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition. **Pricing:** Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts (Simple Problems).

UNIT - V: Financial Ratios Analysis: Concept of Ratio Analysis, Importance and Types of Ratios, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

- 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, InternationalBook House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata Mc Graw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGraw Hill Education Pvt. Ltd. 2012.

	CRENCE BOOKS:				
l. -	Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.				
2.	S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vika				
	Publications, 2013.				

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year – II Semester

L T P C 3 0 0 3

(R22CSE2213) OPERATING SYSTEMS

Course Objectives:

- Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization, deadlocks, memory management, file and I/O subsystems and protection)
- Introduce the issues to be considered in the design and development of operating system
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Will be able to control access to a computer and the files that may be shared
- Demonstrate the knowledge of the components of computers and their respective roles incomputing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

UNIT - I

Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components, Operating System services, System Calls

Process - Process concepts and scheduling, Operations on processes, Cooperating Processes, Threads

UNIT - II

CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling. System call interface for process management-fork, exit, wait, waitpid, exec

Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III

Process Management and Synchronization - The Critical Section Problem, SynchronizationHardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors

Interprocess Communication Mechanisms: IPC between processes on a single computer system,IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV

Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping, Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page Replacement, Page Replacement Algorithms.

UNIT - V

File System Interface and Operations -Access methods, Directory Structure, Protection, File System Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close, lseek, stat, ioctl system calls.

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

- 1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach- Crowley, TMH.
- 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
- 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
- 5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - II Semester

L T P C 3 0 0 3

(R22CSE3112) COMPUTER NETWORKS

Course Objectives

- The objective of the course is to equip the students with a general overview of the conceptsand fundamentals of computer networks.
- Familiarize the students with the standard models for the layered approach to communication between machines in a network and the protocols of the various layers.

Course Outcomes

- Gain the knowledge of the basic computer network technology.
- Gain the knowledge of the functions of each layer in the OSI and TCP/IP reference model.
- Obtain the skills of subnetting and routing mechanisms.
- Familiarity with the essential protocols of computer networks, and how they can be applied in network design and implementation.

UNIT - I

Network hardware, Network software, OSI, TCP/IP Reference models, Example Networks: ARPANET, Internet.

Physical Layer: Guided Transmission media: twisted pairs, coaxial cable, fiber optics, Wireless Transmission.

Data link layer: Design issues, framing, Error detection and correction.

UNIT - II

Elementary data link protocols: simplex protocol, A simplex stop and wait protocol for an error-free channel, A simplex stop and wait protocol for noisy channels.

Sliding Window protocols: A one-bit sliding window protocol, A protocol using Go-Back-N, A protocol using Selective Repeat, Example data link protocols.

Medium Access sublayer: The channel allocation problem, Multiple access protocols: ALOHA, Carrier sense multiple access protocols, collision free protocols. Wireless LANs, Data link layer switching.

UNIT - III

Network Layer: Design issues, Routing algorithms: shortest path routing, Flooding, Hierarchical routing, Broadcast, Multicast, distance vector routing, Congestion Control Algorithms, Quality of Service, Internetworking, The Network layer in the internet.

IINIT - IV

Transport Layer: Transport Services, Elements of Transport protocols, Connection management, TCP and UDP protocols.

UNIT - V

Application Layer –Domain name system, SNMP, Electronic Mail; the World WEB, HTTP, Streaming audio and video.

TEXT BOOK:

1. Computer Networks -- Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI

- 1. An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - II Semester

L T P C 3 0 0 3

(R22CSE2215) SOFTWARE ENGINEERING

Course Objectives

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes

- Ability to translate end-user requirements into system and software requirements, using e.g.UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level designof a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simpletesting report

UNIT - I

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths. **A Generic view of process**: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI). **Process models**: The waterfall model, Spiral model and Agile methodology

UNIT - II

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

UNIT - III

Design Engineering: Design process and design quality, design concepts, the design model. Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT - IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, blackbox and white-box testing, validation testing, system testing, the art of debugging. Metrics for Process and Products: Software measurement, metrics for software quality.

UNIT - V

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM. Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach- Roger S. Pressman, 6th edition, McGraw Hill International Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.

- 1. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.
- 2. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiley.
- 3. Software Engineering principles and practice- Waman S Jawadekar, The McGraw-Hill Companies.
- 4. Fundamentals of object-oriented design using UML Meiler page-Jones: Pearson Education.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - II Semester

L T P C 0 0 2 1

(R22CSE2226) OPERATING SYSTEMS LAB

Course Objectives:

- To provide an understanding of the design aspects of operating system concepts through simulation
- Introduce basic Unix commands, system call interface for process management, interprocess communication and I/O in Unix

Course Outcomes:

- Simulate and implement operating system concepts such as scheduling, deadlockmanagement, file management and memory management.
- Able to implement C programs using Unix system calls

List of Experiments:

- 1. Write C programs to simulate the following CPU Scheduling algorithms a) FCFS b) SJF c) Round Robin d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniques a) Paging b) Segmentation
- 7. Write C programs to simulate Page replacement policies a) FCFS b) LRU c) Optimal

TEXT BOOKS:

- 1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year – II Semester

L T P C 0 0 0 1

(R22CSE3126) COMPUTER NETWORKS LAB

Course Objectives:

- 1. To understand the working principle of various communication protocols.
- 2. To understand the network simulator environment and visualize a network topology and observe its performance
- 3. To analyze the traffic flow and the contents of protocol frames

Course Outcomes:

- 1. Implement data link layer farming methods
- 2. Analyze error detection and error correction codes.
- 3. Implement and analyze routing and congestion issues in network design.
- 4. Implement Encoding and Decoding techniques used in presentation layer
- 5. To be able to work with different network tools

List of Experiments:

- 1. Implement the data link layer framing methods such as character, character-stuffing and bit stuffing.
- 2. Write a program to compute CRC code for the polynomials CRC-12, CRC-16 and CRC CCIP
- 3. Develop a simple data link layer that performs the flow control using the sliding window protocol, and loss recovery using the Go-Back-N mechanism.
- 4. Implement Dijsktra's algorithm to compute the shortest path through a network
- 5. Take an example subnet of hosts and obtain a broadcast tree for the subnet.
- 6. Implement distance vector routing algorithm for obtaining routing tables at each node.
- 7. Implement data encryption and data decryption
- 8. Write a program for congestion control using Leaky bucket algorithm.
- 9. Write a program for frame sorting techniques used in buffers.
- 10. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
- 11. How to run Nmap scan
- 12. Operating System Detection using Nmap
- 13. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate & Throughput.
 - vi. Simulate to Plot Congestion for Different Source/Destination
 - vii. Simulate to Determine the Performance with respect to Transmission of Packets

TEXT BOOKS:

- 1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. PearsonEducation/PHI **REFERENCE BOOKS:**
- 1. An Engineering Approach to Computer Networks, S.Keshav, 2nd Edition, Pearson Education
- 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY						
(An Autonomous Institution under UGC, New Delhi)						
B.Tech II Year – II Semester	L	Т	P	С		
	0	0	4	2		
(R22CSC2268) REAL-TIME RESEARCH PROJECT/ FIELD BASED PROJECT						

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year – II Semester

L T P C

(R22MAC2110) CONSTITUTION OF INDIA

Course Objectives: Students will be able to:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes: Students will be able to:

- Discuss the growth of the demand for civil rights in India for the bulk of Indians before thearrival of Gandhi in Indian politics.
- Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP]under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
- Discuss the passage of the Hindu Code Bill of 1956.
- Unit 1 History of Making of the Indian Constitution-History of Drafting Committee.
- **Unit 2** Philosophy of the Indian Constitution- Preamble Salient Features
- Unit 3 Contours of Constitutional Rights & Duties Fundamental Rights
 - Right to Equality
 - Right to Freedom
 - Right against Exploitation
 - Right to Freedom of Religion
 - Cultural and Educational Rights
 - Right to Constitutional Remedies
 - Directive Principles of State Policy
 - Fundamental Duties.
- **Unit 4** Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions
- Unit 5 Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy
- **Unit 6** Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Suggested Reading:

- 1. The Constitution of India, 1950 (Bare Act), Government Publication.
- 2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.
- 3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - II Year - II Semester

L T P C 0 0 2 1

(R22CSE2221) SKILL DEVELOPMENT COURSE (NODE JS/ REACT JS/DJANGO)

Course Objectives:

- To implement the static web pages using HTML and do client side validation using JavaScript.
- To design and work with databases using Java
- To develop an end to end application using java full stack.
- To introduce Node JS implementation for server side programming.
- To experiment with single page application development using React.

Course Outcomes: At the end of the course, the student will be able to,

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC
- Develop Server side implementation using Java technologies like
- Develop the server side implementation using Node JS.
- Design a Single Page Application using React.

Exercises:

- 1. Build a responsive web application for shopping cart with registration, login, catalog and cart pages using CSS3 features, flex and grid.
- 2. Make the above web application responsive web application using Bootstrap framework.
- 3. Use JavaScript for doing client side validation of the pages implemented in experiment 1 and experiment 2.
- 4. Explore the features of ES6 like arrow functions, callbacks, promises, async/await. Implement an application for reading the weather information from openweathermap.org and display the information in the form of a graph on the web page.
- 5. Develop a java stand alone application that connects with the database (Oracle / mySql) and perform the CRUD operation on the database tables.
- 6. Create an xml for the bookstore. Validate the same using both DTD and XSD.
- 7. Design a controller with servlet that provides the interaction with application developed in experiment 1 and the database created in experiment 5.
- 8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)
- 9. Create a custom server using http module and explore the other modules of Node JS like OS,path, event.
- 10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)
- 11. For the above application create authorized end points using JWT (JSON Web Token).
- 12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.
- 13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js
- 14. Create a TODO application in react with necessary components and deploy it into github.

- 1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010
- 2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008.
- 3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C 3 1 0 4

(R22CSC3111) NETWORK SECURITY AND CRYPTOGRAPHY

Course Objectives:

- Explain the objectives of information security.
- Explain the importance and application of each of confidentiality, integrity, authentication and availability.
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks.
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec.
- Understand Intrusions and intrusion detection.
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted e-mail message.
- Discuss Web security and Firewalls.

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and webauthentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security.

UNIT - I

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH).

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security.

UNIT-II

E-Mail Security: Pretty Good Privacy, S/MIME **IP Security:** IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange.

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability.

UNIT - III

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security.

Cryptography Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT - IV

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT - V

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, PearsonEducation, 6th Edition.
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition.

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition.
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH.
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

(R22CSE2214) DATABASE MANAGEMENT SYSTEMS

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model, relational algebra, transaction control, concurrency control, storage structures and access techniques.

Course Outcomes:

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/alteringtables and views. Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation-Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM),

B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition
- 2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

(R22CSE3212) FORMAL LANGUAGES AND AUTOMATA THEORY

Course Objectives

- To provide introduction to some of the central ideas of theoretical computer science from the perspective of formal languages.
- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- Classify machines by their power to recognize languages.
- Employ finite state machines to solve problems in computing.
- To understand deterministic and non-deterministic machines.
- To understand the differences between decidability and undecidability.

Course Outcomes

- Able to understand the concept of abstract machines and their power to recognize thelanguages.
- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Able to gain proficiency with mathematical tools and formal methods.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA, Moore and Melay machines

UNIT-II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications of the Pumping Lemma.

Closure Properties of Regular Languages: Closure properties of Regular languages, Decision Properties of Regular Languages, Equivalence and Minimization of Automata.

UNIT - III

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. **Push Down Automata**: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to PDA, From PDA to CFG.

UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-Productions. Chomsky Normal form Griebech Normal form.

Pumping Lemma for Context-Free Languages: Statement of pumping lemma, Applications Closure Properties of Context-Free Languages: Closure properties of CFL's, Decision Properties of CFL's Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

UNIT - V

Types of Turing machine: Turing machines and halting

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter machines.

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd edition, PHI.

- 1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
- 3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
- 4. Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning.
- 5. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan,Rama R, Pearson.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - I (R22CSE4112) COMPILER DESIGN

Course Objectives:

- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directd translation, type checking use of symbol tables, code optimization techniques, intermediate code generation, code generation and data flow analysis.

Course Outcomes:

- Demonstrate the ability to design a compiler given a set of language features.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool & yacc tool for devleoping a scanner and parser.
- Design and implement LL and LR parsers
- Design algorithms to do code optimization in order to improve the performance of a program interms of space and time complexity.
- Design algorithms to generate machine code.

UNIT - I

Introduction: The structure of a compiler, the science of building a compiler, programming language basics. **Lexical Analysis:** The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical-Analyzer Generator Lex, Finite Automata, From Regular Expressions to Automata, Design of a Lexical-Analyzer Generator, Optimization of DFA-Based Pattern Matchers.

UNIT - II

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom-Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers, Using Ambiguous Grammars and Parser Generators.

UNIT - III

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. **Intermediate-Code Generation:** Variants of Syntax Trees, Three-Address Code, Types and Declarations, Type Checking, Control Flow, Switch-Statements, Intermediate Code for Procedures.

UNIT-IV

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection.

Code Generation: Issues in the Design of a Code Generator, The Target Language, Addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, Peephole Optimization, Register Allocation and Assignment, Dynamic Programming Code-Generation.

UNIT - V

Machine-Independent Optimization: The Principal Sources of Optimization, Introduction to Data-Flow Analysis, Foundations of Data-Flow Analysis, Constant Propagation, Partial-Redundancy Elimination, Loops in Flow Graphs.

TEXT BOOK:

1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman.

- 1. Lex & Yacc John R. Levine, Tony Mason, Doug Brown, O'reilly.
- 2. Compiler Construction, Louden, Thomson.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - I (R22CSM4143) ARTIFICIAL INTELLIGENCE

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic searchtogether with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machinelearning.

Course Outcomes:

- Ability to formulate an efficient problem space for a problem expressed in natural language.
- Select a search algorithm for a problem and estimate its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique for a givenproblem.
- Possess the ability to apply AI techniques to solve problems of game playing, and machinelearning.

UNIT - I

Problem Solving by Search-I: Introduction to AI, Intelligent Agents

Problem Solving by Search –II: Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment.

UNIT - II

Problem Solving by Search-II and Propositional Logic

Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT-IV

Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning.

UNIT - V

Uncertain knowledge and Learning

Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees. Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.

TEXT BOOK:

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - I (R22CSD3143) DATA WAREHOUSING AND DATA MINING

Course Objectives: Study data warehouse principles and its working, learn data mining concepts, and understand association rules mining. Discuss classification algorithms and learn how data is grouped using clustering techniques.

Course Outcomes:

- 1. Students should be able to understand why the data warehouse in addition to databasesystems.
- 2. Ability to perform the pre-processing of data and apply mining techniques on it.
- 3. Ability to identify the association rules, classification and clusters in large data sets.
- 4. Ability to solve real world problems in business and scientific information using data mining

UNIT-I

Data warehouse: Introduction to Data warehouse, Difference between operational database systems and data warehouses, Data warehouse Characteristics, Data warehouse Architecture and its Components, Extraction-Transformation-Loading, Logical(Multi-Dimensional), Data Modelling, Schema Design, Star and Snow-Flake Schema, Fact Consultation, Fact Table, Fully Addictive, Semi-Addictive, Non Additive Measures; Fact- Less-Facts, Dimension Table Characteristics; OLAP Cube, OLAP Operations, OLAP Server Architecture-ROLAP, MOLAP and HOLAP.

UNIT-II

Introduction to Data Mining: Introduction, What is Data Mining, Definition, KDD, Challenges, Data Mining Tasks, Data Pre-processing, Data Cleaning, Missing data, Dimensionality Reduction, Feature Subset Selection, Discretization and Binarization, Data Transformation; Measures of Similarity and Dissimilarity-Basics.

UNIT-III

Association Rules: Problem Definition, Frequent Item Set Generation, The APRIORI Principle, Support and Confidence Measures, Association Rule Generation; APRIORI Algorithm, The Partition Algorithms, FP-Growth Algorithms, Compact Representation of Frequent Item Set- Maximal Frequent Item Set, Closed Frequent Item Set.

UNIT-IV

Classification: Problem Definition, General Approaches to solving a classification problem, Evaluation of Classifiers, Classification techniques, Decision Trees-Decision tree Construction, Methods for Expressing attribute test conditions, Measures for Selecting the Best Split, Algorithm for Decision tree Induction; Naive-Bayes Classifier, Bayesian Belief Networks; K-Nearest neighbour classification- Algorithm and Characteristics.

UNIT-V

Clustering: Problem Definition, Clustering Overview, Evaluation of Clustering Algorithms, Partitioning Clustering-K-Means Algorithm, K-Means Additional issues, PAM Algorithm; Hierarchical Clustering-Agglomerative Methods and divisive methods, Basic Agglomerative Hierarchical Clustering Algorithm, Specific techniques, Key Issues in Hierarchical Clustering, Strengths and Weakness; Outlier Detection.

TEXT BOOKS:

- 1. Data Mining- Concepts and Techniques- Jiawei Han, Micheline Kamber, Morgan Kaufmann Publishers Elsevier 3rd Edition, 2011.
- 2. Introduction to Data Mining, Pang-Ning Tan, Vipin Kumar, Michael Steinbanch, Pearson Education

- 1. Data Mining Techniques, Arun K Pujari, 3rd Edition, Universities Press.
- 2. Data Warehousing Fundamentals, Pualraj Ponnaiah, Wiley Student Edition.
- 3. The Data Warehouse Life Cycle Toolkit Ralph Kimball, Wiley Student Edition.
- 4. Data Mining, Vikaram Pudi, P Radha Krishna, Oxford University Press.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi) B.Tech. - III Year – I Semester L T P C 3 0 0 3

Professional Elective - I (R22CSE4141) AD-HOC & SENSOR NETWORKS

Course Objectives:

- To understand the concepts of sensor networks
- To understand the MAC and transport protocols for ad hoc networks
- To understand the security of sensor networks
- To understand the applications of adhoc and sensor networks

Course Outcomes:

- Ability to understand the state-of-the-art research in the emerging subject of Ad Hoc and Wireless Sensor Networks
- Ability to solve the issues in real-time application development based on ASN.
- Ability to conduct further research in the domain of ASN

UNIT - I

Introduction to Ad Hoc Networks - Characteristics of MANETs, Applications of MANETs and Challenges of MANETs.

Routing in MANETs - Criteria for classification, Taxonomy of MANET routing algorithms, Topology-based routing algorithms-**Proactive**: DSDV; **Reactive**: DSR, AODV; Hybrid: ZRP; Position-based routing algorithms-**Location Services**-DREAM, Quorum-based; **Forwarding Strategies:** Greedy Packet, Restricted Directional Flooding-DREAM, LAR.

UNIT - II

Data Transmission - Broadcast Storm Problem, **Rebroadcasting Schemes**-Simple-flooding, Probability-based Methods, Area-based Methods, Neighbor Knowledge-based: SBA, Multipoint Relaying, AHBP. **Multicasting: Tree-based:** AMRIS, MAODV; **Mesh-based:** ODMRP, CAMP; **Hybrid:** AMRoute, MCEDAR.

UNIT - III

Geocasting: Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR. TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc

UNIT - IV

Basics of Wireless, Sensors and Lower Layer Issues: Applications, Classification of sensornetworks, Architecture of sensor network, Physical layer, MAC layer, Link layer, Routing Layer.

UNIT - V

Upper Layer Issues of WSN: Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs, Sensor Networks and mobile robots.

TEXT BOOKS:

- 1. Ad Hoc and Sensor Networks Theory and Applications, Carlos Corderio Dharma P. Aggarwal, World Scientific Publications, March 2006, ISBN 981–256–681–3.
- 2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, LeonidasGuibas, Elsevier Science, ISBN 978-1-55860-914-3 (Morgan Kauffman).

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C 3 0 0 3

Professional Elective - I (R22CSE4143) CLOUD COMPUTING

Course Objectives:

- 1. This course provides an insight into cloud computing.
- 2. Topics covered include- distributed system models, different cloud service models, service-oriented architectures, cloud programming and software environments, resource management.

Course Outcomes:

- 1. Ability to understand various service delivery models of a cloud computing architecture.
- 2. Ability to understand the ways in which the cloud can be programmed and deployed.
- 3. Understanding cloud service providers.

UNIT - I

Computing Paradigms: High-Performance Computing, Parallel Computing, Distributed Computing, Cluster Computing, Grid Computing, Cloud Computing, Bio computing, Mobile Computing, Quantum Computing, Optical Computing, Nano computing.

UNIT - II

Cloud Computing Fundamentals: Motivation for Cloud Computing, The Need for Cloud Computing, Defining Cloud Computing, Definition of Cloud computing, Cloud Computing Is a Service, Cloud Computing Is a Platform, Principles of Cloud computing, Five Essential Characteristics, Four Cloud Deployment Models.

UNIT - III

Cloud Computing Architecture and Management: Cloud architecture, Layer, Anatomy of the Cloud, Network Connectivity in Cloud Computing, Applications, on the Cloud, Managing the Cloud, Managing the Cloud Infrastructure Managing the Cloud application, Migrating Application to Cloud, Phases of Cloud Migration Approaches for Cloud Migration.

UNIT-IV

Cloud Service Models: Infrastructure as a Service, Characteristics of IaaS. Suitability of IaaS, Pros and Cons of IaaS, Summary of IaaS Providers, Platform as a Service, Characteristics of PaaS, Suitability of PaaS, Pros and Cons of PaaS, Summary of PaaS Providers, Software as a Service, Characteristics of SaaS, Suitability of SaaS, Pros and Cons of SaaS, Summary of SaaS Providers, Other Cloud Service Models.

UNIT V

Cloud Service Providers: EMC, EMC IT, Captiva Cloud Toolkit, Google, Cloud Platform, Cloud Storage, Google Cloud Connect, Google Cloud Print, Google App Engine, Amazon Web Services, Amazon Elastic Compute Cloud, Amazon Simple Storage Service, Amazon Simple Queue, service, Microsoft, Windows Azure, Microsoft Assessment and Planning Toolkit, SharePoint, IBM, Cloud Models, IBM Smart Cloud, SAP Labs, SAP HANA Cloud Platform, Virtualization Services Provided by SAP, Sales force, Sales Cloud, Service Cloud: Knowledge as a Service, Rack space, VMware, Manjrasoft, Aneka Platform.

TEXT BOOK:

1. Essentials of cloud Computing: K. Chandrasekhran, CRC press, 2014

- 1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.
- 3. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp 2011.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - II (R22CSC3145) ETHICAL HACKING

Course Objectives:

- The aim of the course is to introduce the methodologies and framework of ethical hacking for enhancing the security.
- The course includes-Impacts of Hacking; Types of Hackers; Information Security Models; Information Security Program; Business Perspective; Planning a Controlled Attack; Framework of Steps (Reconnaissance, Enumeration, Vulnerability Analysis, Exploitation, Deliverable and Integration)

Course Outcomes:

- Gain the knowledge of the use and availability of tools to support an ethical hack
- Gain the knowledge of interpreting the results of a controlled attack
- Understand the role of politics, inherent and imposed limitations and metrics for planning of atest
- Comprehend the dangers associated with penetration testing

UNIT-I

Introduction: Hacking Impacts, The Hacker

Framework: Planning the test, Sound Operations, Reconnaissance, Enumeration, VulnerabilityAnalysis, Exploitation, Final Analysis, Deliverable, Integration. **Information Security Models:**Computer Security, Network Security, Service Security, Application Security, Security Architecture **Information Security Program:** The Process of Information Security, Component Parts of InformationSecurity Program, Risk Analysis and Ethical Hacking.

UNIT - II

The Business Perspective: Business Objectives, Security Policy, Previous Test Results, Business Challenges. Planning for a Controlled Attack: Inherent Limitations, Imposed Limitations, timing is Everything, Attack Type, Source Point, Required Knowledge, Multi-Phased Attacks, Teaming and Attack Structure, Engagement Planner, The Right Security Consultant, The Tester, Logistics, Intermediates, Law Enforcement.

UNIT - III

Preparing for a Hack: Technical Preparation, Managing the Engagement. **Reconnaissance**: Social Engineering, Physical Security, Internet Reconnaissance.

UNIT - IV

Enumeration: Enumeration Techniques, Soft Objective, Looking Around or Attack, Elements of Enumeration, Preparing for the Next Phase. **Exploitation:** Intutive Testing, Evasion, Threads and Groups, Operating Systems, Password Crackers, RootKits, applications, Wardialing, Network, Services and Areas of Concern.

UNIT - V

Deliverable: The Deliverable, The Document, Overal Structure, Aligning Findings, Presentation. **Integration:** Integration the Results, Integration Summary, Mitigation, Defense Planning, Incident Management, Security Policy, Conclusion.

TEXT BOOK:

1. James S. Tiller, "The Ethical Hack: A Framework for Business Value Penetration Testing", Auerbach Publications, CRC Press.

- 1. EC-Council, "Ethical Hacking and Countermeasures Attack Phases", Cengage Learning.
- 2. Michael Simpson, Kent Backman, James Corley, "Hands-On Ethical Hacking and Network Defense", Cengage Learning.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - II (R22CSD3145) DATA SCIENCE

Course Objectives

- 1. To learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration
- 2. To exploring data analysis, predictive modeling, descriptive modeling, data product creation, evaluation, and effective communication
- 3. To understand the basic knowledge of algorithms and reasonable programming experience and some familiarity with basic linear algebra and basic probability and statistics
- 4. To identify the importance of recommendation systems and data visualization techniques

Course Outcomes

- 1. Understand basic terms what Statistical Inference means. Identify probability distributions commonly used as foundations for statistical modeling. Fit a model to data
- 2. Discuss the significance of exploratory data analysis (EDA) in data science and to apply basic tools (plots, graphs, summary statistics) to carry out EDA
- 3. Apply basic machine learning algorithms and to identify common approaches used for FeatureGeneration
- 4. Analyze fundamental mathematical and algorithmic ingredients that constitute a Recommendation Engine and to Build their own recommendation system using existing components

UNIT - I:

Introduction: What is Data Science? - Big Data and Data Science hype – and getting past the hype - Why now? – Datafication - Current landscape of perspectives - Skill sets needed - Statistical Inference - Populations and samples - Statistical modeling, probability distributions, fitting a model - Intro to R

UNIT - II:

Exploratory Data Analysis and the Data Science Process - Basic tools (plots, graphs and summary statistics) of EDA - Philosophy of EDA - The Data Science Process - Case Study: Real Direct (online real estate firm) - Three Basic Machine Learning Algorithms, Linear Regression - k-Nearest Neighbors(k-NN) - k-means

UNIT - III:

One More Machine Learning Algorithm and Usage in Applications - Motivating application: Filtering Spam - Why Linear Regression and k-NN are poor choices for Filtering Spam - Naive Bayes and why it works for Filtering Spam

UNIT - IV:

Data Wrangling: APIs and other tools for scrapping the Web - Feature Generation and Feature Selection (Extracting Meaning From Data) - Motivating application: user (customer) retention - Feature Generation (brainstorming, role of domain expertise, and place for imagination) - Feature Selection algorithms – Filters; Wrappers; Decision Trees; Random Forests

UNIT - V:

Data Visualization - Basic principles, ideas and tools for data visualization 3 - Examples of inspiring (industry) projects - Exercise: create your own visualization of a complex dataset - Data Science and Ethical Issues - Discussions on privacy, security, ethics - A look back at Data Science - Next-generation data scientists

TEXT BOOKS:

- 1. Doing Data Science, Straight Talk From The Frontline. Cathy O'Neil and Rachel Schutt, O'Reilly, 2014
- 2. Mining of Massive Datasets v2.1, Jure Leskovek, Anand Rajaraman and Jeffrey Ullman, Cambridge University Press, 2014
- 3. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2013 (ISBN 0262018020)

- 1. Elements of Statistical Learning, Trevor Hastie, Robert Tibshirani and Jerome Friedman, 2nd Edition, 2009 (ISBN 0387952845)
- 2. Foundations of Data Science, Avrim Blum, John Hopcroft and Ravindran Kannan
- 3. Data Mining and Analysis: Fundamental Concepts and Algorithms, Mohammed J. Zaki and Wagner Miera Jr. Cambridge University Press, 2014
- 4. Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber and Jian Pei, 3rd Edition, 2011 (ISBN 0123814790)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C 3 0 0 3

Professional Elective - II (R22CSE4242) DISTRIBUTED SYSTEMS

Course Objectives:

- 1. This course provides an insight into Distributed systems.
- 2. Topics include- Peer to Peer Systems, Transactions and Concurrency control, Security and Distributed shared memory

Course Outcomes:

- 1. Ability to understand Transactions and Concurrency control.
- 2. Ability to understand Security issues.
- 3. Understanding Distributed shared memory.
- 4. Ability to design distributed systems for basic level applications.

UNIT - I

Characterization of Distributed Systems-Introduction, Examples of Distributed systems, Resource sharing and web, challenges, System models -Introduction, Architectural and Fundamental models, Networking and Internetworking, Interprocess Communication, Distributed objects and Remote Invocation-Introduction, Communication between distributed objects, RPC, Events and notifications, Case study-Java RMI

UNIT - II

Operating System Support- Introduction, OS layer, Protection, Processes and Threads, Communication and Invocation, Operating system architecture, Distributed File Systems-Introduction, File Service architecture.

UNIT - III

Peer to Peer Systems—Introduction, Napster and its legacy, Peer to Peer middleware, Routing overlays, Overlay case studies-Pastry, Tapestry, Application case studies-Squirrel, OceanStore. Time and Global States-Introduction, Clocks, events and Process states, Synchronizing physical clocks, logical time and logical clocks, global states, distributed debugging. Coordination and Agreement- Introduction, Distributed mutual exclusion, Elections, Multicast communication, consensus and relatedproblems.

UNIT-IV

Transactions and Concurrency Control-Introduction, Transactions, Nested Transactions, Locks, Optimistic concurrency control, Timestamp ordering. Distributed Transactions-Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery.

UNIT - V

Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data. Distributed shared memory, Design and Implementation issues, Consistency models.

TEXT BOOKS:

- 1. Distributed Systems Concepts and Design, G Coulouris, J Dollimore and T Kindberg, Fourth Edition, Pearson Education.
- 2. Distributed Systems, S. Ghosh, Chapman & Hall/CRC, Taylor & Francis Group, 2010.

- 1. Distributed Systems Principles and Paradigms, A.S. Tanenbaum and M.V. Steen, Pearson Education.
- 2. Distributed Computing, Principles, Algorithms and Systems, Ajay D. Kshemakalyani and Mukesh Singhal, Cambridge, rp 2010.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - II (R22CSC3144) CYBER LAWS

Course Objectives: To understand the significance of cyber laws and different acts.

Course Outcomes:

- 1. Understand the need of cyber laws.
- 2. Understand the important provisions of the act and significance of digital signatures.
- 3. Analyze regulatory authorities in cyber law.
- 4. overview of cybercrime and procedure to report cybercrime.

UNIT - I

Introduction: History of Internet and World Wide Web, Need for cyber law, Cybercrime on the rise, Important terms related to cyber law.

Cyber law in India: Need for cyber law in India, History of cyber law in India, Information Technology Act, 2000, Overview of other laws amended by the IT Act, 2000, National Policy on Information Technology 2012.

UNIT-II

Overview Of The Information Technology Act, 2000: Applicability of the Act, Important provisions of the Act: Digital signature and Electronic signature, Digital Signature under the IT Act, 2000, E- Governance Attribution, Acknowledgement and Dispatch of Electronic Records, Certifying Authorities, Electronic Signature Certificates, Duties of Subscribers, Penalties and Offences, Intermediaries.

UNIT - III

Overview of Rules Issued Under The It Act, 2000, Electronic Commerce, Electronic Contracts, Cyber Crimes, Cyber Frauds.

UNIT - IV

Regulatory Authorities: Department of Electronics and Information Technology, Controller of Certifying Authorities (CCA), Cyber Appellate Tribuna, Indian Computer Emergency Response Team (ICERT), Cloud Computing, Case Laws.

UNIT - V

Introduction To Cybercrime And Procedure To Report Cybercrime: Procedure To Report Cyber Crime, Some Basic Rules For Safe Operations Of The Computer And Internet, The Criminal Law (Amendment) Act, 2013: Legislative Remedies For Online Harassment And Cybers talking In India.

TEXT BOOKS:

- 1. Pavan Duggal, Textbook On Cyber Law, second edition, Universal Law.
- 2. Pavan Duggal, Indian Cyberlaw On Cyber Crimes.

- 1. Debby Russell and Sr. G.T. Gangemi, "Computer Security Basics (Paperback)", 2nd Edition, O' Reilly Media, 2006.
- 2. Thomas R. Peltier, "Information Security policies and procedures: A Practitioner's Reference",2nd

Edition Prentice Hall, 2004.

- 3. Kenneth J. Knapp, "Cyber Security and Global Information Assurance: Threat Analysis and Response Solutions", IGI Global, 2009.
- 4. Thomas R Peltier, Justin Peltier and John blackley, "Information Security Fundamentals", 2nd Edition, Prentice Hall, 1996.
- 5. Jonathan Rosenoer, "Cyber law: the Law of the Internet", Springer-verlag, 1997.
- 6. James Graham, "Cyber Security Essentials" Averbach Publication T & F Group.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 3 0 0 3

Professional Elective - II (R22CSO4112) IOT SECURITY

Course Objectives:

- 1. Understand the fundamentals, various attacks and importance of Security aspects in IoT.
- 2. Understand the techniques, protocols and some idea on security towards Gaming models.
- 3. Understand the operations of Bitcoin blockchain, crypto-currency as application of blockchain technology.
- 4. Understand the essential components of IoT.
- 5. Understand security and privacy challenges of IoT.

Course Outcomes:

- 1. Incorporate the best practices learnt to identify the attacks and mitigate the same.
- 2. Adopt the right security techniques and protocols during the design of IoT products.
- 3. Assimilate and apply the skills learnt on ciphers and block chains when appropriate.
- 4. Describe the essential components of IoT.
- 5. Find appropriate security/privacy solutions for IoT.

UNIT - I

Fundamentals of IoT and Security and its need, Prevent Unauthorized Access to Sensor Data, Block ciphers, Introduction to Blockchain, Introduction of IoT devices, IoT Security Requirements, M2M Security, Message integrity, Modeling faults and adversaries, Difference among IoT devices, computers, and embedded devices.

UNIT - II

IoT and cyber-physical systems RFID Security, Authenticated encryption Byzantine Generals problem sensors and actuators in IoT. IoT security (vulnerabilities, attacks, and countermeasures), Cyber Physical Object Security, Hash functions, Consensus algorithms and their scalability problems, Accelerometer, photoresistor, buttons.

UNIT - III

Security engineering for IoT development Hardware Security, Merkle trees and Elliptic curves digital signatures, verifiable random functions, Zero-knowledge systems motor, LED, vibrator. IoT security lifecycle, Front-end System Privacy Protection, Management, Secure IoT Databases, Public-key crypto (PKI), blockchain, the challenges, and solutions, analog signal vs. digital signal.

UNIT-IV

Data Privacy Networking Function Security Trees signature algorithms proof of work, Proof of stake, Networking in IoT, Device/User Authentication in IoT IoT Networking Protocols, Crypto-currencies, alternatives to Bitcoin consensus, Bitcoin scripting language and their use Real-time communication.

UNIT - V

Introduction to Authentication Techniques Secure IoT Lower Layers, Bitcoin P2P network, Ethereum and Smart Contracts, Bandwidth efficiency, Data Trustworthiness in IoT Secure IoT Higher Layers, Distributed consensus, Smart Contract Languages and verification challenges data analytics in IoT - simple data analyzing methods.

TEXT BOOKS:

- 1. B. Russell and D. Van Duren, "Practical Internet of Things Security," Packt Publishing, 2016.
- 2. FeiHU, "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations", CRC Press, 2016.
- 3. Narayanan et al., "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction," Princeton University Press, 2016.

- 1. A. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies," O'Reilly, 2014.
- 2. T. Alpcan and T. Basar, "Network Security: A Decision and Game-theoretic Approach," Cambridge University Press, 2011.
- 3. Security and the IoT ecosystem, KPMG International, 2015.
- 4. Internet of Things: IoT Governance, Privacy and Security Issues" by European Research Cluster.
- 5. Ollie Whitehouse, "Security of Things: An Implementers' Guide to Cyber-Security for Internetof Things Devices and Beyond", NCC Group, 2014
- 6. Josh Thompson, 'Blockchain: The Blockchain for Beginnings, Guide to Blockchain Technologyand Blockchain Programming', Create Space Independent Publishing Platform, 2017.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C 0 0 2 1

(R22CSC3126) NETWORK SECURITY AND CRYPTOGRAPHY LAB

Course Objectives:

- 1. Explain the objectives of information security.
- 2. Explain the importance and application of each of confidentiality, integrity, authentication and availability.
- 3. Understand various cryptographic algorithms.

Course Outcomes:

- 1. Understand basic cryptographic algorithms, message and web authentication and securityissues.
- 2. Identify information system requirements for both of them such as client and server.
- 3. Understand the current legal issues towards information security.

List of Experiments:

- 1. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should XOR each character in this string with 0 and displays the result.
- 2. Write a C program that contains a string (char pointer) with a value 'Hello world'. The program should AND or and XOR each character in this string with 127 and display the result.
- 3. Write a Java program to perform encryption and decryption using the following algorithms
 - a. Ceaser cipher b. Substitution cipher c. Hill Cipher
- 4. Write a C/JAVA program to implement the DES algorithm logic.
- 5. Write a C/JAVA program to implement the Blowfish algorithm logic.
- 6. Write a C/JAVA program to implement the Rijndael algorithm logic.
- 7. Write the RC4 logic in Java Using Java cryptography; encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool.
- 8. Write a Java program to implement RSA algorithm.
- 9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript.
- 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
- 11. Calculate the message digest of a text using the MD5 algorithm in JAVA.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, PearsonEducation, 6th Edition.
- 2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition.

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, WileyIndia, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition.
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH.
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning.
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C 0 0 2 1

(R22CSE2227) DATABASE MANAGEMENT SYSTEMS LAB

Course Objectives:

- Introduce ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation

Course Outcomes:

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for database applications using procedures, cursors and triggers

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
 - B. Nested, Correlated subqueries
- 7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 8. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 9. Procedures
- 10. Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill,3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C 0 0 2 1

(R22HAS3128) ADVANCED COMMUNICATION SKILLS LAB

1. INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- 1. **Activities on Fundamentals of Inter-personal Communication and Building Vocabulary** Starting a conversation responding appropriately and relevantly using the right body language
 - Role Play in different situations & Discourse Skills- using visuals Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- 2. **Activities on Reading Comprehension** –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effectivegoogling.
- 3. **Activities on Writing Skills** Structure and presentation of different types of writing *letter writing/Resume writing/e-correspondence/Technical report writing/* planning for writing improving one's writing.
- 4. **Activities on Presentation Skills** Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.

5. Activities on Group Discussion and Interview Skills – Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

- 1. Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition
- 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

- 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - I Semester

L T P C

(R22MAC3110) INTELLECTUAL PROPERTY RIGHTS

UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT - II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT - III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT - IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT - V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT & REFERENCE BOOKS:

- 1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company Ltd.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – I Semester

L T P C 0 0 2 1

(R22CSE3121) SKILL DEVELOPMENT COURSE (UI DESIGN- FLUTTER)

Course Objectives:

- 1. Learn to set up a new Material App using Android Studio.
- 2. Understand the Widget tree and learn to use pre-made Flutter Widgets for user interface design

Course Outcomes:

- 1. Learn to incorporate Image and Text Widgets to create simple user interfaces.
- 2. Learn to customize pre-built Flutter widgets.
- 3. Add App Icons for Android builds.
- 4. Learn to run Flutter apps on Android Emulator and Android devices.
- 5. An introduction to the Widget build() method.
- 6. Learn to use layout widgets such as Columns, Rows, Containers and Cards.

Syllabus:

- 1. Use Hot Reload and Hot Restart to quickly refresh the app UI.
- 2. Use the Pubspec.yaml file to incorporate dependencies, custom assets and fonts.
- 3. Incorporating Material icons using the Icons class.
- 4. Understand how callbacks can be used detect user interaction in button widgets
- 5. Declarative style of UI programming and how Flutter widgets react to state changes.
- 6. Import dart libraries to incorporate additional functionality.
- 7. Work with variables, data types and functions in Dart.
- 8. Build flexible layouts using the Flutter Expanded widget.
- 9. Use the Dart package manager to incorporate Flutter compatible packages into your projects
- 10. Work with refactor widgets and understand Flutter's philosophy of UI as code
- 11. Use Dart Constructors to create customisable Flutter widgets.
- 12. Adding Google Maps to a Flutter app.
- 13. Location-Aware Apps Using GPS and Google Maps.
- 14. Publishing Flutter Apps

TEXT BOOKS:

- 1. Marco L. Napoli, **Beginning Flutter-** A Hands on Guide to App Development, Wiley, 2019.
- 2. Barry Burd, Flutter For Dummies, Wiley, 2020.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 3

(R22CSC3211) CYBER SECURITY

Course objectives:

- 1. To understand various types of cyber-attacks and cyber-crimes
- 2. To learn threats and risks within context of the cyber security
- 3. To have an overview of the cyber laws & concepts of cyber forensics
- 4. To study the defensive techniques against these attacks

Course Outcomes:

- 1. Analyze and evaluate the cyber security needs of an organization.
- 2. Understand Cyber Security Regulations and Roles of International Law.
- 3. Design and develop a security architecture for an organization.
- 4. Understand fundamental concepts of data privacy attacks

UNIT - I

Introduction to Cyber Security: Basic Cyber Security Concepts, layers of security, Vulnerability, threat, Harmful acts, Internet Governance – Challenges and Constraints, Computer Criminals, CIA Triad, Assets and Threat, motive of attackers, active attacks, passive attacks, Software attacks, hardware attacks, Cyber Threats-Cyber Warfare, Cyber Crime, Cyber terrorism, Cyber Espionage, etc., Comprehensive Cyber Security Policy.

UNIT - II

Cyberspace and the Law & Cyber Forensics: Introduction, Cyber Security Regulations, Roles of International Law. The INDIAN Cyberspace, National Cyber Security Policy.

Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Forensics Investigation, Challenges in Computer Forensics

UNIT - III

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Organizational security Policies and Measures in Mobile Computing Era, Laptops.

UNIT-IV

Cyber Security: Organizational Implications: Introduction, cost of cybercrimes and IPR issues, web threats for organizations, security and privacy implications, social media marketing: security risks and perils for organizations, social computing and the associated challenges for organizations

UNIT - V

Privacy Issues: Basic Data Privacy Concepts: Fundamental Concepts, Data Privacy Attacks, Data linking and profiling, privacy policies and their specifications, privacy policy languages, privacy in different domains- medical, financial, etc

Cybercrime: Examples and Mini-Cases

Examples: Official Website of Maharashtra Government Hacked, Indian Banks Lose Millions of Rupees, Parliament Attack, Pune City Police Bust Nigerian Racket, e-mail spoofing instances. **Mini- Cases:** The

Indian Case of online Gambling, An Indian Case of Intellectual Property Crime, Financial Frauds in Cyber Domain.

TEXT BOOKS:

- 1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
- 2. B.B. Gupta, D.P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335,2018.

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press T&F Group.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

L T P C 3 0 0 3

(R22CSC3212) CYBER CRIME INVESTIGATION & DIGITAL FORENSICS

Course Objectives: To analyze how to conduct a digital forensics investigation and validate forensicsdata.

Course Outcomes:

- 1. Understand the fundamentals of cybercrime and issues.
- 2. Understand different investigation tools for cybercrime.
- 3. Understand basics of Forensic Technology and Practices.
- 4. Analyze different laws, ethics and evidence handling procedures.

UNIT - I

Introduction: Introduction and Overview of Cyber Crime, Nature and Scope of Cyber Crime, Types of Cyber Crime: Social Engineering, Categories of Cyber Crime, Property Cyber Crime.

UNIT - II

Cyber Crime Issues: Unauthorized Access to Computers, Computer Intrusions, White collar Crimes, Viruses and Malicious Code, Internet Hacking and Cracking, Virus Attacks, Pornography, Software Piracy, Intellectual Property, Mail Bombs, Exploitation, Stalking and Obscenity in Internet, Digital laws and legislation, Law Enforcement Roles and Responses.

UNIT - III

Investigation: Introduction to Cyber Crime Investigation, Investigation Tools, eDiscovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery, Hands on Case Studies. Encryption and Decryption Methods, Search and Seizure of Computers, Recovering Deleted Evidences, Password Cracking.

UNIT - IV

Digital Forensics: Introduction to Digital Forensics, Forensic Software and Hardware, Analysis and Advanced Tools, Forensic Technology and Practices, Forensic Ballistics and Photography, Face, Iris and Fingerprint Recognition, Audio Video Analysis, Windows System Forensics, Linux System Forensics, Network Forensics.

UNIT - V

Laws and Acts: Laws and Ethics, Digital Evidence Controls, Evidence Handling Procedures, Basics of Indian Evidence ACT IPC and CrPC, Electronic Communication Privacy ACT, Legal Policies.

TEXT BOOKS:

- 1. Nelson Phillips and Enfinger Steuart, "Computer Forensics and Investigations", CengageLearning, New Delhi, 2009.
- 2. Kevin Mandia, Chris Prosise, Matt Pepe, "Incident Response and Computer Forensics", Tata McGraw -Hill, New Delhi, 2006.

- 1. Robert M Slade," Software Forensics", Tata McGraw Hill, New Delhi, 2005.
- 2. Bernadette H Schell, Clemens Martin, "Cybercrime", ABC CLIO Inc, California, 2004.
- 3. "Understanding Forensics in IT", NIIT Ltd, 2005.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

L T P C 3 0 0 3

(R22INF3212) ALGORITHM DESIGN AND ANALYSIS

Course Objectives:

- Introduces the notations for analysis of the performance of algorithms.
- Introduces the data structure disjoint sets.
- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate;
- Describes how to evaluate and compare different algorithms using worst-, average-, and best- case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Course Outcomes:

- Ability to analyze the performance of algorithms
- Ability to choose appropriate data structures and algorithm design methods for a specified application
- Ability to understand how the choice of data structures and the algorithm design methods impact the performance of programs

UNIT - I

Introduction: Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's matrix multiplication.

UNIT - II

Disjoint Sets: Disjoint set operations, union and find algorithms

Backtracking: General method, applications, n-queen's problem, sum of subsets problem, graph coloring

UNIT - III

Dynamic Programming: General method, applications- Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT-IV

Greedy method: General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

UNIT - V

Branch and Bound: General method, applications - Travelling sales person problem, 0/1 knapsack problem - LC Branch and Bound solution, FIFO Branch and Bound solution.

NP-Hard and Approximation Algorithms: Non deterministic algorithms, NP - Hard and

NP-Complete classes, Absolute Approximations – Planar Graph Coloring, Maximum Programs stored Problem, NP Hard Absolute Approximations.

TEXT BOOK:

1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharan, University Press.

- 1. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearsoneducation.
- 2. Introduction to Algorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, PHI Pvt. Ltd./ PearsonEducation.
- 3. Algorithm Design: Foundations, Analysis and Internet Examples, M.T. Goodrich and R. Tamassia, John Wiley andsons.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 3

Professional Elective - III (R22CSC3242) MOBILE APPLICATION SECURITY

Course Objectives: This course provides a thorough understanding of mobile platforms, including attack surfaces, risk landscape & more.

Course Outcomes:

- 1. Understand common mobile application security vulnerabilities.
- 2. Define the security controls of multiple mobile operating systems.
- 3. Understand and analyze Bluetooth technology.
- 4. understand and analyze overview of SMS security and Enterprise security.

UNIT-I

Top Mobile Issues and Development Strategies: Top Issues Facing Mobile Devices, Physical Security, Secure Data Storage (on Disk), Strong Authentication with Poor Keyboards, Multiple-User Support with Security, Safe Browsing Environment, Secure Operating Systems, Application Isolation, Information Disclosure, Virus, Worms, Trojans, Spyware, and Malware, Difficult Patching/Update Process, Strict Use and Enforcement of SSL, Phishing, Cross-Site Request Forgery (CSRF), Location Privacy/Security, Insecure Device Drivers, Multi Factor Authentication, Tips for Secure Mobile Application Development.

UNIT-II

WAP and Mobile HTML Security WAP and Mobile HTML Basics, Authentication on WAP/Mobile HTML Sites, Encryption, Application Attacks on Mobile HTML Sites, Cross-Site Scripting, SQL Injection, Cross-Site Request Forgery, HTTP Redirects, Phishing, Session Fixation, Non-SSL Login, WAP and Mobile Browser Weaknesses, Lack of HTTPOnly Flag Support, Lack of SECURE Flag Support, Handling Browser Cache, WAP Limitations.

UNIT - III

Bluetooth Security Overview of the Technology , History and Standards , Common Uses , Alternatives, Future, Bluetooth Technical Architecture , Radio Operation and Frequency, Bluetooth Network Topology , Device Identification , Modes of Operation , Bluetooth Stack ,Bluetooth Profiles, Bluetooth Security Features , Pairing , Traditional Security Services in Bluetooth, Security "Non-Features" , Threats to Bluetooth Devices and Networks, Bluetooth Vulnerabilities, Bluetooth Versions Prior to v1.2, Bluetooth Versions Prior to v2.1.

UNIT - IV

SMS Security Overview of Short Message Service, Overview of Multimedia Messaging Service, Wireless Application Protocol (WAP), Protocol Attacks, Abusing Legitimate Functionality, Attacking Protocol Implementations, Application Attacks, iPhone Safari, Windows Mobile MMS, Motorola RAZR JPG Overflow, Walkthroughs, Sending PDUs, Converting XML to WBXML.

UNIT - V

Enterprise Security on the Mobile OS Device Security Options, PIN, Remote, 346 Secure Local Storage, Apple iPhone and Keychain, Security Policy Enforcement, Encryption, Full Disk Encryption, E-mail Encryption, File Encryption, Application Sandboxing, Signing, and Permissions, Application Sandboxing, Application Signing, Permissions, Buffer Overflow Protection, Windows Mobile, iPhone, Android, BlackBerry, Security Feature Summary.

T	EXT	RO	OK

1. Mobile Application Security, Himanshu Dwivedi, Chris Clark, David Thiel, TATA McGraw Hill. **REFERENCE BOOKS**:

- 1. Mobile and Wireless Network Security and Privacy, Kami S. Makki, et al, Springer.
- 2. Android Security Attacks Defenses, Abhishek Dubey, CRC Press.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 3

Professional Elective - III (R22CSM3112) MACHINE LEARNING

Course Objectives

- This course explains machine learning techniques such as decision tree learning, Bayesianlearning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning. Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1— Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, k-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT-IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, *Q*–learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarkson explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 3

Professional Elective - III (R22CSE3113) DEVOPS

Course Objectives: The main objectives of this course are to

- 1. Describe the agile relationship between development and IT operations.
- 2. Understand the skill sets and high-functioning teams involved in DevOps and related methodsto reach a continuous delivery capability
- 3. Implement automated system update and DevOps lifecycle

Course Outcomes: On successful completion of this course, students will be able to:

- 1. Identify components of Devops environment
- 2. Describe Software development models and architectures of DevOps
- 3. Apply different project management, integration, testing and code deployment tool
- 4. Investigate different DevOps Software development models
- 5. Assess various Devops practices
- 6. Collaborate and adopt Devops in real-time projects

UNIT - I

Introduction: Introduction, Agile development model, DevOps, and ITIL. DevOps process and Continuous Delivery, Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

UNIT-II

Software development models and DevOps: DevOps Lifecycle for Business Agility, DevOps, and Continuous Testing.

DevOps influence on Architecture: Introducing software architecture, The monolithic scenario, Architecture rules of thumb, The separation of concerns, Handling database migrations, Microservices, and the data tier, DevOps, architecture, and resilience.

UNIT - III

Introduction to project management: The need for source code control, The history of source code management, Roles and code, source code management system and migrations, Shared authentication, Hosted Git servers, Different Git server implementations, Docker intermission, Gerrit, The pull request model, GitLab.

UNIT-IV

Integrating the system: Build systems, Jenkins build server, Managing build dependencies, Jenkins plugins, and file system layout, The host server, Build slaves, Software on the host, Triggers, Job chaining and build pipelines, Build servers and infrastructure as code, Building by dependency order, Build phases, Alternative build servers, Collating quality measures.

UNIT - V

Testing Tools and automation: Various types of testing, Automation of testing Pros and cons, Selenium - Introduction, Selenium features, JavaScript testing, Testing backend integration points, Test-driven development, REPL-driven development

Deployment of the system: Deployment systems, Virtualization stacks, code execution at the client, Puppet master and agents, Ansible, Deployment tools: Chef, Salt Stack and Docker

TEXT BOOKS:

- 1. Joakim Verona. Practical Devops, Second Edition. Ingram short title; 2nd edition (2018). ISBN-10: 1788392574
- 2. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wileypublications. ISBN: 9788126579952

REFERENCE BOOK:

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 3

Professional Elective - III (R22CSE3247) MOBILE APPLICATION DEVELOPMENT

Course Objectives:

- To demonstrate their understanding of the fundamentals of Android operating systems.
- To improves their skills of using Android software development tools.
- To demonstrate their ability to develop software with reasonable complexity on mobile platform.
- To demonstrate their ability to deploy software to mobile devices.
- To demonstrate their ability to debug programs running on mobile devices.

Course Outcomes:

- Student understands the working of Android OS Practically.
- Student will be able to develop Android user interfaces.
- Student will be able to develop, deploy and maintain the Android Applications.

UNIT - I

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Android Studio, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools

Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

UNIT - II

Android User Interface: Measurements – Device and pixel density independent measuring UNIT - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components – Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

UNIT - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS. Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity. Notifications – Creating and Displaying notifications, Displaying Toasts.

UNIT - IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

UNIT - V

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013.

1	Daniani	٨	1	A 1: 4:	Development.	Wai Mana	T 11	Clar. In dia	(11/2000)	2012
Ι.	ревини	me And	iroia 4	Abblication	Development.	. wei-wieng	Lee, w	nev maia	L VV FOX J.	. 2015

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 3

Professional Elective - III (R22CSE4244) BLOCKCHAIN TECHNOLOGY

Course Objectives: To Introduce block chain technology and Cryptocurrency.

Course Outcomes:

- 1. Learn about research advances related to one of the most popular technological areas today.
- 2. Understand Extensibility of Blockchain concepts.
- 3. Understand and Analyze Blockchain Science.
- 4. Understand Technical challenges, Business model challenges.

UNIT - I

Introduction: Block chain or distributed trust, Protocol, Currency, Cryptocurrency, How a Cryptocurrency works, Crowdfunding.

UNIT - II

Extensibility of Blockchain concepts, Digital Identity verification, Block chain Neutrality, Digital art, Blockchain Environment.

UNIT - III

Blockchain Science: Gridcoin, Folding coin, Blockchain Genomics, Bitcoin MOOCs.

UNIT - IV

Currency, Token, Tokenizing, Campuscoin, Coindrop as a strategy for Public adoption, Currency Multiplicity, Demurrage currency.

UNIT-V

Technical challenges, Business model challenges, Scandals and Public perception, GovernmentRegulations.

TEXT BOOK:

1. Melanie Swan, Blockchain Blueprint for Economy, O'reilly.

- 1. Building Blockchain Apps, Michael Juntao Yuan, Pearson Education
- 2. Daniel Drescher, Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition
- 3. Bradley Lakeman, Blockchain Revolution: Understanding the Crypto Economy of the Future. ANon-Technical Guide to the Basics of Cryptocurrency Trading and Investing, ISBN: 1393889158.

LIST OF OPEN ELECTIVES

Open Elective – I

S. No.	Course Code	Course Title	L	Т	P	Credit s
1	R22CIV3235	Disaster Management & Mitigation				
2	R22CSE3235	Database Concepts				
3	R22ECE3235	Consumer Electronics				
4	R22EEE3235	Electrical Estimation & Costing	3		0	2
5	R22INF3235	Information Technology Essentials	3	0	U	3
6	R22MED3235	Introduction to Robotics				
7	R22HMS3233	Fundamentals of Entrepreneurship				
8	R22HMS3235	Day to Day Biology				

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22CIV3235) Disaster Management & Mitigation

The objective of this course is to provide an understanding of basic concepts of various disasters and its management. In addition, the course is expected to develop scientific temperament and mitigation techniques to manage disaster.

- 1. To understand basic concepts of disaster and hazards if India.
- 2. To study the various natural disasters.
- 3. To study the various manmade disasters.
- 4. To understand the disaster management principles.
- 5. To study the modern techniques used in disaster mitigation and management.

UNIT I - Introduction To Disaster - Meaning, Nature, Importance of Hazard, Risk, Vulnerability and Disaster Dimensions & Scope of Disaster Management - India's Key Hazards — Vulnerabilities - National disaster management framework - Disaster Management Cycle.

UNIT II - Natural Disaster - Natural Disasters- Meaning and nature of natural disaster; their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion.

UNIT III - **Anthropogenic Disaster** - Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation and industrial waste water pollution.

UNIT IV - **Approaches in Disaster Management** - Pre- disaster stage (preparedness) - Preparing hazard zonation maps, Predictability/ forecasting & warning - Preparing disaster preparedness plan Land use zoning - Preparedness through Information, education. Emergency Stage - Rescue training for search & operation - Immediate relief - Assessment surveys. Post Disaster stage - Rehabilitation - Social Aspect - Economic Aspect and Environmental Aspect.

UNIT V - Disaster Mitigation - Meteorological observatory - Seismological observatory - Hydrology Laboratory and Industrial Safety inspectorate. Technology in Disaster Management Emergency Management Systems (EMS) in the Disaster Management Cycle Remote Sensing and Geographic Information Systems (GIS) in Disaster Management.

TEXT BOOK

1. Sharma.S.R, "Disaster management", A P H Publishers, 2011.

- 6. VenuGopalRao.K, "Geoinformatics for Disaster Management", Manglam Publishers and Distributors, 2010.
- 7. Singh.R.B, "Natural Hazards and Disaster Management: Vulnerability and Mitigation", Rawat Publications, 2006.
- 8. Gupta.H.K, "Disaster Management", University Press, India, 2003.
- 9. Gupta.M.C, "Manuals on Natural Disaster management in India", National Centre for Disaster Management, IIPA, New Delhi, 2001.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22CSE3235) Database Concepts

To study the concepts of Relational Database design and query languages

- 1. To provide a general introduction to relational model
- 2. To learn about ER diagrams
- 3. To learn about Query processing and Transaction Processing

UNIT I: **Introduction to Database Management** - Introduction to Database Management systems – History - Characteristics – Users- three-level architecture- Entity-- relationship data model.

UNIT II: The Relational Data Model and Relational Algebra - Data structures - Mapping E-R Model to Relational model - data manipulation - integrity - advantages - rules for fully relational systems - relational algebra - relational algebra queries.

UNIT III: Structured Query Language and Normalization - SQL - Data definition - manipulation - views SQL in procedural programming - data integrity and constraints - triggers - data control - database security. Normalization - Undesirable properties - single-valued normalization - desirable properties of decompositions - multivalued dependencies

UNIT IV: Storage Indexing and Transactions Management - Different types of memories – secondary storage – buffer management – file structures – heap files – sorted files – index and types – indexed sequential file – B-tree – B+ tree.Transaction management – concepts – examples – schedules – serializability – concurrency control – deadlocks – lock and multiple granularity – nonlocking techniques.

UNIT V: Database Backup, Recovery and Security - Database system failure – backup – recovery and concept of log – log-based recovery techniques – types of recovery – log-based immediate update recovery technique. Database Security – violations – identifications and authentication – authorization / access control – security of statistical databases – audit policy – internet applications and encryption.

TEXT BOOK

1. Gupta.G.K, "Database Management Systems", Tata McGraw Hill, 2011.

- 1. Silberschatz, Korth.H and Sudarshan.S, "Database System Concepts", 6th Edition, McGraw-HillInternational, 2011.
- 2. Hector Garcia-Molina, Jeffrey D.Ullman, Jennifer Widom, "Database System The Complete Book, 1st Edition, Pearson 2002.
- 3. RamezElmasri and ShamkantB.Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson, 2008.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22ECE3235) Consumer Electronics

Course Objectives:

- Students are able to understand consumer electronics fundamentals, microprocessors and microcontrollers, energy management and intelligent building perspective. Audio systems, Display systems, video systems and recording systems
- Student is able to demonstrate smart Home, Home Virtual Assistants, Home security systems and types of sensors RFID Home, kitchen electronics and smart alarms, smart toilet, smart floor and smart locks
- Students are able to discuss cordless telephones, Fax machines PDA's TABLETs Smart phones and Smart watches. Video conferencing systems, Internet enabled systems, Wi-Fi, Li-Fi, GPS and Tracking systems

UNIT I:Consumer Electronics Fundamentals - History of Electronic Devices- Vacuum Tubes, Transistors, Integrated Circuits- Moorse Law, Semiconductor Devices, Diodes, Rectifiers, Transistors, Logic Gates, Combinational Circuits, ADC, DAC and Microprocessors, Microprocessor Vs Microcontrollers, Microcontrollers in consumer electronics, Energy management, Intelligent Building Perspective.

UNIT II: Entertainment Electronics - Audio systems: Construction and working principle of : Microphone, Loud speaker, AM and FM receiver, stereo, 2.1 home theatre, 5.1 home theatre . Display systems: CRT, LCD, LED and Graphics displays Video Players : DVD and Blue RAY. Recording Systems: Digital Cameras and Camcorders.

UNIT III: Smart Home - Technology involved in Smart home, Home Virtual Assistants- Alexa and Google Home. Home Security Systems - Intruder Detection, Automated blinds, Motion Sensors, Thermal Sensors and Image Sensors, PIR, IR and Water Level Sensors.

UNIT IV: **Home Appliances** - Home Enablement Systems: RFID Home, Lighting control, Automatic Cleaning Robots, Washing Machines, Kitchen Electronics- Microwave, Dishwasher, Induction Stoves, Smart Refrigerators, Smart alarms, Smart toilet, Smart floor, Smart locks.

UNIT V: **Communication Systems** - Cordless Telephones, Fax Machines, PDAs- Tablets, Smart Phones and Smart Watches. Introduction to Smart OS- Android and iOS. Video Conferencing Systems- Web/IP Camera, Video security, Internet Enabled Systems, Wi-Fi, IoT, Li-Fi, GPS and Tracking Systems.

TEXT BOOKS:

- 1. Thomas L Floyd "Electronic Devices" 10th Edition Pearson Education Asia 2018.
- 2. Philp Hoff "Consumer Electronics for Engineers" Cambridge University Press.1998.
- 3. Jordan Frith, "Smartphones as Locative Media", Wiley. 2014.
- 4. Dennis C Brewer, "Home Automation", Que Publishing 2013.
- 5. Thomas M. Coughlin, "Digital Storage in Consumer Electronics", Elsevier and Newness 2012.

Course Outcomes:

- C325.1. summarize the consumer electronics fundamentals and explain about microprocessors and microcontrollers, energy management and intelligent building perspective (K2-Understand)
- C325.2. Demonstrate Audio systems, Display systems, video systems and recording systems (K3-Apply)
- C325.3. Describe the smart Home, Home Virtual Assistants, Home security systems and Different types of sensors (K2-Understand)
- C325.4. Outline the home enablement systems like RFID Home, kitchen electronics and smart alarms, smart toilet, smart floor and smart locks. (K4-Analyse)
- C325.5. Discuss cordless telephones, Fax machines PDA's TABLETs Smart phones and Smart watches
- C325.6. Compare and explain Android and iOS and demonstrate Video conferencing systems, Internet enabled systems, Wi-Fi, Li-Fi, GPS and Tracking systems. (K5-Evaluate)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22EEE3235) Electrical Estimation & Costing

Unit I: Electrical Symbols and Diagrams: (i) Need of symbols; List of symbols for electrical equipment and accessories used in electrical works. Light, fan and power circuits, alarm and indicating circuit, contactor control circuits as per I.S.S. (ii) Type of diagrams - Wiring diagrams (multiple and single line representation) and schematic diagrams as per I.S.S. (* One Drawing Sheet for at least - 50 symbols).

Wiring materials and accessories: (1) Brief description, general specifications (as per I.S.S.) and approximate cost of different types of wires, cables, switches, distribution board, switch board, boxes, batten and its accessories, conduit and its accessories, lamp holders, socket out lets, plug ceiling roses. Fuse and energy meter used in domestic and power wiring installations.

Unit II: Light and Fan Circuits: Schematic and wiring diagrams (multiline and single line both) using junction boxes and looping systems for the following types of circuits:- (i) Light and fan controlled by necessary switches and regulators. (ii) Stair case wiring (iii) Corridor lighting (iv) One lamp controlled by three or more switches.

Unit III: Principles of Estimating and Costing: Purpose of estimating and costing, essentials of estimating and costing-market survey, price list and net prices, preparation of list of materials, calculation of material and labor cost, contingencies, overhead charges, profit and total cost. Estimation of Domestic Internal Wiring Circuits: (i) Description of various wiring systems and methods. (ii) Need of earthing and point to be earthed in internal wiring system as per IE rules. (iii) I.S. specifications, calculation of No. of points (light, fan, socket outlet), calculation of total load including domestic power, determination of no. of circuits, size of wires and cables, switches and main switch, distribution board and switch board, batten conduit and other wiring accessories.

Unit IV: Estimation of Power Wiring: I.S. specifications and I.E. rules, calculation of current for single and three phase motors. Determination of sizes of cables, conductors distribution board, main switches and starters for power circuits. Cost of equipment and accessories and schedule of materials. Estimation and cost of material and work for motors up to 20 H.P., pump sets and small workshops.

Unit V: Estimation of Overhead and Underground Distribution Lines: Main components of overhead lines-line supports, cross-arm, clamps, conductors and stay sets, lightening arrestors, danger plates, ant climbing devices, bird guards, jumpers etc., concreting of poles, earthing of transmission line, formation of lines, specification of materials for O.H. lines, I.S. specification and I.E. rules. Cost of material and work for overhead and underground lines upto 11 KV only.

Estimation of Small Sub-Station: Main equipment and auxiliaries installed on the substation. Estimation of materials required for a small distribution substation (indoor and outdoor type platform and pole mounted). Costing of material and work of above substations.

Text Books:

- 1. S.K Bhattacharya, "Electrical Engineering Drawing & Design Estimating". Wiley Eastern Ltd. New Delhi.
- 2. Surject Singh, "Electrical Eesign Drawing" S.K.Kataria Sons New Delhi.

Reference Books:

1. O. P. Soni," Electrical Engg. Design & Drawing" SatyaPrakashan Delhi.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22INF3235) Information Technology Essentials

COURSE OBJECTIVES:

- To introduce the principles required for building web applications.
- To provide working knowledge of the technologies needed for web application development
- To know about scripting languages.
- To understand principles of database access and storage.
- To understand various applications related to Information Technology.

COURSE OUTCOMES: Student will be able to

- Design and deploy web-sites
- Design and deploy simple web-applications
- Create simple database applications
- Develop an information system
- Describe the basics of networking

UNIT I: Web Essentials - Creating a Website - Working principle of a Website - Browser fundamentals - Authoring tools - Types of servers: Application Server - Web Server - Database Server - HTML basics - HTML tags and their use

UNIT II: Scripting Essentials - Need for Scripting languages - Types of scripting languages - Client side scripting - Server side scripting - PHP - Working principle of PHP - PHP Variables - Constants - Operators - Flow Control and Looping - Arrays - Strings - Functions - File Handling - PHP and HTML - Cookies - Sessions - Authentication - Introduction to JavaScript

UNIT III: Database Essentials - Database management - Database terms - MySQL - commands - Data types - Indexes - Functions - Accessing MySQL using PHP.

UNIT IV: Networking Essentials - Fundamental computer network concepts - Types of computer networks - - Network layers - TCP/IP model - Wireless Local Area Network - Ethernet - WiFi - Network Routing - Switching - Network components

UNIT V: Application Essentials - Creation of simple interactive applications - Simple database applications - Multimedia applications - Design and development of information systems - Personal Information System - Information retrieval system - Social networking applications

TEXT BOOKS:

- 1. Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition, O'REILLY, 2014.
- 2. James F. Kurose, "Computer Networking: A Top-Down Approach", Sixth Edition, Pearson, 2012.

- 1. GottapuSasibhushanaRao, "Mobile Cellular Communication", Pearson, 2012.
- 2. R. Kelly Rainer, Casey G. Cegielski, Brad Prince, Introduction to Information Systems, Fifth Edition, Wiley Publication, 2014. 3. it-ebooks.org

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22MED3235) Introduction to Robotics

COURSE OBJECTIVE: To impart knowledge about the basics of robot components and applications.

COURSE OUTCOMES:

- 1. Basics of Robot anatomy
- 2. Working of end effectors and drive systems
- 3. Kinematics and transformation analysis of robot
- 4. Various types of robot sensors
- 5. Robot cell design and applications of robot

UNIT I: Robot Basics - Robot-Basic concepts, Need, Law, History, Anatomy, specification. Robot configurations-Cartesian, cylinder, polar and articulate.Robot wrist mechanism, Precision and accuracy of robot-simple problems.

UNIT II: Robot Elements - End effectors-Classification, Types of Mechanical actuation, Gripper force analysis, Gripper design, Robot drive system-Types, Position and velocity feedback devices-Robot joints and links-Types, Motion interpolation.

UNIT III: Robot Kinematics - Robot kinematics - Direct and inverse kinematics - 2 and 3 DOF of kinematics analysis-Robot trajectories - Control of robot manipulators - Point to point, Contouring motion- 2D and 3D Transformation-Scaling, Rotation, Translation, Homogeneous coordinates, multiple transformation-Simple problems.

UNIT IV: Robot Sensors - Sensors in robot - Touch sensors-Tactile sensor - Proximity and range sensors - Robotic vision sensor-Force sensor-Light sensors, Pressure sensors

UNIT V: Robot Cell Design And Applications - Robot work cell design and control - Safety measures in Robot - Robot cell layouts - Multiple robots and machine interference - Robot cycle time analysis - Industrial applications of robots, Nanorobots, Robot programming-Basic program.

TEXT BOOKS:

- 1. Deb.S.R, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
- 2. Mikell. P. Groover, 'Industrial Robotics Technology', Programming and Applications, McGraw Hill Co, 2008.

- 1. Klafter.R.D, Chmielewski.T.A, and Noggin's., "Robot Engineering: An Integrated Approac", Prentice Hall of India Pvt. Ltd.,1994.
- 2. Fu.K.S, Gonzalez.R.C&Lee.C.S.G, "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987
- 3. Craig.J.J, "Introduction to Robotics mechanics and control", AddisonWesley, 1999.
- 4. Ray Asfahl.C, "Robots and Manufacturing Automation", John Wiley & Sons Inc., 1985.
- 5. Kozyrey, Yu. "Industrial Robotics", MIR Publishers Moscow, 1985.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE-I

L T P C 3 0 0 3

(R22HMS3233) Fundamentals of Entrepreneurship

COURSE OBJECTIVES: To create awareness on entrepreneurship among engineering students and stimulating self-motivation to start up enterprise

COURSE OUTCOMES:

- 1. To provide awareness about entrepreneurship
- 2. To develop idea generation, creative and innovative skills
- 3. To self-motivate the students by making aware of different opportunities and successful growth stories
- 4. To learn how to start an enterprise and design business plans those are suitable for funding by considering all dimensions of business.
- 5. To understand entrepreneurial process by way of studying different case studies and find exceptions to the process model of entrepreneurship.
- 6. To run a small enterprise with small capital for a short period and experience the science and art of doing business.

UNIT I: Introduction to Entrepreneurship - Understanding the Meaning of Entrepreneur; Characteristics and Qualities of an Entrepreneur; Entrepreneurs VsIntrapreneurs and Managers; Classification of Entrepreneurs; Factors Influencing Entrepreneurship; Entrepreneurial Environment; Entrepreneurial Growth; Problems and Challenges of Entrepreneurs; Entrepreneurial Scenario in India.

UNIT II: Micro, Small and Medium Enterprises (MSMEs) - MSMEs – Definition and Significance in Indian Economy; MSME Schemes, Challenges and Difficulties in availing MSME Schemes, Forms of Business; Women Entrepreneurship; Rural Entrepreneurship; Family Business and First Generation Entrepreneurs.

UNIT III: Idea Generation and Feasibility Analysis - Idea Generation; Creativity and Innovation; Identification of Business Opportunities; Market Entry Strategies; Marketing Feasibility; Financial Feasibilities; Political Feasibilities; Economic Feasibility; Social and Legal Feasibilities; Technical Feasibilities; Managerial Feasibility, Location and Other Utilities Feasibilities.

UNIT IV: **Business Model and Plan in Respective Industry** - Business model – Meaning, designing, analyzing and improvising; Business Plan – Meaning, Scope and Need; Financial, Marketing, Human Resource and Production/Service Plan; Business plan Formats; Project report preparation and presentation; Why some Business Plan fails?

UNIT V: **Financing and How to Start up Business?** - Financial opportunity identification; Banking sources; Non-banking Institutions and Agencies; Venture Capital – Meaning and Role in Entrepreneurship; Government Schemes for funding business; Pre launch, Launch and Post launch requirements; Procedure for getting License and Registration; Challenges and Difficulties in Starting an Enterprise.

TEXT BOOKS:

- 1. Jayshree Suresh, "Entrepreneurial Development", Margham Publishers, Chennai, 2011.
- 2. Poornima M Charantimath, "Entrepreneurship development small business enterprises", Pearson, 2013.

- 1. Raj Shankar, "Entrepreneurship: Theory And Practice", Vijay Nicole imprints ltd in collaboration with Tata Mc-graw Hill Publishing Co.ltd.-new Delhi, 2012
- 2. Robert D. Hisrich, Mathew J. Manimala, Michael P Peters and Dean A. Shepherd, "Entrepreneurship", 8th Edition, Tata Mc-graw Hill Publishing Co.ltd.-new Delhi, 2012
- 3. Martin Roger, "The Design of Business", Harvard Business Publishing, 2009
- 4. Roy Rajiv, "Entrepreneurship", Oxford University Press, 2011
- 5. Drucker.F, Peter, "Innovation and Entrepreneurship", Harper business, 2006.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year – II Semester

OPEN ELECTIVE - I

L T P C 3 0 0 3

(R22HMS3235) Day to Day Biology

COURSE OBJECTIVE: The purpose of this study is to know and understand the involvement of biology in day-to-day life. This would give insight into his or herown biological system, the diseases and disorders, antibiotics, and importance of environment in human life. This also provides application of biology in day to day life.

COURSE OBJECTIVES:

- 1. The student can understand the biology of human system and health.
- 2. This provides student with a scope for selection of healthy food and sustain environment.

UNIT I: Biology of Human Diseases and Disorders - Diabetes mellitus, communicable diseases, genetic disorders, vector borne diseases, antibiotics - mode of action.

UNIT II: Biology for Human - Blood pressure, immune system and immunity, cardiac infarction, in vitro fertilization, cord blood bank, stem cells.

UNIT III: Biology of Cosmetics and Detergents - Biology of complexion and texture, bioactive natural products in industrial use, bio surfactants, antioxidants.

UNIT IV: **Biology and Nutrition** - Dietary index, carbohydrates, proteins and fats, HDL and LDL, dairy products and application, herbal plants and home remedies.

UNIT V: Biology and Environment - Water pollution, air pollution, bioremediation, species biodiversity, global warming and greenhouse effect.

TEXT BOOKS:

- 1. Gareth J. Price, Biology: An Illustrated Guide to Science, Diagram Group, Infobase Publishing, 2006.
- 2. Pam Dodman, Real-Life Science Biology, Walch Publishing, 2008.

- 1. Biology: The Science of Life, Stephen Nowicki, http://www.thegreatcourses.com/tgc/courses.
- 2. Neil Schlager, Science of everyday things: Real-Life Biology, Gale Publishing 2002.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 2 1

(R22CSC3221) CYBER SECURITY LAB

Course Objective: To get practical exposure of Cyber security threats and Forensics tools.

Course Outcome:

- 1. Get the skill to identify cyber threats/attacks.
- 2. Get the knowledge to solve security issues in day to day life.
- 3. Able to use Autopsy tools
- 4. Perform Memory capture and analysis
- 5. Demonstrate Network analysis using Network miner tools

List of Experiments

- 1. Perform an Experiment for port scanning with nmap
- 2. Set Up a honeypot and monitor the honeypot on the network
- 3. Install Jscript/Cryptool tool (or any other equivalent) and demonstrate Asymmetric, Symmetric crypto algorithm, Hash and Digital/PKI signatures.
- 4. Generate minimum 10 passwords of length 12 characters using open SSL command
- 5. Perform practical approach to implement Footprinting-Gathering target information using Dmitry-Dmagic, UAtester
- 6. Working with sniffers for monitoring network communication (Wireshark).
- 7. Using Snort, perform real time traffic analysis and packet logging.
- 8. Perform email analysis using the Autopsy tool.
- 9. Perform Registry analysis and get boot time logging using process monitor tool
- 10. Perform File type detection using Autopsy tool
- 11. Perform Memory capture and analysis using FTK imager tool
- 12. Perform Network analysis using the Network Miner tool

TEXT BOOKS:

- 1. Real Digital Forensics for Handheld Devices, E. P. Dorothy, Auerback Publications, 2013.
- 2. The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics, J.Sammons, Syngress Publishing, 2012.

- 1. Handbook of Digital Forensics and Investigation, E. Casey, Academic Press, 2010.
- 2. Malware Forensics Field Guide for Windows Systems: Digital Forensics Field Guides, C. H. Malin, E. Casey and J. M. Aquilina, Syngress, 2012.
- 3. The Best Damn Cybercrime and Digital Forensics Book Period, J. Wiles and A. Reyes, Syngress, 2007.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 2 1

(R22CSC3227) CYBER CRIME INVESTIGATION & DIGITAL FORENSICS LAB

Course Objectives:

- 1. To provide students with a comprehensive overview of collecting, investigating, preserving, and presenting evidence of cybercrime left in digital storage devices, emails, browsers, mobile devices using different Forensics tools.
- 2. To Understand file system basics and where hidden files may lie on the disk, as well as how to extract the data and preserve it for analysis.
- 3. Understand some of the tools of e-discovery.
- 4. To understand the network analysis, Registry analysis and analyze attacks using different forensics tools.

Course Outcomes:

- 1. Learn the importance of a systematic procedure for investigation of data found on digital storagemedia that might provide evidence of wrong-doing.
- 2. To Learn the file system storage mechanisms and retrieve files in hidden format.
- 3. Learn the use of computer forensics tools used in data analysis.
- 4. Learn how to find data that may be clear or hidden on a computer disk, find out the open ports for the attackers through network analysis, Registry analysis.

List of Experiments

- 1. **Perform email analysis** using the tools like Exchange EDB viewer, MBOX viewer and View user mailboxes and public folders, Filter the mailbox data based on various criteria, Search for particular items in user mailboxes and public folders
- 2. **Perform Browser history analysis** and get the downloaded content, history, saved logins, searches, websites visited etc using Foxton Forensics tool, Dumpzilla.
- 3. **Perform mobile analysis** in the form of retrieving call logs, SMS log, all contacts list using the forensics tool like SAFT
- 4. **Perform Registry analysis** and get boot time logging using process monitor tool
- 5. **Perform Disk imaging and cloning the** using the X-way Forensics tools
- 6. **Perform Data Analysis i.e** History about open file and folder, and view folder actions using Lastview activity tool
- 7. **Perform Network analysis** using the Network Miner tool.
- 8. **Perform information for incident response** using the crowd Response tool
- 9. **Perform File type detection using** Autopsy tool
- 10. **Perform Memory capture and analysis** using the Live RAM capture or any forensic tool

TEXT BOOKS:

- 1. Real Digital Forensics for Handheld Devices, E. P. Dorothy, Auerback Publications, 2013.
- 2. The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics, J.Sammons, Syngress Publishing, 2012.

- 1. Handbook of Digital Forensics and Investigation, E. Casey, Academic Press, 2010.
- 2. Malware Forensics Field Guide for Windows Systems: Digital Forensics Field Guides, C. H.Malin, E. Casey and J. M. Aquilina, Syngress, 2012.
- 3. The Best Damn Cybercrime and Digital Forensics Book Period, J. Wiles and A.Reyes, Syngress, 2007.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 2 1

Professional Elective – III Lab (R22CSC3252) Mobile Application Security Lab

Course Objectives: This course provides a thorough understanding of mobile platforms, including attack surfaces, risk landscape & more.

Course Outcomes:

- 1. Understand common mobile application security vulnerabilities.
- 2. Understand and analyze the apks using different tools.
- 3. Understand and implement authentication services.

List of Experiments:

- 1. Use the following tools to analyze an apk to detect for any existence of vulnerabilities
 - a. QARK
 - b. DEVKNOX
 - c. OWASP
 - d. DROZER
- 2. Implement Authentication: Single Sign-on
- 3. Implement Authentication: Two Factor Authentication
- 4. Demonstrate how to Detect and Remove Malware from Android Phone
- 5. Demonstrate Remote Lock or Wipe

TEXT BOOK:

1. Mobile Application Security, Himanshu Dwivedi, Chris Clark, David Thiel, TATA McGraw Hill.

- 1. Mobile and Wireless Network Security and Privacy, Kami S.Makki, et al, Springer.
- 2. Android Security Attacks Defenses, Abhishek Dubey, CRC Press.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 2 1

Professional Elective – III Lab (R22CSM3126) Machine Learning Lab

Course Objective: The objective of this lab is to get an overview of the various machine learning techniques and can able to demonstrate them using python.

Course Outcomes: After the completion of the course the student can able to:

- understand complexity of Machine Learning algorithms and their limitations;
- understand modern notions in data analysis-oriented computing;
- be capable of confidently applying common Machine Learning algorithms in practice and implementing their own;
- Be capable of performing experiments in Machine Learning using real-world data.

List of Experiments

- 1. The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%)
- 2. Extract the data from database using python
- 3. Implement k-nearest neighbours classification using python
- 4. Given the following data, which specify classifications for nine combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k- means clustering with 3 means (i.e., 3 centroids)

VAR	VAR2	CLA
1		S
1.713	1.586	0
0.180	1.786	1
0.353	1.240	1
0.940	1.566	0
1.486	0.759	1
1.266	1.106	0
1.540	0.419	1
0.459	1.799	1
0.773	0.186	1

5. The following training examples map descriptions of individuals onto high, medium and low credit-worthiness.

medium skiing design single twenties no -> high Risk high golf trading married forties yes -> low Risk low speedway transport married thirties yes -> med Riskmedium football banking single thirties yes -> low Risk high flying media married fifties yes -> high Risk low football security single twenties no -> med Risk medium golf media single thirties yes -> med Risk medium golf transport married forties yes -> low Risk high skiing banking single thirties yes -> high Risk low golf unemployed married forties yes -> highRisk

Input attributes are (from left to right) income, recreation, job, status, age-group, home-owner. Find the unconditional probability of `golf' and the conditional probability of `single' given `medRisk' in the dataset?

- 6. Implement linear regression using python.
- 7. Implement Naïve Bayes theorem to classify the English text
- 8. Implement an algorithm to demonstrate the significance of genetic algorithm
- 9. Implement the finite words classification system using Back-propagation algorithm

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 2 1

Professional Elective – III Lab (R22CSE3127) DevOps Lab

Course Objectives:

- 1. Describe the agile relationship between development and IT operations.
- 2. Understand the skill sets and high-functioning teams involved in
- 3. DevOps and related methods to reach a continuous delivery capability
- 4. Implement automated system update and DevOps lifecycle

Course Outcomes:

- 1. Identify components of Devops environment
- 2. Apply different project management, integration, testing and code deployment tool
- 3. Investigate different DevOps Software development, models
- 4. Demonstrate continuous integration and development using Jenkins.

List of Experiments:

- 1. Write code for a simple user registration form for an event.
- 2. Explore Git and GitHub commands.
- 3. Practice Source code management on GitHub. Experiment with the source code written inexercise 1.
- 4. Jenkins installation and setup, explore the environment.
- 5. Demonstrate continuous integration and development using Jenkins.
- 6. Explore Docker commands for content management.
- 7. Develop a simple containerized application using Docker.
- 8. Integrate Kubernetes and Docker
- 9. Automate the process of running containerized application developed in exercise 7 using Kubernetes.
- 10. Install and Explore Selenium for automated testing.
- 11. Write a simple program in JavaScript and perform testing using Selenium.
- 12. Develop test cases for the above containerized application using selenium.

TEXT BOOKS:

- 1. Joakim Verona. Practical Devops, Second Edition. Ingram short title; 2nd edition (2018).ISBN-10: 1788392574
- 2. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wileypublications. ISBN: 9788126579952

REFERENCE BOOKS / LEARNING RESOURCES:

- 1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. AddisonWesley
- 2. Edureka DevOps Full Course https://youtu.be/S_0q75eD8Yc

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C

Professional Elective – III Lab (R22CSE3258) Mobile Application Development Lab

Course Objectives:

- 1. To learn how to develop Applications in android environment.
- 2. To learn how to develop user interface applications.
- 3. To learn how to develop URL related applications.

Course Outcomes:

- 1. Students understand the working of Android OS Practically.
- 2. Students will be able to develop user interfaces.
- 3. Students will be able to develop, deploy and maintain the Android Applications.

List of Experiments:

- 1. Create an Android application that shows Hello + name of the user and run it on an emulator.
- 2. (b) Create an application that takes the name from a text box and shows hello message along with the name entered in text box, when the user clicks the OK button.
- 3. Create a screen that has input boxes for User Name, Password, Address, Gender (radio buttons for male and female), Age (numeric), Date of Birth (Date Picket), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button. Use (a) Linear Layout (b) Relative Layout and (c) Grid Layout or Table Layout.
- 4. Develop an application that shows names as a list and on selecting a name it should show the details of the candidate on the next screen with a "Back" button. If the screen is rotated to landscape mode (width greater than height), then the screen should show list on left fragment and details on right fragment instead of second screen with back button. Use Fragment transactions and Rotation event listener.
- 5. Develop an application that uses a menu with 3 options for dialing a number, opening a website and to send an SMS. On selecting an option, the appropriate action should be invoked using intents.
- 6. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
- 7. Create an application that uses a text file to store user names and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with Login Failed message.
- 8. Create a user registration application that stores the user details in a database table.
- 9. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.

- 10. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
- 11. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.
- 12. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
- 13. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.
- 14. Create an application that shows the given URL (from a text field) in a browser

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 2 1

Professional Elective – III Lab (R22CSC4221) Blockchain Technology Lab

Course Objectives:

- 1. To learn the basic blockchain applications.
- 2. To be familiar with the blockchain lab setup.

Course Outcomes: Able to work in the field of blockchain technologies.

List of Experiments

- 1. Setup Metamask in the System and Create a wallet in the Metamask with Test Network.
- 2. Create multiple accounts in Metamask and perform the balance transfer between the accounts and describe the transaction specifications.
- 3. Setup the Ganache Tool in the system.
- 4. Create a custom RPC network in Metamask and connect it with Ganache tool and transfer theether between ganache accounts.
- 5. Write a smart contract using a solidity program to perform the balance transfer from contract toother accounts.
- 6. Write a solidity program to perform the exception handling.
- 7. Setup the Hyperledger Fabric Network with 2 Organizations 1 Peer Each in the system.
- 8. Create a channel called mychannel, carchannel in the deployed network.
- 9. Take the existing Fabcar smart contract and add a new function to query the car on the basis of person name and deploy the smart contract on the Hyperledger Fabric Network.
- 10. Write an SDK program to query the person details from the deployed smart.

TEXT BOOK:

1. Blockchain Blueprint for Economy by Melanie Swan

REFERENCE BOOK:

1. Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition, by Daniel Drescher.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 3 0 0 0

(R22MAC1110) ENVIRONMENTAL SCIENCE

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- Understanding the environmental policies and regulations

Course Outcomes:

• Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II

Natural Resources: Classification of Resources: Living and Non-Living resources, **water resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

UNIT-III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Issues and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol. NAPCC-GoI Initiatives.

UNIT-V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act-1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). Towards Sustainable Future: Concept of Sustainable Development Goals, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.
- 6. Introduction to Environmental Science by Y. Anjaneyulu, BS. Publications.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - III Year - II Semester

L T P C 0 0 4 2

(R22CSC3268) INDUSTRIAL ORIENTED MINI PROJECT / SUMMER INTERNSHIP/ SKILL DEVELOPMENT COURSE (BIG DATA-SPARK)

Course Objectives: The students will learn the following:

- To Learn the basics of Scala that are required for programming Spark applications
- To learn about the basic constructs of Scala such as variable types, control structures, collections such as Array, Array Buffer, Map, Lists and many more.
- To understand Apache Spark and learn how to develop Spark applications

Course Outcomes: At the end of the course, the student will be able to

- Perform data ingestion using Sqoop
- Get an insight of Spark-RDDs and other RDD related manipulations for implementing business logics(Transformations, Actions and Functions performed on RDD)
- learn about SparkSQL which is used to process structured data with SQL queries data-frames and datasets in Spark.
 - 1. Building and Running Spark Application
 - 2. Spark Application Web UI
 - 3. Configuring Spark Properties
 - 4. Data ingestion using Sqoop
 - 5. Loading data in RDDs
 - 6. Saving data through RDDs
 - 7. RDD Transformations
 - 8. RDD Actions and Functions
 - 9. RDD Partitions
 - 10. Word Count through RDDs
 - 11. Spark SQL -Creating Data Frames
 - 12. Loading and Transforming Data through Different Sources

Textbook:

Beginning Apache Spark 2: With Resilient Distributed Datasets, Spark SQL, Structured Streaming And Spark Machine Learning Library By Hien Luu

Reference Books:

- Advanced Analytics with Spark: Patterns for Learning from Data at Scale By Sandy Ryza
- Spark: The Definitive Guide: Big Data Processing Made Simple By Bill Chambers
- Fast Data Processing with Spark By Krishna Sankar and Holden Karau

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

(R22CSC4111) VULNERABILITY ASSESSMENT & PENETRATION TESTING

Course Objectives:

- 1. Introduce Vulnerability Assessment and Penetration Testing.
- 2. To be familiar with the Penetration Testing and Tools.
- 3. To get an exposure to Metasploit exploitation tool, Linux exploit and Windows exploit.
- 4. To gain knowledge on Web Application Security Vulnerabilities, Vulnerability analysis and Malware analysis.

Course Outcomes:

- 1. Understand social engineering attacks
- 2. Learn to handle the vulnerabilities of a Web application.
- 3. Perform penetration testing
- 4. Analyze the malware type and impact.

UNIT - I

Introduction Ethics of Ethical Hacking: Why you need to understand your enemy's tactics, recognizing the gray areas in security, Vulnerability Assessment and Penetration Testing. Penetration Testing and Tools: Social Engineering Attacks: How a social engineering attack works, conducting a social engineering attack, common attacks used in penetration testing, preparing yourself for face-to-face attacks, defending against social engineering attacks.

UNIT-II

Physical Penetration Attacks: Why a physical penetration is important, conducting a physical penetration, Common ways into a building, Defending against physical penetrations. Insider Attacks: Conducting an insider attack, Defending against insider attacks. Metasploit: The Big Picture, Getting Metasploit, Using the Metasploit Console to Launch Exploits, Exploiting Client-Side Vulnerabilities with Metasploit, Penetration Testing with Metasploit's Meterpreter, Automating and Scripting Metasploit, Going Further with Metasploit.

UNIT - III

Managing a Penetration Test: planning a penetration test, structuring a penetration test, execution of a penetration test, information sharing during a penetration test, reporting the results of a Penetration Test. Basic Linux Exploits: Stack Operations, Buffer Overflows, Local Buffer Overflow Exploits, Exploit Development Process. Windows Exploits: Compiling and Debugging Windows Programs, Writing Windows Exploits, Understanding Structured Exception Handling (SEH), Understanding Windows Memory Protections (XPSP3, Vista, 7 and Server 2008), Bypassing Windows Memory Protections.

UNIT - IV

Web Application Security Vulnerabilities: Overview of top web application security vulnerabilities, Injection vulnerabilities, cross-Site scripting vulnerabilities, the rest of the OWASP Top Ten SQL Injection vulnerabilities, Cross-site scripting vulnerabilities. Vulnerability Analysis: Passive Analysis, Source Code Analysis, Binary Analysis.

UNIT - V

Client-Side Browser Exploits: Why client-side vulnerabilities are interesting, Internet explorer security concepts, history of client-side exploits and latest trends, finding new browser-based vulnerabilities heap spray to exploit, protecting yourself from client-side exploit. Malware Analysis: Collecting Malware and Initial Analysis: Malware, Latest Trends in Honeynet Technology, Catching Malware: Setting the Trap, Initial Analysis of Malware.

TEXT BOOKS:

- 1. Gray Hat Hacking The Ethical Hackers Handbook, Allen Harper, Stephen Sims, Michael Baucom, 3rd Edition, Tata Mc Graw-Hill.
- 2. The Web Application Hacker's Handbook-Discovering and Exploiting Security flaws, Dafydd Suttard, Marcus pinto, 1st Edition, Wiley Publishing.

- 1. Penetration Testing: Hands-on Introduction to Hacking", Georgia Weidman, 1st Edition, No Starch Press.
- 2. The Pen Tester Blueprint-Starting a Career as an Ethical Hacker ", L. Wylie, Kim Crawly, 1st Edition, Wiley Publications.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

(R22CSE3246) WEB TECHNOLOGIES

Objectives:

- To introduce PHP language for server side scripting
- To introduce XML and processing of XML Data with Java
- To Introduce Server Side Programming with Java Servlets and JSP
- To Introduce Client side scripting with Javascript and AJAX

UNIT - I

Introduction to PHP: Declaring Variables, data types, arrays, string operators, expressions, control structures, functions, Reading data from web from controls like text boxes, radio buttons, ,lists etc., Handling File Uploads, Connecting to database (MySQL as reference), executing simple queries, handling results, Handling sessions and cookies.

File Handling in PHP: File operations like opening, closing, reading, writing, appending, deleting etc. on text and binary files, listing directories.

UNIT - II

XML: Introduction to XML, Defining XML tags, their attributes and values, Document Type Definition, XML Schemas, Document Object Model, XHTML **Parsing XML Data** – DOM and SAX in java.

UNIT - III

Introduction to Servlets: Common Gateway Interface (CGI), Lifecycle of a servlet, deploying a servlet, The Servlet API, Reading Servlet parameters, Reading Initialization parameters, Handling Http Request & Responses, Using Cookies and Sessions, connecting to a database using JDBC.

UNIT - IV

Introduction to JSP: The Anatomy of a JSP Page, JSP Processing, Declarations, Directives, Expressions, Code Snippets, Implicit objects, Using Beans in JSP pages, Using Cookies and Session for Session tracking, connecting to database in JSP.

UNIT - V

Client side Scripting : Introduction to Javascript: Javascript Language – declaring variables, scope of variables, functions, evnt handlers (onclick, onsubmit etc.), Document Object Model, Form Validation. Simple AJAX application.

TEXT BOOKS:

- 1. Web Technologies, Uttam K Roy, Oxford University Press
- 2. The Complete Reference PHP Steven Holzner, Tata McGraw-Hill

- 1. Web Programming, building internet applications, Chris Bates 2nd Edition, Wiley Dreamtech.
- 2. Java Server Pages Hans Bergsten, SPD O'Reilly
- 3. Java Script, D. Flanagan, O'Reilly, SPD
- 4. Beginning Web Programming- Jon Duckett WROX.
- 5. Programming world wide web, R.W. Sebesta, Fourth Edition, Pearson
- 6. Internet and World Wide Web How to program, Dietel and Nieto, Pearson

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 3 0 0 3

Professional Elective - IV (R22CSO4141) EDGE ANALYTICS

Course Objectives:

- The aim of the course is to introduce the fundamentals of Edge Analytics
- The course gives an overview of Architectures, Components, Communication Protocols and tools used for Edge Analytics

Course Outcomes:

- 1. Understand the concepts of Edge Analytics, both in theory and in practical application
- 2. Demonstrate a comprehensive understanding of different tools used at edge analytics
- 3. Formulate, Design and Implement the solutions for real world edge analytics

UNIT - I

Introduction to Edge Analytics. What is edge analytics, Applying and comparing architectures, Key benefits of edge analytics, Edge analytics architectures, Using edge analytics in the real world.

UNIT - II

Basic edge analytics components, Connecting a sensor to the ESP-12F microcontroller, KOM-MICS smart factory platform, Communications protocols used in edge analytics, Wi-Fi communication for edge analytics, Bluetooth for edge analytics communication, Cellular technologies for edge analytics communication, Long-distance communication using LoRa and Signfox for edge analytics.

UNIT - III

Working with Microsoft Azure IoT Hub, Cloud Service providers, Microsoft Azure, Exploring the Azure portal, Azure ioT Hub, Using the Raspberry Pi with Azure IoT edge, Connecting our Raspberry Pi edge device, adding a simulated temperature sensor to our edge device.

UNIT-IV

Using Micropython for Edge Analytics, Understanding Micropython, Exploring the hardware that runs MicroPython, Using MicroPython for an edge analytics application, Using edge intelligence with microcontrollers, Azure Machine Learning designer, Azure IoT edge custom vision.

UNIT - V

Designing a Smart Doorbell with Visual Recognition setting up the environment, Writing the edge code, creating the Node-RED dashboard, Types of attacks against our edge analytics applications, Protecting our edge analytics applications.

TEXT BOOK:

1. Hands-On Edge Analytics with Azure IoT: Design and develop IoT applications with edgeanalytical solutions including Azure IoT Edge by Colin Dow.

REFERENCE BOOKS:

1. Learn Edge Analytics - Fundamentals of Edge Analytics: Automated analytics at sourceusing Microsoft Azure by Ashish Mahajan.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 3 0 0 3

Professional Elective - IV (R22CSC4145) WEB & DATABASE SECURITY

Course Objectives:

- 1. Give an Overview of information security
- 2. Give an overview of Access control of relational databases

Course Outcomes: Students should be able to

- 1. Understand the Web architecture and applications.
- 2. Understand client side and server-side programming.
- 3. Understand how common mistakes can be bypassed and exploit the application.
- 4. Identify common application vulnerabilities.

UNIT - I

The Web Security, The Web Security Problem, Risk Analysis and Best Practices Cryptography and the Web: Cryptography and Web Security, Working Cryptographic Systems and Protocols, Legal Restrictions on Cryptography, Digital Identification

UNIT-II

The Web's War on Your Privacy, Privacy-Protecting Techniques, Backups and Antitheft, Web Server Security, Physical Security for Servers, Host Security for Servers, Securing Web Applications

UNIT - III

Database Security: Recent Advances in Access Control, Access Control Models for XML, Database Issues in Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems

UNIT - IV

Security Re-engineering for Databases: Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities and

UNIT - V

Future Trends Privacy in Database Publishing: A Bayesian Perspective, Privacy-enhanced Location-based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment

TEXT BOOKS:

- 1. Web Security, Privacy and Commerce Simson GArfinkel, Gene Spafford, O'Reilly.
- 2. Handbook on Database security applications and trends Michael Gertz, Sushil Jajodia.

- 1. Andrew Hoffman, Web Application Security: Exploitation and Countermeasures for ModernWeb Applications, O'reilly.
- 2. Jonathan LeBlanc Tim Messerschmidt, Identity and Data Security for Web Development Best Practices, O'reilly.
- 3. McDonald Malcolm, Web Security For Developers, No Starch Press, US.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

Professional Elective - IV (R22CSC4142) COMPUTER SECURITY & AUDIT ASSURANCE

Course Objectives:

- 1. State the basic concepts in information systems security, including security technology and principles, software security and trusted systems, and IT security management.
- 2. Explain concepts related to various cryptographic tools.

Course Outcomes:

- 1. State the requirements and mechanisms for identification and authentication.
- 2. Explain and compare the various access control policies and models as well as the assurance of these models
- 3. Understand various standard practices and policies in conducting audits.
- 4. Understand and analyze the significance of Network Security and Control, Internet BankingRisks and Control.

UNIT - I

System Audit and Assurance – Characteristics of Assurance services, Types of Assurances services, Certified Information system auditor, Benefits of Audits for Organization, COBIT.

UNIT - II

Internal Control and Information system Audit - Internal Control, Detective control, Corrective Control, Computer Assisted Audit Tools and Techniques.

UNIT - III

Conducting Audit – Standard practices, policies, Audit planning, Risk Assessment, Informationgathering techniques, Vulnerabilities, System security testing, conducting Audits for Banks.

UNIT-IV

Network Security and Control, Internet Banking Risks and Control, Operating System Risks and Control, Operational Control Overview.

UNIT - V

Business Continuity and Disaster Recovery Planning Control – Data backup/storage, Developing appropriate Disaster recovering strategy, Business Impact analysis.

TEXT BOOK:

1. Information System Audit and Assurance; D. P. Dube, Ved Prakash Gulati; Tata McGraw-Hill Education, 01 Jan 2005.

- 1. William Stallings and Lawrie Brown, Computer Security: Principles and Practice, Pearson education
- 2. Martin Weiss and Michael G. Solomon, Auditing IT Infrastructures For Compliance (Information Systems Security & Assurance), Jones and Bartlett Publishers, Inc.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

Professional Elective - IV (R22CSC4143) SOCIAL MEDIA SECURITY

Course Objectives: Give introduction about the social networks, its use, the need of security in social data.

Course Outcomes:

- 1. Learn about browser's risks.
- 2. Learn about Social Networking, Understand the risks while using social media. Guidelines forsocial networking.
- 3. Understand how to secure different web browsers.
- 4. Understand how an e-mail works, learn threats involved using an email communication, safety measures while using e-mail.

UNIT – I

Introduction to Social Media, Understanding Social Media, Different Types and Classifications, The Value of Social Media, Cutting Edge Versus Bleeding Edge, The Problems That Come With Social Media, Is Security Really an Issue? Taking the Good With the Bad.

UNIT-II

Dark side Cybercrime, Social Engineering, Hacked accounts, cyberstalking, cyberbullying, predators, phishing, hackers.

UNIT – III

Being bold versus being overlooked Good social media campaigns, Bad social media campaigns, Sometimes it's better to be overlooked, Social media hoaxes, The human factor, Content management, Promotion of social media.

UNIT - IV

Risks of Social media Introduction Public embarrassment, Once it's out there, it's out there False information, Information leakage, Retention and archiving, Loss of data and equipment.

UNIT - V

Policies and Privacy Blocking users controlling app privacy, Location awareness, Security Fake accounts passwords, privacy and information sharing.

TEXT BOOKS:

- 1. Interdisciplinary Impact Analysis of Privacy in Social Networks, Recognizing Your Digital Friends, Encryption for Peer-to-Peer Social Networks Crowd sourcing and Ethics, Authors: Altshuler Y, EloviciY, Cremers A.B, Aharony N, Pentland A. (Eds.).
- 2. Social media security https://www.sciencedirect.com/science/article/pii/B97815974998660000

- 1. Michael Cross, Social Media Security Leveraging Social Networking While Mitigating Risk.
- 2. Online Social Networks Security, Brij B. Gupta, Somya Ranjan Sahoo, Principles, Algorithm, Applications, and Perspectives, CRC press.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 3 0 0 3

Professional Elective - IV (R22CSM4111) DEEP LEARNING

Course Objectives: Students will be able:

- 1. To understand complexity of Deep Learning algorithms and their limitations
- 2. To be capable of performing experiments in Deep Learning using real-world data.

Course Outcomes:

- 1. Implement deep learning algorithms, understand neural networks and traverse the layers ofdata
- 2. Learn topics such as convolutional neural networks, recurrent neural networks, training deep networks and high-level interfaces
- 3. Understand applications of Deep Learning to Computer Vision
- 4. Understand and analyze Applications of Deep Learning to NLP

UNIT - I

Introduction: Feed forward Neural networks, Gradient descent and the back-propagation algorithm, Unit saturation, the vanishing gradient problem, and ways to mitigate it. RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nestors accelerated gradient descent, Regularization, Dropout

UNIT - II

Convolutional Neural Networks: Architectures, convolution/pooling layers, Recurrent Neural Networks: LSTM, GRU, Encoder Decoder architectures. Deep Unsupervised Learning: Auto encoders, Variational Auto-encoders, Adversarial Generative Networks, Auto-encoder and DBM Attention and memory models, Dynamic Memory Models

UNIT-III

Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, Image generation with Generative adversarial networks, video to text with LSTM models, Attention Models for computer vision tasks

UNIT-IV

Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics, Word Vector Representations: Continuous Skip-Gram Model, Continuous Bag-of-Words model (CBOW), Glove, Evaluations and Applications in word similarity

UNIT-V

Analogy reasoning: Named Entity Recognition, Opinion Mining using Recurrent Neural Networks: Parsing and Sentiment Analysis using Recursive Neural Networks: Sentence Classification using Convolutional Neural Networks, Dialogue Generation with LSTMs.

TEXT BOOKS:

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.
- 2. The Elements of Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman, Springer.
- 3. Probabilistic Graphical Models. Koller, and N. Friedman, MIT Press.

- 1. Bishop, C,M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2. Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- 3. Golub, G., H., and Van Loan, C. F., Matrix Computations, JHU Press, 2013.
- 4. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 3 0 0 3

Professional Elective - V (R22EEE4144) QUANTUM COMPUTING

Course Objectives:

- 1. To introduce the fundamentals of quantum computing
- 2. The problem-solving approach using finite dimensional mathematics

Course Outcomes:

- 1. Understand basics of quantum computing
- 2. Understand physical implementation of Qubit
- 3. Understand Quantum algorithms and their implementation
- 4. Understand the Impact of Quantum Computing on Cryptography

UNIT - I

Introduction to Essential Linear Algebra: Some Basic Algebra, Matrix Math, Vectors and Vector Spaces, Set Theory. **Complex Numbers:** Definition of Complex Numbers, Algebra of Complex Numbers, Complex Numbers Graphically, Vector Representations of Complex Numbers, Pauli Matrice, Transcendental Numbers.

UNIT - II

Basic Physics for Quantum Computing: The Journey to Quantum, Quantum Physics Essentials, Basic Atomic Structure, Hilbert Spaces, Uncertainty, Quantum States, Entanglement.

Basic Quantum Theory: Further with Quantum Mechanics, Quantum Decoherence, Quantum Electrodynamics, Quantum Chromodynamics, Feynman Diagram Quantum Entanglement and QKD, Quantum Entanglement, Interpretation, QKE.

UNIT - III

Quantum Architecture: Further with Qubits, Quantum Gates, More with Gates, Quantum Circuits, The D-Wave Quantum Architecture. **Quantum Hardware:** Qubits, How Many Qubits Are Needed? Addressing Decoherence, Topological Quantum Computing, Quantum Essentials.

UNIT - IV

Quantum Algorithms: What Is an Algorithm? Deutsch's Algorithm, Deutsch-Jozsa Algorithm, Bernstein-Vazirani Algorithm, Simon's Algorithm, Shor's Algorithm, Grover's Algorithm.

UNIT - V

Current Asymmetric Algorithms: RSA, Diffie-Hellman, Elliptic Curve. The Impact of Quantum Computing on Cryptography: Asymmetric Cryptography, Specific Algorithms, Specific Applications.

TEXT BOOKS:

- 1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge University Press
- 2. Dr. Chuck Easttom, Quantum Computing Fundamentals, Pearson

- 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci
- 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. Basic Concepts. Vol. Basic Tools and Special Topics, World Scientific.
- 3. Pittenger A. O., An Introduction to Quantum Computing Algorithms.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

Professional Elective - V (R22CSC4146) DATA ANALYTICS FOR FRAUD DETECTION

Course Objectives:

- 1. Discuss the overall process of how data analytics is applied.
- 2. Discuss how data analytics can be used to better address and identify risks.
- 3. Help mitigate risks from fraud and waste for our clients and organizations.

Course Outcomes

- 1. Formulate reasons for using data analysis to detect fraud.
- 2. Explain characteristics and components of the data and assess its completeness.
- 3. Identify known fraud symptoms and use digital analysis to identify unknown fraud symptoms.
- 4. Automate the detection process.
- 5. Verify results and understand how to prosecute fraud.

UNIT - I

Introduction: Defining Fraud, Anomalies versus, Fraud, Types of Fraud, Assess the Risk of Fraud, Fraud Detection, Recognizing Fraud, Data Mining versus Data Analysis and Analytics, Data Analytical Software, Anomalies versus Fraud within Data, Fraudulent Data Inclusions and Deletions.

UNIT - II

The Data Analysis Cycle, Evaluation and Analysis, Obtaining Data Files, Performing the Audit, File Format Types, Preparation for Data Analysis, Arranging and Organizing Data, Statistics and Sampling, Descriptive Statistics, Inferential Statistics.

UNIT - III

Data Analytical Tests: Benford's Law, Number Duplication Test, Z-Score, Relative Size Factor Test, Same-Same-Same-Different Test.

UNIT - IV

Advanced Data Analytical Tests, Correlation, Trend Analysis, GEL-1 and GEL-2, Skimming and Cash Larceny, Billing schemes: and Data Familiarization, Benford's Law Tests, Relative Size Factor Test, Match Employee Address to Supplier data.

UNIT - V

Payroll Fraud, Expense Reimbursement Schemes, Register disbursement schemes.

TEXT BOOK:

1. Fraud and Fraud Detection: A Data Analytics Approach by Sunder Gee, Wiley.

- 1. Blokdyk Gerardus, Data analysis techniques for fraud detection, Createspace Independent Publishing Platform.
- 2. Leonard W. Vona, Fraud Data Analytics Methodology: The Fraud Scenario Approach to Uncovering Fraud in Core Business Systems, Wiley.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 3 0 0 3

Professional Elective - V (R22CSC4141) 5G TECHNOLOGIES

Course Objectives: Knowledge on the concepts of 5G and 5G technology drivers. Understand 5G network architecture, components, features and their benefits.

Course Outcomes:

- 1. Understand 5G and 5G Broadband Wireless Communications.
- 2. Understand 5G wireless Propagation Channels.
- 3. Understand the significance of transmission and Design Techniques for 5G.
- 4. Analyze Device-to-device (D2D) and machine-to-machine (M2M) type communications.
- 5. Learn Massive MIMO propagation channel models.

UNIT - I:

Overview of 5G Broadband Wireless Communications: Evolution of mobile technologies 1G to 4G (LTE, LTEA, LTEA Pro), An Overview of 5G requirements, Regulations for 5G, Spectrum Analysis and Sharing for 5G.

UNIT - II:

The 5G wireless Propagation Channels: Channel modeling requirements, propagation scenarios and challenges in the 5G modeling, Channel Models for mmWave MIMO Systems.,3GPP standards for 5G

UNIT - III:

Transmission and Design Techniques for 5G: Basic requirements of transmission over 5G, Modulation Techniques – Orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), filter bank multi-carriers (FBMC) and universal filtered multi-carrier (UFMC), Multiple Accesses Techniques – orthogonal frequency division multiple accesses (OFDMA), generalized frequency division multiple accesses (GFDMA), non-orthogonal multiple accesses (NOMA).

UNIT - IV:

Device-to-device (D2D) and machine-to-machine (M2M) type communications – Extension of 4G D2D standardization to 5G, radio resource management for mobile broadband D2D, multi-hop and multi-operator D2D communications.

UNIT V:

Millimeter-wave Communications – spectrum regulations, deployment scenarios, beam-forming, physical layer techniques, interference and mobility management, Massive MIMO propagation channel models, Channel Estimation in Massive MIMO, Massive MIMO with Imperfect CSI, Multi-Cell Massive MIMO, Pilot Contamination, Spatial Modulation (SM).

TEXT BOOKS:

- 1. Martin Sauter "From GSM From GSM to LTE-Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband", Wiley-Blackwell.
- 2. Afif Osseiran, Jose. F. Monserrat, Patrick Marsch, "Fundamentals of 5G Mobile Networks", Cambridge University Press.

- 1. Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", John Wiley & Sons.
- 2. Amitabha Ghosh and Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambridge UniversityPress.
- 3. Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions in Wireless Communication Systems from Mobile to 5G", CRC Press.
- 4. Theodore S. Rappaport, Robert W. Heath, Robert C. Danials, James N. Murdock "Millimeter Wave Wireless Communications", Prentice Hall Communications.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

Professional Elective - V (R22INF4145) SECURITY INCIDENT & RESPONSE MANAGEMENT (SOC)

Course Objectives:

- 1. Introduce preparation of inevitable incident and incident detection and characterization.
- 2. To get an exposure to live data collection, Forensic duplication.
- 3. To gain knowledge on data analysis including Windows and Mac OS Systems.

Course Outcomes:

- 1. Learn how to handle the incident response management.
- 2. Perform live data collection and forensic duplication.
- 3. Identify network evidence.
- 4. Analyze data to carry out investigation.

UNIT - I

Introduction: Preparing for the Inevitable incident: Real world incident, IR management incident handbook, Pre-incident preparation, Preparing the Organization for Incident Response, Preparing the IR team, Preparing the Infrastructure for Incident Response. Incident Detection and Characterization: Getting the investigation started on the right foot, collecting initial facts, Maintenance of Case Notes, Understanding Investigative Priorities. Discovering the scope of incident: Examining initial data, Gathering and reviewing preliminary evidence, determining a course of action, Customer data loss scenario, Automated clearing fraud scenario.

UNIT - II

Data Collection: Live Data Collection: When to perform live response, Selecting a live response tool, what to collect, collection best practices, Live data collection on Microsoft Windows Systems, Live Data Collection on Unix-Based Systems. Forensic Duplication: Forensic Image Formats, Traditional duplication, Live system duplication, Duplication of Enterprise Assets.

UNIT - III

Network Evidence: The case for network monitoring, Types for network monitoring, Setting Up a Network Monitoring System, Network Data, Analysis, Collect Logs Generated from Network Events. Enterprise Services: Network Infrastructure Services, Enterprise Management Applications, Web servers, Database Servers

UNIT - IV

Data Analysis: Analysis Methodology: Define Objectives, Know your data, Access your data, Analyse your data, Evaluate Results. Investigating Windows Systems: NTFS and File System analysis, Prefetch, Event logs, Scheduled Tasks, The Windows Registry, Other Artifacts of Interactive Sessions, Memory Forensics, Alternative Persistence Mechanisms.

UNIT - V

Investigating Mac OS X Systems: HFS+ and File System Analysis, Core Operating systems data. Investigating Applications: What is Application Data?, Where is application data stored?, General Investigation methods, Web Browser, Email Clients, Instant Message Clients.

TEXT BOOKS:

- 1. "Incident Response and Computer Forensics", Jason T. Luttgens, Mathew Pepe and Kevin Mandia, 3rd Edition, Tata McGraw-Hill Education.
- 2. "Cyber Security Incident Response-How to Contain, Eradicate, and Recover from Incidents", Eric. C. Thompson, Apress.

1.	"The Computer Incident Response Planning Handbook: Executable Plans	for Protecting
	Information at Risk", N.K. McCarthy, Tata McGraw-Hill.	

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C 3 0 0 3

Professional Elective - V (R22CSC4144) AUTHENTICATION TECHNIQUES

Course Objectives: Knowledge on concept of authentication types, protocols, physical identification and various authentication algorithms.

Course Outcomes

- 1. Understand different types of authentication techniques
- 2. Understand text based and voice-based authentication techniques
- 3. Understand significance of authentication algorithms and its standards
- 4. Apply various authentication protocols in multi-server environment and their representation

UNIT - I:

Definition of Authentication, Identification/verification, Stages and steps of authentication, Authentication Entity: User, Device and Application; Authentication attributes: Source, Location, Path, Time duration etc.; Authentication Types: Direct / Indirect, One Way / Mutual, On demand/ Periodic/ Dynamic/Continuous authentication, Assisted/Automatic; 3 Factors of authentication; Passwords, Generation of passwords of varied length and of mixed type, OTP, passwords generation using entity identity credentials; Secure capture, processing, storage, verification and retrieval of passwords;

UNIT - II:

Physical identification using smart cards, remote control device, proximity sensors, surveillance camera, authentication in Card present / Card Not Present transactions as ATM/ PoS Device, mobile phone, wearable deviceand IoT device-based authentication; single sign- on; Symmetric Key Generation, Key Establishment, Key Agreement Protocols;

UNIT - III:

Biometrics – photo, face, iris, retinal, handwriting, signature, fingerprint, palm print, hand geometry, voice – Text based and text independent voice authentication, style of talking, walking, writing, keystrokes, gait etc. multi-modal biometrics.

UNIT - IV:

Matching algorithms, Patterns analysis, errors, performance measures, ROC Curve; Authentication Standards – International, UIDAI Standard. Kerberos, X.509 Authentication Service, Public Key Infrastructure, Scanners and Software; Web Authentication Methods: Http based, Token Based, OAuthand API.

UNIT - V:

User authentication protocols in multi-server environment, BAN Logic, Representation of authentication protocols using BAN Logic, Random Oracle Model, Scyther Tools, Proverif tool, Chebyshev Chaotic Map, Fuzzy Extractor, Fuzzy Extractor Map, Bloom Filter, LU Decomposition based User Authentication, Blockchain based authentication.

TEXT BOOKS:

Protocols for Authentication and Key Establishment, Colin Boyd and Anish Mathuria, springer, 2021 Guide to Biometrics, Ruud M.Bolle, Sharath Pankanti, Nalini K. Ratha, Andrew W. Senior, Jonathan H.Connell, Springer 2009.

- 1. Digital Image Processing using MATLAB, Rafael C. Gonzalez, Richard Eugene Woods, 2nd Edition, Tata McGraw-Hill Education 2010.
- 2. Biometric System and Data Analysis: Design, Evaluation, and data Mining, Ted Dunstone and Neil Yager, Springer.
- 3. Biometrics Technologies and verification Systems, John Vacca, Elsevier Inc., 2007.
- 4. Pattern Classification, Richard O. Duda, David G.Stork, Peter E. Hart, Wiley 2007.

Open Elective –II

S. No.	Course Code	Course Title	L	Т	P	Credits
1	R22CIV4136	Green Building Engineering				
2	R22CSC3235	Cyber Security Fundamentals				
3	R22ECE4134	Principles of Modern Communication Systems			0	
4	R22EEE3234	Illumination Engineering	2			2
5	R22INF3234	E-Commerce	3	0		3
6	R22MED3236	Industrial Design & Ergonomics				
7	R22HMS3234	Creative Writing				
8	R22HMS3236	Design Thinking				

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22CIV4136) Green Building Engineering

Course Outcomes: On successful completion of this course the student will be able to:

- 1. Describe the concepts of Green building
- 2. Adopt Renewable energy for buildings.
- 3. Implement Automation techniques in buildings.
- 4. Describe Actuator techniques for Automation
- 5. Choose appropriate materials for Green buildings

UNIT 1 Concept of Green Buildings : Green building initiatives, its origin, characteristics of a green building, green buildings in India, certification of green buildings. Criteria for rating – sustainability. Depleting natural resources of building materials; renewable and recyclable resources; energy efficient materials; green cement, biodegradable materials, smart materials, engineering evaluation of these materials. Case study.

UNIT 2 Sources of Energy Renewable and non-renewable sources of energy; coal, petroleum, nuclear, wind, solar, hydro, geothermal sources; potential of these sources, hazards, pollution; global scenario with reference to demand and supply in India. Energy arises. Carbon Emission: Forecasting, control of carbon emission, air quality and its monitoring carbon foot print; environmental issues, minimizing carbon emission.

UNIT 3 - **Intelligent Buildings** Intelligent buildings-Building automation-Smart buildings-Building services in high rise buildings-Green buildings-Energy efficient buildings for various zones-Case studies of residence, office buildings and other buildings in each zones. Case Study.

UNIT 4 Actuator Techniques Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magneto structure Material – Shape Memory Alloys – Electrorheological Fluids– Electromagnetic actuation – Role of actuators and Actuator Materials.

UNIT 5 Materials For "Green" Systems Green materials, including biomaterials, biopolymers, bioplastics, and composites Nanotech Materials for Truly Sustainable Construction: Windows, Skylights, and Lighting. Paints, Roofs, Walls, and Cooling.Multifunctional Gas Sensors, Biomimetic Sensors, Optical Interference Sensors Thermo-, light-, and stimulus-responsive smart materials.

TEXT BOOKS

- 1. Sustainable Construction, Charles J. Kibert., Third Edition
- 2. Green Building A to Z, Jerry Yudelson.

REFERENCE BOOKS

1 Advanced Technology for Smart buildings, James Sinopoli

E BOOKS https://www.springer.com/in/book/9789811010002

https://www.elsevier.com/books/smart-buildings/casini/978-0-08-100635-1

MOOChttps://www.mooc-list.com/tags/green-building

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22CSC3235) Cyber Security Fundamentals

Course Objectives:

- 1. Understand the need for Cyber security and its related threats and attacks
- 2. Learn methods to become secure in the cyber world and securely communicate in the cyber world
- 3. Become knowledgeable about the best practices related to cyber security, regulations and laws associated with the same.

Course Outcomes:

The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context

UNIT I: Need for Cyber Security - Introduction to security- CIA triad-Case studies- security attacks- issues related to social networking - Guidelines

UNIT II: **Methods to Secureyourself in the Cyber World** - Why and What of Reversible and Irreversible Cryptographic mechanisms? Applications of Digital Signature - Good password practices

UNIT III: E-Commerce: Secure Transactions - What is E-commerce? — Online banking security- Online shopping fraudGuidelines and Recommendations

UNIT IV: EVERYDAY SECURITY - Connecting your laptop, mobile devices, PDAs to Internet-Managing your browser-Facebook Security-E-mail security – Safe guarding from Viruses: Antiviruses– Best practices and guidelines

UNIT V: CYBER SECURITY LAWS AND COMPETENT AUTHORITIES - Indian IT Act, 2008 - What is Cyber Forensics? – Functions of cybercrime cell – Responding to a cyber-attack

- 1. "Information Security Awareness Handbook, ISEA, Department of Electronics and Information Technology", Government of India, 2010
- 2. deity.gov.in/sites/upload files/dit/.../itact2000/it amendment act2008.pdf
- 3. www.schneier.com/blog/archives/2013/03/browser_securit.html
- 4. www.dhses.ny.gov/ocs/awareness-training-events/news/2010-03.cfm
- 5. https://www.watsonhall.com/e-commerce-security/

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22ECE4134) Principles of Modern Communication Systems

Course Objectives:

This course aims at:

- Establishing a firm foundation for the understanding of telecommunication systems, and the relationship among various technical factors when such systems are designed and operated
- To provide the student with an understanding of the mobile Cellular communications and their evolution.
- To equip the students with various kinds of wireless networks and its operations.
- To provide students with solid foundation in orbital mechanics and launches for the satellite communication
- Radar fundamentals and analysis of the radar signals

UNIT I: The evolution of electronic communication: From smoke signals to smart phones - History of communications: Theoretical Foundations, Development & Applications - Frequencies for communication - Frequency regulations - Overview of communication transmitter and receiver.

UNIT II: Mobile Cellular Communications: Evolution to cellular networks – Cellular systems generations and standards: 1G, 2G, 3G, 4G - Cellular network components - Components of a mobile phone - setting up a call process - Making a call process - Receiving a call process - Spectrum allocation: Policies and strategies, Role of TRAI.

UNIT III: Wireless Communication: Introduction - Bluetooth - Infrared communication - IEEE Wireless LANs (Wi-Fi) - IEEE 802.16 (WiMaX) - Future mobile and wireless networks: Introduction to 5G- device to device communication- IoT.

UNIT IV: Satellite: History of Satellite communication, Basics of Satellites, Types of Satellites, Capacity Allocation - Launch Vehicles and Orbits: Introduction to launching vehicles, Important Orbits, working of rocket, Three Pioneers of Rocketry - Basics of Global Positioning System (GPS) - Applications of GPS.

UNIT V:RADAR& NAVIGATION: Introduction, Radar Block diagram and Operation, Radar Frequencies, Applications of Radar. Navigation Systems: Introduction & methods of navigation, Instrument Landing System, Microwave landing system- Modern Navigation systems.

- 1. S.Haykin, —Communication Systems, 4/e, John Wiley 2007
- 2. B.P.Lathi, —Modern Digital and Analog Communication Systems, 3/e, Oxford University Press, 2007
- 3. Rappaport Theodore S Wireless Communications: Principles and Practice, 2/E, Pearson
- 4. Education India, 2010 5. Vijay. K. Garg, —Wireless Communication and Networking, Morgan Kaufmann Publishers, 2007.
- 5. T.Pratt, C. Bostian and J.Allnutt; —Satellite Communications, John Wiley and Sons, Second Edition., 2003
- 6. M. I. Skolnik —Introduction to Radar Systems, Tata McGraw Hill 2006.
- 7. Myron Kyton and W.R.Fried Avionics Navigation Systems, John Wiley & Sons 1997.

Course outcomes

After completion of the course, students will be able to:

- C415.1. Differentiate various elements, processes, and parameters in communication systems, and describe their functions, effects, and interrelationship (K2-Understand).
- C415.2. Interpret the mobile cellular concepts, standards and all generations of cellular systems. (K2-understand)
- C415.3. Describe the existing and emerging wireless standards and Compare various wireless networks and their specifications. (K5-Evaluate)
- C415.4. Demonstrate the history of Satellite communication, applications and orbit concepts, Placement of a Satellite in a Geo-Stationary orbit and GPS concept (K3- Apply)
- C415.5 Summarize the radar fundamentals and analysis of the radar signals. (K4- Analyze)
- C415.6 Explain the Navigation systems (K2-Understand).

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22EEE3234) Illumination Engineering

COURSE OBJECTIVES:

- To provide an introduction to the fundamentals of illumination engineering and architectural lighting design.
- To impart lighting fundamentals, measurement, and technology and their application in the analysis and design of architectural lighting systems

COURSE OUTCOME: The students will be able to:

- i. Identify the criteria for the selection of lamps and lighting systems for an indoor or outdoor space
- ii. Perform calculations on photometric performance of light sources and luminaires for lighting design
- iii. Evaluate different types of lighting designs and applications

UNIT I: Introduction of Light: Types of illumination, Day lighting, Supplementary artificial lighting and total lighting, Quality of good lighting, Factors affecting the lighting-shadow, glare, reflection, Color rendering and stroboscopic effect, Methods of artificial lighting, Lighting systems-direct, indirect, semi direct, semi indirect, Lighting scheme, General and localized.

UNIT II: Measurement of Light: Definition of luminous flux, Luminous intensity, Lumen, Candle power, Illumination, M.H.C.P, M.S.C.P, M.H.S.C.P, Lamp efficiency, Brightness or luminance, Laws of illumination, Inverse square law and Lambert's Cosine law, Illumination at horizontal and vertical plane from point source, Concept of polar curve, Calculation of luminance and illumination in case of linear source, round source and flat source.

UNIT III: Design of Interior Lighting: Definitions of maintenance factor, Uniformity ratio, Direct ratio, Coefficients of utilization and factors affecting it, Illumination required for various work planes, Space to mounting height ratio, Types of fixtures and relative terms used for interior illumination such as DLOR and ULOR, Selection of lamp and luminance, Selection of utilization factor, reflection factor and maintenance factor Determination of Lamp Lumen output taking into account voltage and temperature variations, Calculation of wattage of each lamp and no of lamps needed, Layout of lamp luminaire, Calculation of space to mounting height ratio, Indian standard recommendation and standard practices for illumination levels in various areas, Special feature for entrance, staircase, Corridor lighting and industrial building.

UNIT IV: Design of Outdoor Lighting: Street Lighting: Types of street and their level of illumination required, Terms related to street and street lighting, Types of fixtures used and their suitable application, Various arrangements in street lighting, Requirements of good street lighting, Selection of lamp and luminaire, Calculation of their wattage, Number and arrangement, Calculation of space to mounting height ratio, Calculation of illumination level available on road.

UNIT V:Design of Outdoor Lighting: Flood Lighting: Terms related to flood lighting, Types of fixtures and their suitable applications, Selection of lamp and projector, Calculation of their wattage and number and their arrangement, Calculation of space to mounting height ratio, recommended method for aiming of lamp.

Special Features of Aesthetic Lighting: Monument and statue lighting, Sports lighting, Hospital lighting, Auditorium lighting.

Text Books:

- 1. D.C. Pritchard Lighting, Routledge, 2016
- 2. Jack L. Lindsey, Applied Illumination Engineering, PHI, 1991
- 3. John Matthews Introduction to the Design and Analysis of Building Electrical Systems, Springer, 1993
- 4. M.A. Cayless, Lamps and Lighting, Routledge, 1996

References:

- 1. IS CODE 3646
- 2. IS CODE 6665

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22INF3234) E – COMMERCE

COURSE OUTCOMES: At the end of the course, the students will be able to:

- 1. Understand the E commerce strategies and value chains
- 2. Understand the E-commerce services
- 3. Understand E commerce infrastructure, its applications and Supply Chain Management.
- 4. Know the availability of latest technology and applications of E-Payment Mechanism.
- 5. Apply E-Commerce in business-to-business application.

UNIT 1: **Electronic Commerce:** Overview, Definition, Advantages & Disadvantages of E-Commerce, Threats of E-Commerce, Managerial Prospective, Rules & Regulation for Controlling Commerce, Relationship Between E-Commerce & Networking, Different Types of Networking for E-Commerce, internet, Intranet, EDI Systems, Wireless Application Protocol: Definition, Hand Held Devices, Mobility & Commerce Model, Mobile Computing, Wireless Web, Web Security, Infrastructure Requirement for E-Commerce, Business Model of E-Commerce; Model Based on Transaction Type, Model Based on Transaction Party- B2B, B2C, C2B, C2C, E-Governance.

UNIT 2: **E-Strategy:** Overview, Strategic Methods for developing E-Commerce. Four C's (Convergence, Collaborative, Computing, Content Management & Call Center). Convergence: Technological Advances in Convergence - Types, Convergence and its implications, Convergence & Electronic Commerce. Collaborative Computing: Collaborative Product Development, contract as per CAD, Simulations Collaboration, Security. Content Management: Definition of Content, Authoring Tools and Content Management, Content Management, Content - partnership, repositories, convergence, providers, Web Traffic.

UNIT 3: **Traffic Management:** Content Marketing Call Center: Definition, Need, Tasks Handled, Mode of Operation, Equipment, Strength & Weakness of Call Center, Customer Premises Equipment (CPE). **Supply Chain Management:** E-logistics, Supply Chain Portal, Supply Chain Planning Tools (SCP Tools), Supply Chain Execution(SCE), SCEFramework, Internet's Effect on Supply Chain Power.

UNIT 4: **E-Payment Mechanism:** Payment through card system, E-Cheque, E-Cash, E-Payment, Threats& Protections.

E-Marketing: Home - Shopping, E-Marketing, Tele- Marketing

UNIT 5: **Electronic Data Interchange (EDI):** Meaning, Benefits, Concepts, Application, EDI Model, Protocols (UN EDI, FACT/ GTDI), ANSIX-12, Data Encryption (DES/RSA)

Risks of E-Commerce: Overview, Security for E-Commerce, Security Standards, Firewall, Cryptography, Key Management, Password Systems, Digital Certificates, Digital Signatures.

Text Book:

1. Electronic Commerce - Technologies & Applications, Bhaskar Bharat, TMH

Reference Books:

- 1. E-commerce, MM Oka, EPH
- 2. Frontiers of Electronics Commerce, Kalakotia, Whinston, Pearson Education
- 3. Electronic Commerce, Loshinpete, Murphy P. A., Jaico Publishing Housing
- 4. E-Commerce, Murthy, Himalaya Publishing.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22MED3236) Industrial Design & Ergonomics

- **UNIT 1**: Introduction: An approach to industrial design -elements of design structure for industrial design in engineering application in modern manufacturing systems. Ergonomics and Industrial Design: Introduction -general approach to the man-machine relationship- workstation design-working position.
- **UNIT 2**: Control and Displays: Shapes and sizes of various controls and displays-multiple, displays and control situations design of major controls in automobiles, machine tools etc Ergonomics and Production: ergonomics and product design -ergonomics in automated systems- expert systems for ergonomic design. Anthropometric data and its applications in ergonomic, design- limitations of anthropometric data- use of computerized database.
- **UNIT 3**: Visual Effects of Line and Form: The mechanics of seeing- psychology of seeing general influences of line and form. Color: Color and light -color and objects- color and the eye -color consistency-color terms- reactions to color and color continuation -color on engineering equipment.
- **UNIT 4**: Aesthetic Concepts: Concept of unity- concept of order with variety -concept of purpose style and environment- Aesthetic expressions. Style-components of style- house style, observation style in capital goods, case study.
- **UNIT 5**: Industrial Design in Practice: General Design -specifying design equipment- rating the importance of industrial design -industrial design in the design process.

- 1. Industrial Design for Engineers Mayall W.H. London Hiffee books Ltd.-1988.
- 2. Applied Ergonomics Hand Book Brain Shakel (Edited) Butterworth scientific. London
- 3. Introduction to Ergonomics R. C. Bridger McGraw Hill Publications -1995.
- 4. Human Factor Engineering Sanders & McCormick McGraw Hill Publications 6th edition,2002.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22HMS3234) Creative Writing

COURSE OBJECTIVE: This course introduces students to the practice of creative writing in the genres of poetry and fiction. In addition to honing their skills as creative writers, students will develop a critical vocabulary that will aid them in discussing poems and fiction produced by their peers. This course allows for experimentation with writing poetry, short fiction, and creative nonfiction in a writing workshop setting. Far from undertaking the task of making student a professional writer, this class has its goal to familiarize the learner with the dynamics of imaginative literature, the synergy of form and content, and with what makes a particular work effective.

COURSE OBJECTIVES:

- 1. Discuss with some confidence many of the rhetorical devices, from metaphor to enjambment associated with creative writing.
- 2. Appreciate the complexity of Poetry, Short Fiction, and Creative Nonfiction.
- 3. Understand the importance of Creative Writing as a means of self-expression.
- 4. Read and discuss with enhanced understanding Poetry, Short Fiction, and Creative Nonfiction
- 5. Show improvement in writing and analytical skills.

UNIT I: Introduction to Literary Forms - Elements of Poetry - Rhythm and Meter Poetic Forms - Ballad, Lyrics, Elegy, Odes, Haiku, Sonnets Literary Genres- Short Fiction, Drama, and Non-Fiction

UNIT II: Poetry Writing - Appreciation of the form and content of poem Techniques - figurative language - (structure - rhythm - imagery - tone - style point of view, voice - read and discuss numerous poems)

Ballad - The Ballad of the Landlord by Langston Hughes; Lyrics - Kubla Khan by Samuel Taylor Coleridge Elegy - Elegy Written in a Country's Churchyard by Thomas Gray Odes - Ode to a Nightingale by John Keats; Haik u- This Other World by Richard Wright Sonnet - On His Blindness by John Milton Students Creative Assignment - Students will write three poems.

UNIT III: Short Fiction / Novel - Elements of Fiction - Character - Plot- Setting - Theme - Style; Narrator - Point of view - Tone - Suspension of Disbelief. Genres - Adventure, Comic, Fantasy, Gothic, Romance, Historical, Horror, Supernatural, Thriller, Science Fiction - Gooseberries by Anton Chekhov Short Story - My Lost Dollar by Stephen Leacock Students Creative Assignment - Students will write one Short Story

UNIT IV: Drama - Elements of Drama - Character Plot, Theme, Dialogue, Convention, Genre, Audience, Stagecraft, Design, ConversionsDrama — The King of the Dark Chamber by Rabindranath Tagore Students Creative Assignment- Students will write a review of the drama read in the class.

UNIT V: Non Fiction - Prose, Biography, Memoirs, and Personal Essays Walden or Life in the Woods by Henry David Thoreau Students Creative Assignment - Students will write one or two essays

- 1. Candace H. Schaefer, Rick Diamond. 1998. The Creative Writing Guide: A Path to Poetry, Nonfiction, and Drama, Longman, New York, USA
- 2. Shelly Clark and MarjoneSaisa, 2009. Road Trip: Conversations with Writers, The Backwaters Press, Nebraska, USA
- 3. Nikki Moustaki (ed.), 1998. Writing Fiction: The Practical Guide from New York's Acclaimed Creative Writing School, Publisher: Bloomsbury, ISBN: 0156005743.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

OPEN ELECTIVE - II

L T P C 3 0 0 3

(R22HMS3236) Design Thinking

Course Objectives:

- To create awareness of design among students of engineering
- To motivate students to think of design before implementing an engineering project
- To teach a systematic approach to identifying and defining a problem before brainstorming for a solution
- To instill a sense of significance towards applying creativity to product and service design

Course Outcomes: Upon completion of this course, the student shall be

- 1. Learn to identify design principles from an engineering perspective
- 2. Cultivate sensitivity towards design aspects in objects made by engineers and non-engineers, which are typically used in daily life
- 3. Understand and create visual design elements to communicate more effectively
- 4. Construct clear problem statements, understand the importance of validation, and design services creatively
- 5. Develop fundamental team skills: working in teams and managing teams, strategizing tasks, and streamlining activities pertaining to a project

Students' Responsibilities:

- 1. Students will form teams of 3–5 members each, while working collaboratively throughout the semester
- 2. Students will present and report the tasks to the class and to the concerned faculty members and design experts, using their oral and written communication skills as well as creativity and team skills.
- 3. Students must proactively engage in observing the objects and processes which are part of their daily life and society from a design perspective and discuss with peers to learn collaboratively.
- **UNIT 1:** Design Overview and Motivation History and Context of birth of Design; Design thinking: Introduction and Motivation; Various definitions and interpretations of design, Design Vocabulary; Design in Indian Context; Art and Design: Art in Design, Design beyond Art; Design in Creative Industries
- **UNIT 2:** Design Sensitization for Engineers- Design Engineering vs. Engineering Design, Examples of Engineering Design and Design Engineering in various engineering domains, Examples of design failures leading to bad products and services, Real-world examples of bad design that caused engineering and technological disasters, Domain-specific Engineering Design examples
- **UNIT 3:**Design Thinking Foundations The Design Double Diamond: Discover-Define-Develop-Deliver User-centric design approaches: Importance of user-centricity for design, Empathisation, Empathy Maps, Data collection from users and for users, Data Validation Responsible Innovation and Ethical Design: Ethics as foundation for design, Concern for environment and sustainability
- **UNIT 4:** Communication Skills for Design, Culture and Art Communication Media to express an idea: Visuals, Text, Voice and Audio, Info graphics General guidelines for a good Presentation: Target audience, slideshow templates, appropriate visual elements, presentation styles, guidelines General guidelines for a

good Report: Documentation classification, standards, styles, and templates Modes of communication: Reports and documents, Presentation, poster, graphic, blog or website. Understanding Art in Design: Need for creativity, Elements of Visual Design Aesthetics: Influences and impressions of Colors, Shapes, Layouts, Patterns, and Fonts as Design Elements

UNIT 5:Applied Creativity and Design for Services Methods to brainstorm solutions for user issues; Combining solutions to workable solution concepts; Identifying the user needs in a service-driven economy; Process Flows and Customer Experience considerations for designing and improving services; 5 Why's; Service Delivery Pathways. Doing Design Looking for a problem, Ideation and Rules of Ideation, Framing and stating the problem; Basic considerations of Prototyping/ Model Building, Basics of Testing and Validation, Incorporating feedback

TEXT BOOKS:

- 1. Daniel Ling, "Complete Design Thinking Guide for Successful Professionals", CreateSpace Independent Publishing, 2015 (ISBN: 978-1514202739)
- 2. Tim Brown, "Change by Design", Harper Business, 2012 (ISBN: 978-0062337382)
- 3. Jimmy Jain, "Design Thinking for Startups: A Handbook for Readers and Workbook for Practitioners", Notion Press, 2018 (ISBN: 978-1642495034)
- 4. Beverly Rudkin Ingle, "Design Thinking for Entrepreneurs and Small Businesses: Putting the Power of Design to Work", APress, 2013 (ISBN: 978-1430261810)

- 1. Donald A. Norman, "The Design of Everyday Things", MIT Press, 2013 (ISBN: 978-0262525671)
- 2. Bruno Munari, "Design As Art", Penguin UK, 2009 (ISBN: 978-0141035819)
- 3. Tom Kelly, Jonathan Littman, "The Art of Innovation", HarperCollins Business, 2002 (ISBN: 978-0007102938)
- 4. Thomas Lockwood, "Design Thinking: Integrating Innovation, Customer Experience, and Brand Value", Allworth Press, 2009 (ISBN: 978-158115)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 0 0 2 1

(R22CSC4126) VULNERABILITY ASSESSMENT & PENETRATION TESTING LAB

Course Objectives: This lab session focuses on training the students in:

- 1. Penetration Testing methodologies.
- 2. Monitoring the network traffic and
- 3. To understand the host and services discovery

Course Outcomes:

- 1. Design for monitoring network traffic
- 2. Perform different penetration testing methods
- 3. Design different types of vulnerabilities scanning
- 4. Understand web application assessment

List of Experiments:

- 1. Monitoring Network Traffic
- 2. Host & Services Discovery using Nmap
- 3. Vulnerability Scanning using OpenVAS
- 4. Internal Penetration Testing
 - a. Mapping
 - b. Scanning
 - c. Gaining access through CVE's
 - d. Sniffing POP3/FTP/Telnet Passwords
 - e. ARP Poisoning
 - f. DNS Poisoning
- 5. External Penetration Testing
 - a. Evaluating external Infrastructure
 - b. Creating topological map & identifying IP address of target
 - c. Lookup domain registry for IP information
 - d. Examining use of IPV6 at remote location
- 6. Different types of vulnerability scanning
- 7. Vulnerability scanning with Nessus
- 8. Web application assessment with nikto & burp suite

TEXT BOOKS:

- 1. "Gray Hat Hacking-The Ethical Hackers Handbook", Allen Harper, Stephen Sims, Michael Baucom, 3rd Edition, Tata Mc Graw-Hill.
- 2. "The Web Application Hacker's Handbook-Discovering and Exploiting Security flaws", DafyddSuttard, Marcus pinto, 1st Edition, Wiley Publishing.

- 1. "Penetration Testing: Hands-on Introduction to Hacking", Georgia Weidman, 1st Edition, NoStarch Press.
- 2. "The Pen Tester Blueprint-Starting a Career as an Ethical Hacker", L. Wylie, Kim Crawly, 1stEdition, Wiley Publications.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year – I Semester

L T P C 0 0 2 1

(R22CSE3257) WEB TECHNOLOGIES LAB

WEB TECHNOLOGIES LAB

- 1. Install the following on the local machine Apache Web Server (if not installed)
- Tomcat Application Server locally
- Install MySQL (if not installed)
- Install PHP and configure it to work with Apache web server and
- •MySQL (if not already configured)
- 2. Write an HTML page including any required Javascript that takes a number from one text field in the range of 0 to 999 and shows it in another text field in words. If the number is out of range, it should show "out of range" and if it is not a number, it should show "not a number" message in the result box.
- 3. Write an HTML page that has one input, which can take multi-line text and a submit button. Once the user clicks the submit button, it should show the number of characters, words and lines in the text entered using an alert message. Words are separated with white space and lines are separated with new line character.
- 4. Write an HTML page that contains a selection box with a list of 5 countries. When the user selects a country, its capital should be printed next to the list. Add CSS to customize the properties of the font of the capital (color, bold and font size).
- 5.Create an XML document that contains 10 users information. Write a Java program, which takes User Id as input and returns the user details by taking the user information from the XML document using
 - (a) DOM Parser and
 - (b) SAX parser
 - 5. Implement the following web applications using
 - (a) PHP,
 - (b) Servlets and
 - (c) JSP:
 - i. A user validation web application, where the user submits the login name and password to the server. The name and password are checked against the data already available in Database and if the data matches, a successful login page is returned. Otherwise a failure message is shown to the user.
 - ii. Modify the above program to use an xml file instead of database.
 - iii. Modify the above program to use AJAX to show the result on the same page below the submit button.
 - iv. A simple calculator web application that takes two numbers and an operator (+, -, /, * and %) from an HTML page and returns the result page with the operation performed on the operands.
 - v. Modify the above program such that it stores each query in a database and checks the database first for the result. If the query is already available in the DB, it returns the value that was previously computed (from DB) or it computes the result and returns it after storing the new query and result in DB.

- vi. A web application takes a name as input and on submit it shows a hello page where is taken from the request. It shows the start time at the right top corner of the page and provides a logout button. On clicking this button, it should show a logout page with Thank You message with the duration of usage (hint: Use session to store name and time).
- vii. A web application that takes name and age from an HTML page. If the age is less than 18, it should send a page with "Hello, you are not authorized to visit this site" message, where should be replaced with the entered name. Otherwise it should send "Welcome to this site" message.
- viii. A web application for implementation:

The user is first served a login page which takes user's name and password. After submitting the details the server checks these values against the data from a database and takes the following decisions.

If name and password matches, serves a welcome page with user's full name. If name matches and password doesn't match, then serves "password mismatch" page If name is not found in the database, serves a registration page, where user's full name is asked and on submitting the full name, it stores, the login name, password and full name in the database (hint: use session for storing the submitted login name and password)

ix. A web application that lists all cookies stored in the browser on clicking "List Cookies" button. Add cookies if necessary

Course Outcomes:

- 1. xUse LAMP Stack for web applications
- 2. Use Tomcat Server for Servlets and JSPs
- 3. Write simple applications with Technologies like HTML, Javascript, AJAX, PHP, Servlets and JSPs Connect to Database and get results Parse XML files using Java (DOM and SAX parsers)

(An Autonomous Institution under UGC, New Delhi)									
L	Т	P	C						
0	0	6	3						
(R22CSC4168) PROJECT STAGE - I									
	0	L T 0 0	L T P 0 0 6						

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - I Semester

L T P C

(R22CSC4119) SKILL DEVELOPMENT COURSE (INFECTION MONKEY/CONJUR)

Course Objectives: This lab session focuses on training the students in:

- 1. To learn how to install Conjur Opensource using Docker.
- 2. To learn how to load first policy and learn how to program an application to fetch a secret from Conjur.

Course Outcomes: Upon completion of this course, the students will be able to

- 1. Understand working Conjur OSS environment with a Conjur account and an admin user.
- 2. Learn how to store first secret in Conjur.
- 3. Know how to leverage Conjur's ability to store your application's secrets securely.

List of Experiments:

- 1. Installation and working of Conjur Open Source using Docker.
- 2. Define Policy
- 3. Store A Secret in Conjur
- 4. implement role-based access control (RBAC)
- 5. Run The Demo App

TEXT BOOKS:

- 1. Nina Godbole and Sunit Belpure, Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Wiley
- 2. B.B. Gupta, D.P. Agrawal, Haoxiang Wang, Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives, CRC Press, ISBN 9780815371335,2018.

- 1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.
- 2. Introduction to Cyber Security, Chwan-Hwa(john) Wu,J. David Irwin, CRC Press T&F Group. https://www.conjur.org/get-started/interactive/https://github.com/cyberark/conjur

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

L T P C 3 0 0 3

(R22HMS4211) ORGANIZATIONAL BEHAVIOUR

Course Objectives: The objective of the course is to provide the students with the conceptual framework and the theories underlying Organizational Behavior.

Course Outcomes:

- 1. Demonstrate the applicability of analyzing the complexities associated with management of individual behavior in the organization.
- 2. Analyze the complexities associated with management of the group behavior in theorganization.
- 3. Demonstrate how the organizational behavior can integrate in understanding the motivation (why) behind behavior of people in the organization.

UNIT - I:

Introduction to OB - Definition, Nature and Scope - Environmental and organizational context - Impact of IT, globalization, Diversity, Ethics, culture, reward systems and organizational design on Organizational Behaviour. Cognitive Processes-I: Perception and Attribution: Nature and importance of Perception - Perceptual selectivity and organization - Social perception - Attribution Theories - Locus of control - Attribution Errors - Impression Management.

UNIT-II:

Cognitive Processes-II: Personality and Attitudes – Personality as a continuum – Meaning of personality - Johari Window and Transactional Analysis - Nature and Dimension of Attitudes – Job satisfaction and organizational commitment-Motivational needs and processes- Work-Motivation Approaches Theories of Motivation- Motivation across cultures - Positive organizational behaviour: Optimism – Emotional intelligence – Self-Efficacy.

UNIT - III:

Dynamics of OB-I: Communication – types – interactive communication in organizations – barriers to communication and strategies to improve the follow of communication - Decision Making: Participative decision-making techniques – creativity and group decision making. Dynamics of OB –II Stress and Conflict: Meaning and types of stress –Meaning and types of conflict - Effect of stress and intra- individual conflict - strategies to cope with stress and conflict.

UNIT - IV:

Dynamics of OB –III Power and Politics: Meaning and types of power – empowerment - Groups Vs. Teams – Nature of groups – dynamics of informal groups – dysfunctions of groups and teams – teams in modern work place.

UNIT - V:

Leading High performance: Job design and Goal setting for High performance- Quality of Work Life- Socio technical Design and High-performance work practices - Behavioural performance management: reinforcement and punishment as principles of Learning —Process of Behavioural modification - Leadership theories - Styles, Activities and skills of Great leaders.

- 1. Luthans, Fred: Organizational Behaviour 10/e, McGraw-Hill, 2009
- 2. McShane: Organizational Behaviour, 3e, TMH, 2008
- 3. Nelson: Organizational Behaviour, 3/e, Thomson, 2008.
- 4. Newstrom W. John & Davis Keith, Organisational Behaviour-- Human Behaviour at Work, 12/e, TMH, New Delhi, 2009.
- 5. Pierce and Gardner: Management and Organisational Behaviour: An Integrated perspective, Thomson, 2009.
- 6. Robbins, P. Stephen, Timothy A. Judge: Organisational Behaviour, 12/e, PHI/Pearson, New Delhi, 2009.
- 7. Pareek Udai: Behavioural Process at Work: Oxford & IBH, New Delhi, 2009.
- 8. Schermerhorn: Organizational Behaviour 9/e, Wiley, 2008.
- 9. Hitt: Organizational Behaviour, Wiley, 2008
- 10. Aswathappa: Organisational Behaviour, 7/e, Himalaya, 2009
- 11. Mullins: Management and Organisational Behaviour, Pearson, 2008.
- 12. McShane, Glinow: Organisational Behaviour--Essentials, TMH, 2009.
- 13. Ivancevich: Organisational Behaviour and Management, 7/e, TMH, 2008.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

L T P C 3 0 0 3

Professional Elective – VI (R22CSC4246) QUANTUM CRYPTOGRAPHY

Course Objectives: Objective of the course is to build quantum-preparedness for the post quantumera.

Course Outcomes:

- 1. Basic understanding about Quantum Information and Computation.
- 2. Understand attack Strategies on QKD Protocols.
- 3. Analyze and understand statistical analysis of QKD Networks in Real-Life Environment.
- 4. Apply Quantum-cryptographic networks.

UNIT - I

Quantum Information Theory, Unconditional Secure Authentication, Entropy, Quantum Key Distribution, Quantum Channel, Public Channel, QKD Gain, Finite Resources

UNIT - II

Adaptive Cascade Introduction, Error Correction and the Cascade Protocol, Adaptive Initial Block-Size Selection, Fixed Initial Block-Size, Dynamic Initial Block-Size, Examples

UNIT - III

Attack Strategies on QKD Protocols: Introduction, Attack Strategies in an Ideal Environment, Individual Attacks in an Realistic Environment QKD Systems: Introduction, QKD Systems

UNIT-IV

Statistical Analysis of QKD Networks in Real-Life Environment: Statistical Methods, Statistical Analysis QKD Networks Based on Q3P: QKD Networks, PPP, Q3P, Routing, Transport

UNIT - V

Quantum-Cryptographic Networks from a Prototype to the Citizen: The SECOQC Project, How to Bring QKD into the "Real" Life The Ring of Trust Model: Introduction, Model of the Point of Trust, Communication in the Point of Trust Model, Exemplified Communications, A Medical Information System Based on the Ring of Trust

TEXT BOOK:

1. Kollmitzer C., Pivk M. (Eds.), Applied Quantum Cryptography, Lect. Notes Phys. 797 (Springer, Berlin Heidelberg 2010).

- 1. Gerald B. Gilbert, Michael Hamrick, and Yaakov S. Weinstein, Quantum Cryptography, World Scientific Publishing.
- 2. Gilles Van Assche, Quantum Cryptography and Secret-Key Distillation, Cambridge UniversityPress.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

L T P C 3 0 0 3

Professional Elective – VI (R22CSO4111) IOT CLOUD PROCESSING AND ANALYTICS

Course Objectives: Knowledge on IoT networking connectivity protocols and IoT Analytics for the cloud processing.

Course Outcomes: At the end of the course, students will be able to:

- 1. Implement the architectural components and protocols for application development.
- 2. Identify data analytics and data visualization tools as per the problem characteristics.
- 3. Collect, store and analyze IoT data.

UNIT - I

IoT devices, Networking basics, IoT networking connectivity protocols, IoT networking data messaging protocols, Analyzing data to infer protocol and device characteristics.

UNIT - II

IoT Analytics for the Cloud: Introduction to elastic analytics, Decouple key components, Cloud security and analytics, Designing data processing for analytics, Applying big data technology to storage.

UNIT - III

Exploring IoT Data: Exploring and visualizing data, Techniques to understand data quality, Basic time series analysis, Statistical analysis.

UNIT-IV

Data Science for IoT Analytics: Introduction to Machine Learning, Feature engineering with IoT data, Validation methods, Understanding the bias-variance tradeoff, Use cases for deep learning with IoT data.

UNIT-V

Strategies to Organize Data for Analytics: Linked Analytical Datasets, Managing data lakes, data retention strategy.

TEXT BOOKS:

- 1. Arshdeep Bahga and Vijay Madisetti, "Internet of Things A Hands on Approach", Universities Press, 2015.
- 2. Kevin, Townsend, Carles, Cufí, Akiba and Robert Davidson, "Getting Started with BluetoothLow Energy" O'Reilly.

- 1. Madhur Bhargava "IoT Projects with Bluetooth Low Energy, Packt Publishing, August 2017.
- 2. Robin Heydon," Bluetooth Low Energy: The Developer's Handbook", Pearson, October 2012.
- 3. Kumar Saurabh," Cloud Computing", Wiley India, 1st Edition, 2016.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

L T P C 3 0 0 3

Professional Elective – VI (R22CSC4243) CLOUD SECURITY

Course Objectives:

- 1. To understand the fundamentals concepts of cloud computing.
- 2. To understand the cloud security and privacy issues.
- 3. To understand the Threat Model and Cloud Attacks.
- 4. To understand the Data Security and Storage.
- 5. To analyze Security Management in the Cloud.

Course Outcome

- 1. Ability to acquire the knowledge on fundamentals concepts of cloud computing.
- 2. Able to distinguish the various cloud security and privacy issues.
- 3. Able to analyze the various threats and Attack tools.
- 4. Able to understand the Data Security and Storage.
- 5. Able to analyze the Security Management in the Cloud.

UNIT - I

Overview of Cloud Computing: Introduction, Definitions and Characteristics, Cloud Service Models, Cloud Deployment Models, Cloud Service Platforms, Challenges Ahead.

Introduction to Cloud Security: Introduction, Cloud Security Concepts, CSA Cloud Reference Model, NIST Cloud Reference Model, NIST Cloud Reference Model.

Note: Laboratory practice will be imparted with the help of relevant case studies as and when required.

UNIT - II

Cloud Security and Privacy Issues: Introduction, Cloud Security Goals/Concepts, Cloud Security Issues, Security Requirements for Privacy, Privacy Issues in Cloud.

Infrastructure Security: The Network Level, the Host Level, the Application Level, SaaS Application Security, PaaS Application Security, IaaS Application Security.

Note: Laboratory practice will be imparted with the help of relevant case studies as and when required.

UNIT - III

Threat Model and Cloud Attacks: Introduction, Threat Model- Type of attack entities, Attack surfaces with attack scenarios, A Taxonomy of Attacks, Attack Tools-Network-level attack tools, VM-level attack tools, VMM attack tools, Security Tools, VMM security tools.

Note: Laboratory practice will be imparted with the help of relevant case studies as and when required.

UNIT - IV

Information Security Basic Concepts, an Example of a Security Attack, Cloud Software Security Requirements, Rising Security Threats. **Data Security and Storage:** Aspects of Data Security, Data Security Mitigation, Provider Data and Its Security.

Note: Laboratory practice will be imparted with the help of relevant case studies as and when required.

UNIT - V

Evolution of Security Considerations, Security Concerns of Cloud Operating Models, Identity Authentication, Secure Transmissions, Secure Storage and Computation, Security Using Encryption Keys,

Challenges of Using Standard Security Algorithms, Variations and Special Cases for Security Issues with Cloud Computing, Side Channel Security Attacks in the Cloud

Security Management in the Cloud- Security Management Standards, Availability Management, Access Control, Security Vulnerability, Patch, and Configuration Management.

Note: Laboratory practice will be imparted with the help of relevant case studies as and when required.

TEXT BOOKS:

- 1. Cloud Security Attacks, Techniques, Tools, and Challenges by Preeti Mishra, Emmanuel S Pilli, Jaipur R C Joshi Graphic Era, 1st Edition published 2022 by CRC press.
- 2. Cloud Computing with Security Concepts and Practices Second Edition by Naresh Kumar Sehgal Pramod Chandra, P. Bhatt John M. Acken,2nd Edition Springer nature Switzerland AG 2020.
- 3. Cloud Security and Privacy by Tim Mather, Subra Kumaraswamy, and Shahed Lati First Edition, September 2019.

- 1. Essentials of Cloud Computing by K. Chandrasekaran Special Indian Edition CRC press.
- 2. Cloud Computing Principles and Paradigms by Rajkumar Buyya, John Wiley.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

L T P C 3 0 0 3

Professional Elective – VI (R22CSC4245) DIGITAL WATERMARKING AND STEGANOGRAPHY

Course Objectives:

- 1. To learn about the watermarking models and message coding.
- 2. To learn about watermark security and authentication.
- 3. To learn about steganography. Perceptual models.

Course Outcomes:

- 1. Know the History and importance of watermarking and steganography.
- 2. Analyze Applications and properties of watermarking and steganography.
- 3. Demonstrate Models and algorithms of watermarking.
- 4. Possess the passion for acquiring knowledge and skill in preserving authentication of Information.
- 5. Identify theoretic foundations of steganography and steganalysis.

UNIT - I

Introduction: Information Hiding, Steganography and Watermarking – History of watermarking – Importance of digital watermarking – Applications – Properties – Evaluating watermarking systems.

Watermarking models & message coding: Notation – Communications – Communication based models – Geometric models – Mapping messages into message vectors – Error correction coding – Detecting multisymbol watermarks.

UNIT-II

Watermarking with side information & analyzing errors: Informed Embedding – Informed Coding – Structured dirty-paper codes - Message errors – False positive errors – False negative errors – ROC curves – Effect of whitening on error rates.

UNIT - III

Perceptual models: Evaluating perceptual impact – General form of a perceptual model – Examples of perceptual models – Robust watermarking approaches - Redundant Embedding, Spread Spectrum Coding, Embedding in Perceptually significant coefficients.

UNIT - IV

Watermark security & authentication: Security requirements — Watermark security and cryptography—Attacks — Exact authentication — Selective authentication — Localization — Restoration.

UNIT - V

Steganography: Steganography communication – Notation and terminology – Information Theoretic Foundations of steganography – Practical steganographic methods – Minimizing the embedding impact – Steganalysis

TEXT BOOK:

1. Ingemar J. Cox, Matthew L. Miller, Jeffrey A. Bloom, Jessica Fridrich, Ton Kalker, "Digital Watermarking and Steganography", Margan Kaufmann Publishers, New York, 2008.

REFERENCE BOOK:

1. Ingemar J. Cox, Matthew L. Miller, Jeffrey A. Bloom, "Digital Watermarking", Margan Kaufmann Publishers, New York, 2003.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi) B.Tech. - IV Year – II Semester L T P C 3 0 0 3

Professional Elective – VI (R22CSC4244) DATA PRIVACY

Course Objectives:

- 1. The objective of this course is to create architectural, algorithmic and technological foundations for the maintenance of the privacy of individuals.
- 2. Students are able to learn the concepts of confidentiality of organizations, and the protection of sensitive information, despite the requirement that information be released publicly or semi- publicly.

Course Outcomes:

- 1. Discuss the concepts of privacy in today's environment.
- 2. How automation is changing the concepts and expectations concerning privacy and the increasingly interconnected issue of security.
- 3. Explain the knowledge of the role of private regulatory and self-help efforts.
- 4. How emerging issues are affecting society and business, with a concentration on howinformation security must shape corporate practices.

UNIT - I:

Introduction- Fundamental Concepts, Definitions, Statistics, Data Privacy Attacks, Data linking and profiling, access control models, role-based access control, privacy policies, their specifications, languages and implementation, privacy policy languages, privacy in different domains- medical, financial, etc.

UNIT - II:

Data explosion- Statistics and Lack of barriers in Collection and Distribution of Person- specific information, Mathematical model for characterizing and comparing real-world data sharing practices and policies and for computing privacy and risk measurements, Demographics and Uniqueness, **Protection Models**- Null-map, k-map, Wrong map

UNIT - III:

Survey of techniques- Protection models (null-map, k-map, wrong map), Disclosure control, Inferring entity identities, Strength and weaknesses of techniques, entry specific databases.

UNIT - IV:

Computation systems for protecting delimited data- MinGen, Datafly, Mu-Argus, k- Similar, Protecting textual documents: Scrub.

UNIT - V:

Technology, Policy, Privacy and Freedom- Medical privacy legislation, policies and best practices, Examination of privacy matters specific to the World Wide Web, Protections provided by the Freedom of Information Act or the requirement for search warrants.

TEXT BOOKS:

- 1. B. Raghunathan, The Complete Book of Data Anonymization: From Planning to Implementation, 1st Edition, Auerbach Pub, 2013.
- 2. L. Sweeney, Computational Disclosure Control: A Primer on Data Privacy Protection, MIT Computer Science, 2002.

- 1. Nishant Bhajaria Data Privacy: A runbook for engineers, Manning Publications.
- 2. Gwen Kennedy, Data Privacy Law: A Practical Guide to the GDPR, ISBN-13: 978-0999512722, ISBN-10: 0999512722

Open Elective –III

S. No.	Course Code	Course Title	L	Т	P	Credits
1	R22CIV4233	Remote Sensing Concepts				
2	R22CSE4233	Fundamentals of Soft Computing				
3	R22ECE4233	Audio & Video Engineering				
4	R22EEE4233	Non Conventional Energy Resources	3	0	0	2
5	R22INF4233	Information Security Fundamentals	3	0	U	3
6	R22MED4233	Total Engineering Quality Management				
7	R22HMS4233	Human Values & Professional Ethics for Engineers				
8	R22HAS4233	Science Fiction				

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22CIV4233) Remote Sensing Concepts

COURSE OBJECTIVES: To introduce the concepts of remote sensing processes and its components. To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

COURSEOUTCOMES:

- 1. At the end of the course the student will be able to understand
- 2. The characteristics of electromagnetic radiation and its interaction with earth features
- 3. The types and configuration of various satellites and sensors
- 4. The elements of data interpretation

UNIT I:Remote Sensing and Electromagnetic Spectrum- Definition – components of RS – History of Remote Sensing – Merits and demerits of data collation between conventional and remote sensing methods - Electromagnetic Spectrum – wave theory, particle theory, Stefan – Boltzmann Law and Wien's Law – visible and non-visible spectrum – Radiation sources: active & passive; Radiation Quantities

UNIT II:EMR Interaction with Atmosphere- Standard atmospheric profile – main atmospheric regions and its characteristics – interaction of radiation with atmosphere - Scattering (Rayleigh, Mie, non-selective scattering) absorption and refraction – Atmospheric effects on visible, infrared, thermal and microwave spectrum – Atmospheric windows.

UNIT III: EMR Interaction with Earth- Energy balance equation – Specular and diffuse reflectors – Spectral reflectance & emittance – Spectro radiometer / Spectrophotometer – Spectral Signature concepts – Typical spectral reflectance curves for vegetation, soil and water body – Factors affecting spectral reflectance of vegetation, soil and water body.

UNIT IV: Platforms and Sensors- Ground based platforms – Airborne platforms – Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Resolution concepts – Scanners - Along and across track scanners – Orbital and sensor characteristics of different satellites – Airborne and Space borne TIR sensors – Calibration – S/N ratio – Passive/Active microwave sensing – Airborne and satellite borne RADAR –SAR –LIDAR , UAV – High Resolution Sensors

UNIT V: Data Products and Visual Interpretation- Photographic (film and paper) and digital products – quick look products - High Resolution data products data - ordering – interpretation – basic characteristics of image elements – interpretation keys (selective and elimination) – visual interpretation of natural resources.

TEXT BOOKS:

- 1. Richards, Remote sensing digital Image Analysis-An Introduction Springer Verlag 1993.
- 2. Lillesand, T.M. and Kiefer R.W. Remote Sensing and Image interpretation, John Wiley and Sons, Inc, New York, 2002.

- 1. Janza, F.Z., Blue H.M. and Johnson, J.E. Manual of Remote Sensing. Vol.I, American Society of Photogrametry, Virginia, USA, 2002.
- 2. Verbyla, David, Satellite Remote Sensing of Natural Resources. CRC Press, 1995
- 3. Paul Curran P.J. Principles of Remote Sensing. Longman, RLBS, 2003.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22CSE4233) Fundamentals of Soft Computing

COURSE OBJECTIVES: The main objective of the Soft Computing Techniques to Improve Data Analysis Solutions is to strengthen the dialogue between the statistics and soft computing research communities in order to cross-pollinate both fields and generate mutual improvement activities.

UNIT I: Introduction: What is Soft Computing? Difference between Hard and Soft computing, Requirement of Soft computing, Major Areas of Soft Computing, Applications of Soft Computing. Neural Networks: What is Neural Network, Learning rules and various activation functions, Single layer Perceptrons, Back Propagation networks, Architecture of Back propagation(BP) Networks, Backpropagation Learning, Variation of Standard Back propagation Neural Network, Introduction to Associative Memory, Adaptive Resonance theory and Self Organizing Map, Recent Applications.

UNIT II:Fuzzy Systems: Fuzzy Set theory, Fuzzy versus Crisp set, Fuzzy Relation, Fuzzification, Minmax Composition, Defuzzification Method, Fuzzy Logic, Fuzzy Rule based systems, Predicate logic, Fuzzy Decision Making, Fuzzy Control Systems, Fuzzy Classification.

UNIT III: **Genetic Algorithm:** History of Genetic Algorithms (GA), Working Principle, Various Encoding methods, Fitness function, GA Operators- Reproduction, Crossover, Mutation, Convergence of GA, Bit wise operation in GA, Multi-level Optimization.

UNIT 4: **Hybrid Systems:** Sequential Hybrid Systems, Auxiliary Hybrid Systems, Embedded Hybrid Systems, Neuro-Fuzzy Hybrid Systems, Neuro-Genetic Hybrid Systems, Fuzzy-Genetic Hybrid Systems.

UNIT V: GA based Backpropagation Networks:

GA based Weight Determination, K - factor determination in Columns.

Fuzzy Backpropagation Networks: LR type Fuzzy numbers, Fuzzy Neuron, Fuzzy BP Architecture, Learning in Fuzzy BP, Application of Fuzzy BP Networks

TEXT BOOKS:

- 1. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, S.Rajasekaran, G. A. Vijayalakshami, PHI.
- 2. Genetic Algorithms: Search and Optimization, E. Goldberg.
- 3. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.
- 4. Build Neural Network With MS Excel sample by Joe choong.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22ECE4233) Audio and Video Engineering

Course Objectives:

- Student are able understand different amplifiers, graphic equalizer and Dolby NR recording systems TV fundamentals like concept of aspect ratio ,image continuity etc Color theory
- Student are able to discuss composite video signal ad CCIR B standard for color signal Transmission and reception, monochrome TV transmitter and receivers, Color TV transmitter and compare TV camera tubes, Color picture tube
- Student are able Illustrate of color TV receivers(PAL-D) and Differentiate between NTSC PAL and SCAM systems cable Television, MATV, CATV, CCTV, Cable TV network and DTH

UNIT I: Hi Fi Audio Amplifier - Introduction to Amplifiers: Mono, Stereo, Public Address; Difference between stereo amplifier and Mono amplifier; Block diagram of Hi Fi amplifier and explanation; Graphic equalizer concept, circuit diagram and operation. (5 Point Circuit diagram); Dolby NR recording system; Types of speaker woofer, Midrange and Tweeter; Cross over network circuit and its function.

UNIT II: TV Fundamentals - Concept of Aspect ratio, image continuity, interlace scanning, scanning periods, horizontal and vertical, vertical resolution, horizontal resolution; Vestigial sideband transmission, bandwidth for Colour signal, picture tube, brightness, contrast, viewing distance luminance, hue, saturation, compatibility; Colour theory, primary colors and secondary colors, additive Colour mixing subtractive Colour mixing; Composite Video Signal, Pedestal height, Blanking pulse, Colour burst, Horizontal sync pulse details, Vertical sync pulse details, Equalizing pulses, CCIR B standards for Colour signal transmission and reception.

UNIT III: TV Transmitters and Receiver - Audio and Video signal transmission; Positive and Negative modulation; Merits and Demerits of Negative modulation; Introduction to television camera tube (a) Vidicon; (b) Plumbicon; (c) Solid State camera based on CCD; Color Picture tube (a) PIL, (b) Delta gun picture tube; Block diagram of monochrome TV transmitter; Block diagram of Colour TV transmitter; Block diagram of monochrome TV Receiver.

UNIT IV: Colour TV - Block Diagram and operation of color TV receiver (PAL D type); Explain – YagiUda Antenna; Explain block diagram of PAL-D decoder with circuit diagram of chroma signal amplifier, Burst pulse blanking, Colour killer control, Basic Circuit for Separation of U and V signals. AGC Amplifier.Colour signal matrixing, RGB drive amplifiers; EHT generation: circuit explanation for line output stage using transistor or IC in Colour TV; Comparisons between NTSC, PAL and SCAM Systems.

UNIT V: Cable Television - Working principle and specification of following components: Dish antenna, LNBC, Multiplexer, Attenuators Connectors (two ways and three ways), Amplifier and cable; MATV,CATV and CCTV;Design concept for cable TV network; Block diagram of dB meter with working principle; Direct to Home System (DTH) Introduction and Block Diagram.

References:

- 1. Television & Radio Engineering (A.M. Dhake) Tata McGraw Hill.
- 2. Television Engg and Video System (R.G. Gupta) Tata McGraw Hill.

- 3. Audio Video Systems (R.G. Gupta) Tata McGraw Hill.
- 4. Modern TV Pratice (R.R. Gulati) New Age International.
- 5. Basic Radio and Television (S. Sharma) Tata McGraw Hill.
- 6. Colour Television Principles and Pratice (R.R. Gulati) New Age International.
- 7. Basic Television and Video System (Bernard Grob) Tata McGraw Hill.
- 8. Mono Chrome and Colour Television (R.R. Gulati0 New Age International.
- 9. Modern CD Player Servicing Manual (ManoharLotia) BPB Publication.

Course Outcomes:

After completion of the course, students will be able to:

- C423.1. Explain and differ ate the different amplifiers, graphic equalizer and Dolby NR recording systems (K3-apply)
- C423.2. Describe the TV fundamentals like concept of aspect ratio, image continuity etc Color theory (K2-Understand)
- C423.3. Discuss about composite video signal ad CCIR B standard for color signal Transmission and reception (K2-Understand)
- C423.4. Discuss monochrome TV transmitter and receivers, Color TV transmitter and compare TV camera tubes, Color picture tube (K5-Evaluate)
- C423.5. Diagram Illustrate of color TV receivers (PAL-D) and Differentiate between NTSC PAL and SCAM systems (K4-Analyse)
- C423.6. Explain about cable Television, MATV, CATV, CCTV, Cable TV network and DTH (K2-Understand)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22EEE4233) Non Conventional Energy Resources

This course helps the students to understand the importance, availability, conversion technologies of renewable energy resources and its applications

- 1. To emphasis the current energy status and role of non-conventional and renewable energy sources.
- 2. To familiarize various aspects of Solar energy and utilization
- 3. To familiarize various aspects of Wind energy and utilization
- 4. To familiarize various aspects of Biomass energy and utilization
- 5. To emphasize the significance of Green Energy Technologies.

UNIT I: SOLAR ENERGY - Solar radiation its measurements and prediction - Solar thermal collectors - Flat plate collectors, Concentrating collectors - Applications - Heating, Cooling, Desalination, Drying, Cooking, etc - Principle of photovoltaic conversion of solar energy - Types of solar cells and fabrication - Photovoltaic applications - Battery charging, Domestic lighting, Street lighting and water pumping.

UNIT II:WIND ENERGY - Wind energy - Energy chains - Application - Historical background, Merits and limitations - Nature of wind - Planetary and local day / night winds - Wind energy quantum - Power in wind- Turbine efficiency - Torque Thrust calculations Velocity at different heights - Site selection - Components of Wind Energy Conversion System (WECS).

UNIT III: BIOMASS ENERGY - Energy from Biomass - Biomass as Renewable Energy Source - Types of Bio mass Fuels - Solid, Liquid and Gas - Biomass Conversion Techniques- Wet Process, Dry Process-Photosynthesis - Biogas Generation - Factors affecting Biodigestion - Classification of bio gas plant - Continuous, Batch and Fixed Dome types - Advantages and Disadvantages.

UNIT IV: TIDAL, OTEC, HYDEL AND GEOTHERMAL ENERGY - Tidal energy: Tide - Spring tide, Neap tide - Tidal range - Tidal Power - Types of tidal power plant - Single and dual basin schemes - Requirements in tidal power plant - Ocean Thermal Energy Conversion (OTEC): Principle - Open and closed OTEC Cycles - Hydel Energy: Micro hydro - Geothermal Energy: Geothermal energy sources - Power plant and environmental issues.

UNIT V:NEW ENERGY SOURCES - Hydrogen as a renewable energy source - Sources of Hydrogen - Fuel for Vehicles - Hydrogen Production - Direct electrolysis of water, thermal decomposition of water, biological and biochemical methods of hydrogen production - Storage of Hydrogen - Gaseous, Cryogenic and Metal hydride - Fuel Cell – Principle of working, construction and applications.

TEXT BOOKS

- 1. Rai.G.D, "Non- conventional resources of energy", Khanna publishers, Fourth edition, 2010.
- 2. Khan. B.H, "Non-Conventional Energy Resources", The McGraw Hills, Second edition, 2009.

- 1. Rao.S&Parulekar, "Energy Technology", Khanna publishers, Fourth edition, 2005.
- 2. Pai.B.R and Ram Prasad.M.S, "Power Generation through Renewable Sources of Energy", Tata McGraw Hill, New Delhi, 1991.
- 3. Bansal.N.K, Kleeman and Meliss, "Renewable energy sources and conversion Techniques", Tata McGraw hill, 1990
- 4. Godfrey Boyl "Renewable Energy: Power Sustainable Future",Oxford University Press, Second edition, 2006.
- 5. Ryan O'Hayre, Suk-Won Cha and Whitney colella, "Fuel Cell Fundamentals", Second edition, 2009.
- 6. John W Twidell and Anthony D Weir, "Renewable Energy Resources", Taylor and Francis, 2006.
- 7. Freris.L.L, "Wind Energy Conversion systems", Prentice Hall, UK, 1990.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22INF4233) Information Security Fundamentals

COURSE OBJECTIVES:

- 1. To provide impeccable knowledge on various technical aspects of Information Security & Computer Security principles
- 2. To provide foundation for understanding the key issues associated with protecting Computer Systems & Information Assets.
- 3. To provide competency in designing consistent & reasonable Information security system with appropriate Scanning & Enumeration mechanisms, determining the level of protection and Response to security incidents.

UNIT I:Introduction to Information Security - Introduction to Information Security, Need for Security - Threats to security & Attacks, Computer System Security and Access Controls - System access and data access.

UNIT II:Communication Security - Introduction to cryptography, cryptosystems, Encryption & Decryption Techniques - classical encryption techniques, communication channel used in cryptographic system, various types of ciphers, Cryptanalysis, Hash function and Data integrity, Security of Hashing function.

UNIT III: Network - Introduction to Network Security, Email Security, IP Security, Web Security, Kerberos, X.509 techniques.

UNIT IV: Scanning & Enumeration Technology - Malicious software, Firewalls, Honey pots, Intrusion Detection system, Intrusion Prevention system

UNIT V: Ethics In Information Security - Implementing Information Security, Legal Ethical & Professional issues in Information Security.

TEXT BOOKS:

- 1. Matt Bishop, "Computer Security: Art and Science", Addison-Wesley Professional, First Edition, 2003. ISBN: 0201440997.
- 2. William Stallings, "Cryptography and Network Security", Pearson Education, Fourth Edition, 2006. ISBN: 8177587749

- 1. Michael E. Whitman, Herbert J. Mattord ,"Principles of Information Security" Cengage Learning, Fourth Edition, 2010, ISBN: 1111138214
- 2. Charlie Kaufman, Radia Perlman, Mike Speciner, "Network security: private communication in a public world", Second Edition, ISBN: 0130460192.
- 3. Dieter Gollmann, "Computer Security", Third Edition, ISBN: 0470741155.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22MED4233) Total Engineering Quality Management

COURSE OBJECTIVE: To understand the Engineering and Management aspects of Planning, Designing, Controlling and Improving Quality in Manufactured products.

COURSE OUTCOMES:

- 1. To understand the fundamentals of quality
- 2. To understand the role of TQM tools and techniques in elimination of wastages and reduction of defects
- 3. To develop quality as a passion and habit

UNIT I: Quality Gurus And TQM Kitemarks - Evolution of TQM - Quality Guru's - Edward Deming - Joseph Juran - Philip Crosby - Genichi Taguchi - Walter Shewart - Criteria for Deming's PrizeUNIT II - PRODUCT DESIGN AND ANALYSIS (9 hours) Basic Design Concepts and TQM - Design Assurance - Design Validation - Failure Mode Effect Analysis - Fault Tree Analysis - Design for Robustness - Value Analysis

UNIT-III: **Process Improvement and Modern Production Management Tools** - Six Sigma Approach – Total Productive Maintenance – Just-In-Time – Lean Manufacturing Paradigms

UNIT IV: **Quality Improvement Tools and Continuous Improvement -** Q-7 Tools – New Q-7 Tools – Quality Function Deployment – Kaizen – 5S – PokaYoke

UNIT V: Quality Management Systems - Quality Management Systems - Introduction to ISO9000 - TS16949:2002 and EMS14001 certifications.

TEXT BOOKS

- 1. Total Engineering Quality Management, Sunil Sharma, 1st Edition, MacMillan India Limited.
- 2. Total Quality Management, Poornima M. Charantimath, 2nd Edition, Pearson Education.

- 1. "Quality and Performance Excellence", James R Evans, Edition, 7th Edition, Cengage Learning.
- 2. "Quality Management", Howard S Gitlow, Alan J Oppenheim, Rosa Oppenheim, David M Levine, 3rd Edition, Tata McGraw Hill Limited.
- 3. "Fundamentals of Quality Control & Improvement", AmitavaMitra, 3rd Edition, Wiley Publications, 2012.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22HMS4233) Human Values & Professional Ethics for Engineers

Course Objectives:

- 1. To know the different moral and ethical issues through various prominent theories.
- 2. To educate the code of ethics as well as the industrial standards and how they can be used for ensuring safety and reducing the risk.
- 3. To vocalize the Rights and Responsibilities of individuals.
- 4. To enable the students to imbibe and internalize the Values and Ethical Behavior in the personal and Professional lives.

Course Outcome: The students will understand the importance of Values and Ethics in their personal lives and professional careers. The students will learn the rights and responsibilities as an employee, team member and a global citizen.

UNIT – **I Introduction to Professional Ethics:** Basic Concepts, Governing Ethics, Personal & Professional Ethics, Ethical Dilemmas, Life Skills, Emotional Intelligence, Thoughts of Ethics, Value Education, Dimensions of Ethics, Profession and professionalism, Professional Associations, Professional Risks, Professional Accountabilities, Professional Success, Ethics and Profession.

UNIT – **II Basic Theories:** Basic Ethical Principles, Moral Developments, Deontology, Utilitarianism, Virtue Theory, Rights Theory, Casuist Theory, Moral Absolution, Moral Rationalism, Moral Pluralism, Ethical Egoism, Feminist Consequentialism, Moral Issues, Moral Dilemmas, Moral Autonomy.

UNIT – **III Professional Practices in Engineering**: Professions and Norms of Professional Conduct, Norms of Professional Conduct vs. Profession; Responsibilities, Obligations and Moral Values in Professional Ethics, Professional codes of ethics, the limits of predictability and responsibilities of the engineering profession. Central Responsibilities of Engineers – The Centrality of Responsibilities of Professional Ethics; lessons from 1979 American Airlines DC-10 Crash and Kansas City Hyatt Regency Walk away Collapse.

UNIT – IV Work Place Rights & Responsibilities, Ethics in changing domains of Research, Engineers and Managers; Organizational Complaint Procedure, difference of Professional Judgment within the Nuclear Regulatory Commission (NRC), the Hanford Nuclear Reservation. Ethics in changing domains of research – The US government wide definition of research misconduct, research misconduct distinguished from mistakes and errors, recent history of attention to research misconduct, the emerging emphasis on understanding and fostering responsible conduct, responsible authorship, reviewing & editing.

UNIT – **V Global issues in Professional Ethics:** Introduction – Current Scenario, Technology Globalization of MNCs, International Trade, World Summits, Issues, Business Ethics and Corporate Governance, Sustainable Development Ecosystem, Energy Concerns, Ozone Deflection, Pollution, Ethics in Manufacturing and Marketing, Media Ethics; War Ethics; Bio Ethics, Intellectual Property Rights.

TEXT BOOKS:

- 1. Professional Ethics: R. Subramanian, Oxford University Press, 2015.
- 2. Ethics in Engineering Practice & Research, Caroline Whitbeck, 2e, Cambridge University Press 2015.

- 1. Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4e ,Cengage learning, 2015.
- 2. Business Ethics concepts & Cases: Manuel G Velasquez, 6e, PHI, 2008.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institution under UGC, New Delhi)

B.Tech. - IV Year - II Semester

OPEN ELECTIVE - III

L T P C 3 0 0 3

(R22HAS4233) Science Fiction

COURSE OBJECTIVES: To help learners understand the link between Science and Technology and Humanities, especially Fiction form in Literature, with a view to instilling in them a sensitivity to the current issues of the world and probable issues that will crop up in the future world and imbibe in them a fine sensibility to appreciate and handle with balance the borderline problems of interdisciplinary nature with integrity and responsibility.

COURSE OUTCOMES:

- 1. To enable the learners to appreciate the literary form of Science Fiction
- 2. To give them a firsthand linguistic experience of the various types of Science Fiction novels
- 3. To equip the learners with the discretion to distinguish between a successful/effective science fiction novel and the one not so
- 4. To enhance the learners' communication skills and to develop their potential for creative writing
- 5. To spark off the dormant researcher in the learner so that he/she will use it for the betterment of the world

UNIT I: Science Fiction – an Introduction - 1. What is science fiction? Characteristics. 2. Classification 3. Types 4. A Historical Overview

UNIT II: Novels of other Worlds - 1. Utopian Science Fiction Novels Huxley, Aldous. Island.1932; Harper Perennial Classics, 2002. 2. Dystopian Science Fiction Novels Huxley, Aldous. Brave New World.Chatto and Windus, 1962.

UNIT III: Novels of other Beings - 1. Robots and Science Fiction Asimov, Isaac.I Robot.Granada, 1950. 2. Aliens and Science Fiction Card, Orson Scott. Ender's Game. Starscape, 2002.

UNIT IV: **Novels of Time Travel** -1. Travel into future a. H. G. Well's Time Machine. 2. Travel into past a. Asimov, Isaac and Robert Silverberg. Child of Time.Tor, 1993.

UNIT V : Novels on Women's Issues - 1. Man Controlling Women a. Shelley, Mary. Frankenstein.1818; Barnes and Noble, 2009. 2. Varied Identities of Women b. RUSS, JOANNA. THE FEMALE MAN. BEACON PRESS, 2000

- 1. Seed, David. "Science Fiction: A Very Short Introduction". OUP, 2011.
- 2. Roberts, Adam. "Science Fiction". 2 revised. Routledge, 2005.
- 3. Moylan, Tom and RaffaellaBaccolini. "Dark Horizons: Science Fiction and the Dystopian Imagination". Routledge, 2003.
- 4. Little, Judith.A. "Feminist philosophy and science fiction: utopias and dystopias", Prometheus Press, 2007.
- 5. Atwood, Margaret. "In Other Worlds". Anchor, 2012.
- 6. Reid, Robin.A. "Women in Science Fiction and Fantasy". Greenwood Press, 2009. 7. Schneider, Susan. "Science Fiction and Philosophy: From Time Travel to Superintelligence", Wiley Blackwell, 2009.
- 7. Drout, Michael D.C. From "Here to Infinity: An Exploration of Science Fiction Literature", 7 CDs. Published in 2006 by Recorded Books.
- 8. Melzer, Patricia. "Alien Constructions: Science Fiction and Feminist Thought", University of Texas Press, 2006.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY								
(An Autonomous Institution under UGC, New Delhi)								
B.Tech IV Year – II Semester	1	L	T	P	С			
		0	0	22	9+2			
(R22CSC4264) PROJECT STAGE – II INCLUDING SEMINAR								