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INTRODUCTION 

Unit – I 

Mathematical Logic 

Proposition: A proposition or statement is a declarative sentence which is either 

true or false but not both. The truth or falsity of a proposition is called its truth-value. 

These two values ‗true‘ and ‗false‘ are denoted by the symbols T and F 

respectively. Sometimes these are also denoted by the symbols 1 and 0 respectively. 

Example 1: Consider the following sentences: 

1. Delhi is the capital of India. 

2. Kolkata is a country. 

3. 5 is a prime number. 

4. 2 + 3 = 4. 

These are propositions (or statements) because they are either true of false. 

Next consider the following sentences: 

5. How beautiful are you? 

6. Wish you a happy new year 

7. x + y = z 

8. Take one book. 

These are not propositions as they are not declarative in nature, that is, they do not 

declare a definite truth value T or F. 

Propositional Calculus is also known as statement calculus. It is the branch of 

mathematics that is used to describe a logical system or structure. A logical system 

consists of (1) a universe of propositions, (2) truth tables (as axioms) for the logical 

operators and (3) definitions that explain equivalence and implication of propositions. 

 

Connectives 

The words or phrases or symbols which are used to make a proposition by two or more 

propositions are called logical connectives or simply connectives. There are five basic 

connectives called negation, conjunction, disjunction, conditional and biconditional. 

Negation 

The negation of a statement is generally formed by writing the word ‗not‘ at a 

proper place in the statement (proposition) or by prefixing the statement with the phrase 

‗It is not the case that‘. If p denotes a statement then the negation of p is written as p and 

read as ‗not p‘. If the truth value of p is T then the truth value of p is F. Also if the truth 

value of p is F then the truth value of p is T. 

Table 1. Truth table for negation 

p ¬p 

T 

F 

F 

T 



5  

Example 2: Consider the statement p: Kolkata is a city. Then ¬p: Kolkata is not a city. 

Although the two statements ‗Kolkata is not a city‘ and ‗It is not the case that Kolkata is a 

city‘ are not identical, we have translated both of them by p. The reason is that both these 

statements have the same meaning. 

 

Conjunction 

The conjunction of two statements (or propositions) p and q is the statement p 𝖠 q which is 

read as ‗p and q‘. The statement p 𝖠 q has the truth value T whenever both p and q have the truth 
value T. Otherwise it has truth value F. 

 

Table 2. Truth table for conjunction 

 

p q p 𝖠 q 
 

T 
 

T 
 

T 

T F F 

F T F 

F F F 

 

Example 3: Consider the following statements p : It is 

raining today. 

q : There are 10 chairs in the room. 

Then p 𝖠 q : It is raining today and there are 10 chairs in the room. 
Note: Usually, in our everyday language the conjunction ‗and‘ is used between two statements 

which have some kind of relation. Thus a statement ‗It is raining today and 1 + 1 = 2‘ sounds odd, 

but in logic it is a perfectly acceptable statement formed from the statements ‗It is raining today‘ 

and ‗1 + 1 = 2‘. 

Example 4: Translate the following statement: 

‗Jack and Jill went up the hill‘ into symbolic form using conjunction. 

Solution: Let p : Jack went up the hill, q : Jill went up the hill. 

Then the given statement can be written in symbolic form as p 𝖠 q. 

 

Disjunction 

The disjunction of two statements p and q is the statement p ∨ q which is read as ‗p or q‘. 

The statement p ∨ q has the truth value F only when both p and q have the truth value F. Otherwise 

it has truth value T. 

 

Table 3: Truth table for disjunction 

 

p q p ∨ q 

T T T 

T F T 

F T T 

F F F 

 

Example 5: Consider the following statements p : I shall go to the game. 

 

q : I shall watch the game on television. 
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Then p ∨ q : I shall go to the game or watch the game on television. 

 

Conditional proposition 

If p and q are any two statements (or propositions) then the statement p → q which is read as, 
‗If p, then q‘ is called a conditional statement (or proposition) or implication and the connective 

is the conditional connective. 

 

The conditional is defined by the following table: 

 

Table 4. Truth table for conditional 

 

p q p → q 

T T T 

T F F 

F T T 

F F T 

 

In this conditional statement, p is called the hypothesis or premise or antecedent and q is 

called the consequence or conclusion. 

 

To understand better, this connective can be looked as a conditional promise. If the promise 

is violated (broken), the conditional (implication) is false. Otherwise it is true. For this reason, the 

only circumstances under which the conditional p → q is false is when p is true and q is false. 

 

Example 6: Translate the following statement: 

 

‘The crop will be destroyed if there is a flood’ into symbolic form using conditional 

connective. 

 

Solution: Let c : the crop will be destroyed; f : there is a flood. 

Let us rewrite the given statement as 

‗If there is a flood, then the crop will be destroyed‘. So, the symbolic form of the given 

statement is f → c. 

 

Example 7: Let p and q denote the statements: 

p : You drive over 70 km per hour. 

q : You get a speeding ticket. 

 

Write the following statements into symbolic forms. 

 

(i) You will get a speeding ticket if you drive over 70 km per hour. 

 

(ii) Driving over 70 km per hour is sufficient for getting a speeding ticket. 

 

(iii) If you do not drive over 70 km per hour then you will not get a speeding ticket. 

(iv) Whenever you get a speeding ticket, you drive over 70 km per hour. 

Solution: (i) p → q  (ii) p → q  (iii) p →  q (iv) q → p. 

 

Notes: 1. In ordinary language, it is customary to assume some kind of relationship between 

the antecedent and the consequent in using the conditional. But in logic, the antecedent and the 
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consequent in a conditional statement are not required to refer to the same subject matter. For 

example, the statement ‗If I get sufficient money then I shall purchase a high-speed computer‘ 

sounds reasonable. On the other hand, a statement such as ‗If I purchase a computer then this pen is 

red‘ does not make sense in our conventional language. But according to the definition of 

conditional, this proposition is perfectly acceptable and has a truth-value which depends on the 

truth-values of the component statements. 

 

2. Some of the alternative terminologies used to express p → q (if p, then q) are the 

following: (i) p implies q 

 

(ii) p only if q (‗If p, then q‘ formulation emphasizes the antecedent, whereas ‗p only if q‘ 

formulation emphasizes the consequent. The difference is only stylistic.) 

 

(iii) q if p, or q when p. 

 

(iv) q follows from p, or q whenever p. 

 

(v) p is sufficient for q, or a sufficient condition for q is p. (vi) q is necessary for p, or a necessary 

condition for p is q. (vii) q is consequence of p. 

Converse, Inverse and Contrapositive 

If P → Q is a conditional statement, then 

(1). Q → P is called its converse 

(2). ¬P → ¬Q is called its inverse 

(3). ¬Q → ¬P is called its contrapositive. 

Truth table for Q → P (converse of P → Q) 

P Q Q → P 

T T T 

T F T 

F T F 

F F T 

Truth table for ¬P → ¬Q (inverse of P → Q) 

P Q ¬P ¬Q ¬P → ¬Q 

T T F F T 

T F F T T 

F T T F F 

F F T T T 

Truth table for ¬Q → ¬P (contrapositive of P → Q) 

 

P Q ¬Q ¬P ¬Q → ¬P 

T T F F T 

T F T F F 

F T F T T 

F F T T T 
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Example: Consider the statement 

P : It rains. 

Q: The crop will grow. 

The implication P → Q states that 

R: If it rains then the crop will grow. 

The converse of the implication P → Q, namely Q → P sates that S: If 

the crop will grow then there has been rain. 

The inverse of the implication P → Q, namely ¬P → ¬Q sates that 

U: If it does not rain then the crop will not grow. 

The contraposition of the implication P → Q, namely ¬Q → ¬P states that T : If 

the crop do not grow then there has been no rain. 

 

Example 9: Construct the truth table for (p → q) 𝖠 (q →p) 

p q p → q q → p (p → q) 𝖠 (q → p) 
     

T T T T T 

T F F T F 

F T T F F 

F F T T T 

 

Biconditional proposition 

If p and q are any two statements (propositions), then the statement p↔ q which is read as ‗p if and 

only if q‘ and abbreviated as ‗p iff q‘ is called a biconditional statement and the connective is the 

biconditional connective. 

The truth table of p↔q is given by the following table: 

Table 6. Truth table for biconditional 

p q p↔q 

T T T 

T F F 

F T F 

F F T 

 
 

It may be noted that p q is true only when both p and q are true or when both p and q are 

false. Observe that p q is true when both the conditionals p → q and q → p are true, i.e., the truth- 

values of (p → q) 𝖠 (q → p), given in Ex. 9, are identical to the truth-values of p q defined here. 

 

Note: The notation p ↔ q is also used instead of p↔q. 

 

TAUTOLOGY AND CONTRADICTION 

 

Tautology: A statement formula which is true regardless of the truth values of the statements 

which replace the variables in it is called a universally valid formula or a logical truth or a 

tautology. 

 

Contradiction: A statement formula which is false regardless of the truth values of the 

statements which replace the variables in it is said to be a contradiction. 

Contingency: A statement formula which is neither a tautology nor a contradiction is known 

as a contingency. 
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Substitution Instance 
A formula A is called a substitution instance of another formula B if A can be obtained form 

B by substituting formulas for some variables of B, with the condition that the same formula 

is substituted for the same variable each time it occurs. 

Example: Let B : P → (J ∧ P ). 

Substitute R↔S for P in B, we get 

(i): (R ↔ S) → (J ∧ (R ↔ S)) 

Then A is a substitution instance of B. 

Note that (R ↔ S) → (J ∧P) is not a substitution instance of B because the variables 

P in J ∧ P was not replaced by R ↔ S. 

 

Equivalence of Formulas 
Two formulas A and B are said to equivalent to each other if and only if A↔ B is a 

tautology. 

If A↔B is a tautology, we write A ⇔ B which is read as A is equivalent to B. 

Note : 1. ⇔ is only symbol, but not connective. 

2. A ↔ B is a tautology if and only if truth tables of A and B are the same. 
3. Equivalence relation is symmetric and transitive. 

 

Method I. Truth Table Method: One method to determine whether any two statement 

formulas are equivalent is to construct their truth tables. 

Example: Prove P ∨ Q ⇔ ¬(¬P ∧ ¬Q). 

Solution: 

P Q P ∨ Q ¬P ¬Q ¬P ∧ ¬Q ¬(¬P ∧ ¬Q) (P ∨ Q) ⇔ ¬(¬P ∧ ¬Q) 

T T T F F F T T 

T F T F T F T T 

F T T T F F T T 

F F F T T T F T 

As P ∨ Q ¬(¬P ∧ ¬Q) is a tautology, then P ∨ Q ⇔ ¬(¬P ∧ ¬Q). 

Example: Prove (P → Q) ⇔ (¬P ∨ Q). 

Solution: 
 

P Q P → Q ¬P ¬P ∨ Q (P → Q) (¬P ∨ Q) 

T T T F T T 

T F F F F T 

F T T T T T 

F F T T T T 

 

As (P → Q) (¬P ∨ Q) is a tautology then (P → Q) ⇔ (¬P ∨ Q). 
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Equivalence Formulas: 

1. Idempotent laws: 

(a) P ∨ P ⇔ P (b) P ∧ P ⇔ P 

2. Associative laws: 

(a) (P ∨ Q) ∨ R ⇔ P ∨ (Q ∨ R) (b) (P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R) 

3. Commutative laws: 

(a) P ∨ Q ⇔ Q ∨ P (b) P ∧ Q ⇔ Q ∧ P 

4. Distributive laws: 

P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R) 

5. Identity laws: 

(a) (i) P ∨ F ⇔ P (ii) P ∨ T ⇔ T 

(b) (i) P ∧ T ⇔ P (ii) P ∧ F ⇔ F 

6. Component laws: 
 

(a) (i) P ∨ ¬P ⇔ T (ii) P ∧ ¬P ⇔ F . 

(b) (i) ¬¬P ⇔ P 

7. Absorption laws: 

(ii) ¬T ⇔ F , ¬F ⇔ T  

(a) P ∨ (P ∧ Q) ⇔ P (b) P ∧ (P ∨ Q) ⇔ P 

8. Demorgan‘s laws: 

(a) ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q (b) ¬(P ∧ Q) ⇔ ¬P ∨ ¬Q 

Method II. Replacement Process: Consider a formula A : P → (Q → R). The formula Q → R is a 

part of the formula A. If we replace Q → R by an equivalent formula ¬Q∨R in A, we get another 

formula B : P → (¬Q∨R). One can easily verify that the formulas A and B are equivalent to each 

other. This process of obtaining B from A as the replacement process. 

 

Example: Prove that P → (Q → R) ⇔ P → (¬Q ∨ R) ⇔ (P ∧ Q) → R.(May. 2010) 

Solution: P → (Q → R) ⇔ P → (¬Q ∨ R) [∵ Q → R ⇔ ¬Q ∨ R] 

- ¬P ∨ (¬Q ∨ R) [∵ P → Q ⇔ ¬P ∨ Q] 

- (¬P ∨ ¬Q) ∨ R [by Associative laws] 

- ¬(P ∧ Q) ∨ R [by De Morgan‘s laws] 

- (P ∧ Q) → R[∵ P → Q ⇔ ¬P ∨ Q]. 

Example: Prove that (P → Q) ∧ (R → Q) ⇔ (P ∨ R) → Q. 

Solution: (P → Q) ∧ (R → Q) ⇔ (¬P ∨ Q) ∧ (¬R ∨ 

Q) 

- (¬P ∧ ¬R) ∨ Q ⇔ 

¬(P ∨ R) ∨ Q ⇔ P ∨ 

R → Q 
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Example: Prove that P → (Q → P ) ⇔ ¬P → (P → 

Q). Solution: P→ (Q → P ) ⇔ ¬P ∨ (Q → P ) 

- ¬P ∨ (¬Q ∨ P ) 

- (¬P ∨ P ) ∨ ¬Q 

- T ∨ ¬Q 

- T 

and 

¬P → (P → Q) ⇔ ¬(¬P ) ∨ (P → Q) 

- P ∨ (¬P ∨ Q) ⇔ 

(P ∨ ¬P ) ∨ Q ⇔ T 

∨ Q 

- T 

So, P → (Q → P ) ⇔ ¬P → (P → Q). 

***Example: Prove that (¬P ∧ (¬Q ∧ R)) ∨ (Q ∧ R) ∨ (P ∧ R) ⇔ R. (Nov. 2009) 

Solution: 

(¬P ∧ (¬Q ∧ R)) ∨ (Q ∧ R) ∨ (P ∧ R) 

- ((¬P ∧ ¬Q) ∧ R) ∨ ((Q ∨ P ) ∧ R) [Associative and Distributive laws] 

- (¬(P ∨ Q) ∧ R) ∨ ((Q ∨ P ) ∧ R) [De Morgan‘s laws] 

- (¬(P ∨ Q) ∨ (P ∨ Q)) ∧ R [Distributive laws] 

- T ∧ R [∵ ¬P ∨ P ⇔ T ] 

- R 

**Example: Show ((P ∨ Q) ∧ ¬(¬P ∧ (¬Q ∨ ¬R))) ∨ (¬P ∧ ¬Q) ∨ (¬P ∧ ¬R) is tautology. 

Solution: By De Morgan‘s laws, we have 

¬P ∧ ¬Q ⇔ ¬(P ∨ Q) 

¬P ∨ ¬R ⇔ ¬(P ∧ R) 

Therefore 

 

 
 

Also 

 
(¬P ∧ ¬Q) ∨ (¬P ∧ ¬R) ⇔ ¬(P ∨ Q) ∨ ¬(P ∧ R) 

- ¬((P ∨ Q) ∧ (P ∨ R)) 

 
¬(¬P ∧ (¬Q ∨ ¬R)) ⇔ ¬(¬P ∧ ¬(Q ∧ R)) 

- P ∨ (Q ∧ R) 

- (P ∨ Q) ∧ (P ∨ R) 

Hence ((P ∨ Q) ∧ ¬(¬P ∧ (¬Q ∨ ¬R))) ⇔ (P ∨ Q) ∧ (P ∨ Q) ∧ (P ∨ R) 

- (P ∨ Q) ∧ (P ∨ R) 

Thus ((P ∨ Q) ∧ ¬(¬P ∧ (¬Q ∨ ¬R))) ∨ (¬P ∧ ¬Q) ∨ (¬P ∧ ¬R) 
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- [(P ∨ Q) ∧ (P ∨ R)] ∨ ¬[(P ∨ Q) ∧ (P ∨ R)] 

- T 

Hence the given formula is a tautology. 

Example: Show that (P ∧ Q) → (P ∨ Q) is a tautology. (Nov. 2009) 

Solution: (P ∧ Q) → (P ∨ Q) ⇔ ¬(P ∧ Q) ∨ (P ∨ Q) [∵ P → Q ⇔ ¬P ∨ Q] 

- (¬P ∨ ¬Q) ∨ (P ∨ Q) [by De Morgan‘s laws] 

- (¬P ∨ P ) ∨ (¬Q ∨ Q) [by Associative laws and commutative 

laws] 

- (T ∨ T )[by negation laws] 

- T 

Hence, the result. 
 

Example: Write the negation of the following statements. 

(a). Jan will take a job in industry or go to graduate school. 

(b). James will bicycle or run tomorrow. 

(c). If the processor is fast then the printer is slow. 

Solution: (a). Let P : Jan will take a job in industry. 

Q: Jan will go to graduate school. 

The given statement can be written in the symbolic as P ∨ Q. 

The negation of P ∨ Q is given by ¬(P ∨ Q). 

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q. 

¬P ∧ ¬Q: Jan will not take a job in industry and he will not go to graduate school. 

(b). Let P : James will bicycle. 

Q: James will run tomorrow. 

The given statement can be written in the symbolic as P ∨ Q. 

The negation of P ∨ Q is given by ¬(P ∨ Q). 

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q. 

¬P ∧ ¬Q: James will not bicycle and he will not run tomorrow. 

(c). Let P : The processor is fast. 

Q: The printer is slow. 
The given statement can be written in the symbolic as P → Q. 

 

The negation of P → Q is given by ¬(P → Q). 

¬(P → Q) ⇔ ¬(¬P ∨ Q) ⇔ P ∧ 

¬Q. P ∧ ¬Q: The processor is fast and the printer is fast. 

Example: Use Demorgans laws to write the negation of each statement. 
(a). I want a car and worth a cycle. 

(b). My cat stays outside or it makes a mess. 

(c). I‘ve fallen and I can‘t get up. 

(d). You study or you don‘t get a good grade. 

Solution: (a). I don‘t want a car or not worth a cycle. 

(b). My cat not stays outside and it does not make a mess. 
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(c). I have not fallen or I can get up. 

(d). You can not study and you get a good grade. 

Exercises: 1. Write the negation of the following statements. 

(a). If it is raining, then the game is canceled. 

(b). If he studies then he will pass the examination. 

Are (p → q) → r and p → (q → r) logically equivalent? Justify your answer by using the 

rules of logic to simply both expressions and also by using truth tables. Solution: (p → q) → 

r and p → (q → r) are not logically equivalent because 

Method I: Consider 

 

 

 

 

 

and 

(p → q) → r ⇔ (¬p ∨ q) → r 

- ¬(¬p ∨ q) ∨ r ⇔ 

(p ∧ ¬q) ∨ r 

- (p ∧ r) ∨ (¬q ∧ r) 

 
p → (q → r) ⇔ p → (¬q ∨ r) 

- ¬p ∨ (¬q ∨ r) ⇔ 

¬p ∨ ¬q ∨ r. 
 

Method II: (Truth Table Method) 

p q r p → q (p → q) → r q → r p → (q → r) 

T T T T  T T T 

T T F T  F F F 

T F T F  T T T 

T F F F  T T T 

F T T T  T T T 

F T F T  F F T 

F F T T 
 

T T T 

F F F T  F T T 

 

Here the truth values (columns) of (p → q) → r and p → (q → r) are not identical. 
 

Consider the statement: ‖If you study hard, then you will excel‖. Write its converse, 

contra positive and logical negation in logic. 

 

Duality Law 

Two formulas A and A∗ are said to be duals of each other if either one can be obtained from the 

other by replacing ∧ by ∨ and ∨ by ∧. The connectives ∨ and ∧ are called duals of each other. If the 

formula A contains the special variable T or F , then A∗, its dual is obtained by replacing T by F and 

F by T in addition to the above mentioned interchanges. 
Example: Write the dual of the following formulas: 
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(i). (P ∨ Q) ∧ R (ii). (P ∧ Q) ∨ T (iii). (P ∧ Q) ∨ (P ∨ ¬(Q ∧ ¬S)) 

Solution: The duals of the formulas may be written as 

(i). (P ∧ Q) ∨ R (ii). (P ∨ Q) ∧ F (iii). (P ∨ Q) ∧ (P ∧ ¬(Q ∨ ¬S)) 

Result 1: The negation of the formula is equivalent to its dual in which every variable 

is replaced by its negation. 

We can prove 

¬A(P1, P2, ..., Pn) ⇔ A∗(¬P1, ¬P2, ..., ¬Pn) 

Example: Prove that (a). ¬(P ∧ Q) → (¬P ∨ (¬P ∨ Q)) ⇔ (¬P ∨ 

Q) (b). (P ∨ Q) ∧ (¬P ∧ (¬P ∧ Q)) ⇔ (¬P ∧ Q) 

Solution: (a).¬(P ∧ Q) → (¬P ∨ (¬P ∨ Q)) ⇔ (P ∧ Q) ∨ (¬P ∨ (¬P ∨ Q)) [∵ P → Q ⇔ ¬P ∨ Q] 

- (P ∧ Q) ∨ (¬P ∨ Q) 

- (P ∧ Q) ∨ ¬P ∨ Q 

- ((P∧ Q) ∨ ¬P )) ∨ Q 

- ((P ∨ ¬P ) ∧ (Q ∨ ¬P )) ∨ Q 

- (T ∧ (Q ∨ ¬P )) ∨ Q 

- (Q ∨ ¬P ) ∨ Q 

- Q ∨ ¬P 

- ¬P ∨ Q 

(b). From (a) 

Writing the dual 

 
(P ∧ Q) ∨ (¬P ∨ (¬P ∨ Q)) ⇔ ¬P ∨ Q 

 
(P ∨ Q) ∧ (¬P ∧ (¬P ∧ Q)) ⇔ (¬P ∧ Q) 

 

Tautological Implications 
A statement formula A is said to tautologically imply a statement B if and only if A → B 
is a tautology. 

In this case we write A ⇒ B, which is read as ‘A implies B‘. 

Note: ⇒ is not a connective, A ⇒ B is not a statement formula. 

A ⇒ B states that A → B is tautology. 

Clearly A ⇒ B guarantees that B has a truth value T whenever A has the truth value T . 

One can determine whether A ⇒ B by constructing the truth tables of A and B in the same manner as 

was done in the determination of A ⇔ B. Example: Prove that (P → Q) ⇒ (¬Q → ¬P ). 
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Solution: 
 

 
 

P Q ¬P ¬Q P → Q ¬Q → ¬P (P → Q) → (¬Q → ¬P ) 

T T F F T T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 

 

Since all the entries in the last column are true, (P → Q) → (¬Q → ¬P ) is a 

tautology. 

Hence (P → Q) ➙ (¬Q → ¬P ). 

In order to show any of the given implications, it is sufficient to show that an 

assignment of the truth value T to the antecedent of the corresponding condi- 
 

tional leads to the truth value T for the consequent. This procedure guarantees that the 

conditional becomes tautology, thereby proving the implication. 

 

Example: Prove that ¬Q ∧ (P → Q) ➙ ¬P . 

Solution: Assume that the antecedent ¬Q ∧ (P → Q) has the truth value T , then both ¬Q and P → 

Q have the truth value T , which means that Q has the truth value F , P → Q has the truth value T . 

Hence P must have the truth value F . 

Therefore the consequent ¬P must have the truth value T. 

¬Q ∧ (P → Q) ➙ ¬P . 

Another method to show A ➙ B is to assume that the consequent B has the truth value F and then 

show that this assumption leads to A having the truth value F . Then A → B must have the truth 

value T . 

Example: Show that ¬(P → Q) ➙ P . 

Solution: Assume that P has the truth value F . When P has F , P → Q has T , then ¬(P → Q) has F 

. Hence ¬(P → Q) → P has T . 

 

Other Connectives 

¬(P → Q) ➙ P 

 

We introduce the connectives NAND, NOR which have useful applications in the design of 

computers. 

NAND: The word NAND is a combination of ‘NOT‘ and ‘AND‘ where ‘NOT‘ stands for negation 

and ‘AND‘ for the conjunction. It is denoted by the symbol ↑. 

If P and Q are two formulas then 

P ↑ Q ⇔ ¬(P ∧ 

Q) The connective ↑ has the following equivalence: 

P ↑ P ⇔ ¬(P ∧ P ) ⇔ ¬P ∨ ¬P ⇔ ¬P . 
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(P ↑ Q) ↑ (P ↑ Q) ⇔ ¬(P ↑ Q) ⇔ ¬(¬(P ∧ Q)) ⇔ 

P∧ Q. (P ↑ P ) ↑ (Q ↑ Q) ⇔ ¬P ↑ ¬Q ⇔ ¬(¬P ∧ ¬Q) 

⇔ P ∨ Q. 

NAND is Commutative: Let P and Q be any two statement formulas. 

(P ↑ Q) ⇔ ¬(P ∧ Q) 

- ¬(Q ∧ P ) ⇔ 

(Q ↑ P ) 

∴ NAND is commutative. 

NAND is not Associative: Let P , Q and R be any three statement formulas. 

Consider ↑ (Q ↑ R) ⇔ ¬(P ∧ (Q ↑ R)) ⇔ ¬(P ∧ (¬(Q ∧ R))) 

- ¬P ∨ (Q ∧ R)) 

(P ↑ Q) ↑ R ⇔ ¬(P ∧ Q) ↑ R 

- ¬(¬(P ∧ Q) ∧ R) ⇔ 

(P ∧ Q) ∨ ¬R 

Therefore the connective ↑ is not associative. 

NOR: The word NOR is a combination of ‘NOT‘ and ‘OR‘ where ‘NOT‘ stands for negation and 

‗OR‘ for the disjunction. It is denoted by the symbol ↓. 

If P and Q are two formulas then 

P ↓ Q ⇔ ¬(P ∨ 

Q) The connective ↓ has the following equivalence: 

P ↓ P ⇔ ¬(P ∨ P ) ⇔ ¬P ∧ ¬P ⇔ ¬P . 

(P ↓ Q) ↓ (P ↓ Q) ⇔ ¬(P ↓ Q) ⇔ ¬(¬(P ∨ Q)) ⇔ 

P∨ Q. (P ↓ P ) ↓ (Q ↓ Q) ⇔ ¬P ↓ ¬Q ⇔ ¬(¬P ∨ ¬Q) 

⇔ P ∧ Q. 

NOR is Commutative: Let P and Q be any two statement formulas. 

(P ↓ Q) ⇔ ¬(P ∨ Q) 

- ¬(Q ∨ P ) ⇔ 

(Q ↓ P ) 

∴ NOR is commutative. 

NOR is not Associative: Let P , Q and R be any three statement formulas. Consider 

P↓ (Q ↓ R) ⇔ ¬(P ∨ (Q ↓ R)) 

- ¬(P ∨ (¬(Q ∨ R))) 

- ¬P ∧ (Q ∨ R) 

(P ↓ Q) ↓ R ⇔ ¬(P ∨ Q) ↓ R 

- ¬(¬(P ∨ Q) ∨ R) ⇔ 

(P ∨ Q) ∧ ¬R 

Therefore the connective ↓ is not associative. 
 

Evidently, P ↑ Q and P ↓ Q are duals of each other. 

Since 
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¬(P ∧ Q) ⇔ ¬P ∨ ¬Q 

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q. 

Example: Express P ↓ Q interms of ↑ only. 

Solution: 

↓ Q ⇔ ¬(P ∨ Q) 

- (P ∨ Q) ↑ (P ∨ Q) 

- [(P ↑ P ) ↑ (Q ↑ Q)] ↑ [(P ↑ P ) ↑ (Q ↑ Q)] 

Example: Express P ↑ Q interms of ↓ only. (May-2012) 

Solution: ↑ Q ⇔ ¬(P ∧ Q) 

- (P ∧ Q) ↓ (P ∧ Q) 

- [(P ↓ P ) ↓ (Q ↓ Q)] ↓ [(P ↓ P ) ↓ (Q ↓ Q)] 

Truth Tables 
Example: Show that (A ⊕ B) ∨ (A ↓ B) ⇔ (A ↑ B). (May-2012) 

Solution: We prove this by constructing truth table. 

A B A ⊕ B A ↓ B (A ⊕ B) ∨ (A ↓ B) A ↑ B 

T T F F F F 

T F T F T T 

F T T F T T 

F F F T T T 

As columns (A ⊕ B) ∨ (A ↓ B) and (A ↑ B) are identical. 

∴ (A ⊕ B) ∨ (A ↓ B) ⇔ (A ↑ B). 

 

Normal Forms 

If a given statement formula A(p1, p2, ...pn) involves n atomic variables, we have 2
n 

possible combinations of truth values of statements replacing the variables. 
The formula A is a tautology if A has the truth value T for all possible assignments of the 

truth values to the variables p1, p2, ...pn and A is called a contradiction if A has the truth 

value F for all possible assignments of the truth values of the n variables. A is said to be satis 

able if A has the truth value T for atleast one combination of truth values assigned to p1, p2, 

...pn. 

The problem of determining whether a given statement formula is a Tautology, or a 

Contradiction is called a decision problem. 

The construction of truth table involves a finite number of steps, but the construc-tion 

may not be practical. We therefore reduce the given statement formula to normal form and 

find whether a given statement formula is a Tautology or Contradiction or atleast satisfiable. 

It will be convenient to use the word ‖product‖ in place of ‖conjunction‖ and ‖sum‖ in 

place of ‖disjunction‖ in our current discussion. 
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A product of the variables and their negations in a formula is called an elementary 

product. Similarly, a sum of the variables and their negations in a formula is called an 

elementary sum. 

Let P and Q be any atomic variables. Then P , ¬P ∧Q, ¬Q∧P  ¬P , P ¬P , and Q ∧ ¬P 

are some examples of elementary products. On the other hand, P , ¬P ∨ Q, ¬Q ∨ P ∨ ¬P , P 

∨ ¬P , and Q ∨ ¬P are some examples of elementary sums. 

Any part of an elementary sum or product which is itself an elementary sum or product is 

called a factor of the original elementary sum or product. Thus ¬Q,∧ ¬P , and ¬Q ∧ P are 

some of the factors of ¬Q ∧ P ∧ ¬P . 

Disjunctive Normal Form (DNF) 

 
A formula which is equivalent to a given formula and which consists of a sum of elementary 

products is called a disjunctive normal form of the given formula. 

 
Example: Obtain disjunctive normal forms of 

(a) P ∧ (P → Q); (b) ¬(P ∨ Q) ↔ (P ∧ Q). 

Solution: (a) We have 

P ∧ (P → Q) ⇔ P ∧ (¬P ∨ Q) 

- (P ∧ ¬P ) ∨ (P ∧ Q) 

(b) ¬(P ∨ Q) ↔(P ∧ Q) 

- (¬(P ∨ Q) ∧ (P ∧ Q)) ∨ ((P ∨ Q) ∧ ¬(P ∧ Q)) [using 

R↔ S ⇔ (R ∧ S) ∨ (¬R ∧ ¬S) 

- ((¬P ∧ ¬Q) ∧ (P ∧ Q)) ∨ ((P ∨ Q) ∧ (¬P ∨ ¬Q)) 

- (¬P ∧ ¬Q ∧ P ∧ Q) ∨ ((P ∨ Q) ∧ ¬P ) ∨ ((P ∨ Q) ∧ ¬Q) 

- (¬P ∧ ¬Q ∧ P ∧ Q) ∨ (P ∧ ¬P ) ∨ (Q ∧ ¬P ) ∨ (P ∧ ¬Q) ∨ (Q ∧ ¬Q) 

which is the required disjunctive normal form. 

Note: The DNF of a given formula is not unique. 
 

Conjunctive Normal Form (CNF) 

A formula which is equivalent to a given formula and which consists of a product of elementary 

sums is called a conjunctive normal form of the given formula. 
 

The method for obtaining conjunctive normal form of a given formula is similar to the one 

given for disjunctive normal form. Again, the conjunctive normal form is not unique. 
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Example: Obtain conjunctive normal forms of 

(a) P ∧ (P → Q); (b) ¬(P ∨ Q)↔ (P ∧ Q). 

Solution: (a). P ∧ (P → Q) ⇔ P ∧ (¬P ∨ Q) 

(b).¬(P ∨ Q)↔ (P ∧ Q) 

- (¬(P ∨ Q) → (P ∧ Q)) ∧ ((P ∧ Q) → ¬(P ∨ Q)) 

- ((P ∨ Q) ∨ (P ∧ Q)) ∧ (¬(P ∧ Q) ∨ ¬(P ∨ Q)) 

- [(P ∨ Q ∨ P ) ∧ (P ∨ Q ∨ Q)] ∧ [(¬P ∨ ¬Q) ∨ (¬P ∧ ¬Q)] 

- (P ∨ Q ∨ P ) ∧ (P ∨ Q ∨ Q) ∧ (¬P ∨ ¬Q ∨ ¬P ) ∧ (¬P ∨ ¬Q ∨ ¬Q) 

Note: A given formula is tautology if every elementary sum in CNF is tautology. 

Example: Show that the formula Q ∨ (P ∧ ¬Q) ∨ (¬P ∧ ¬Q) is a tautology. 

Solution: First we obtain a CNF of the given formula. 

Q ∨ (P ∧ ¬Q) ∨ (¬P ∧ ¬Q) ⇔ Q ∨ ((P ∨ ¬P ) ∧ ¬Q) 

- (Q ∨ (P ∨ ¬P )) ∧ (Q ∨ ¬Q) 

- (Q ∨ P ∨ ¬P ) ∧ (Q ∨ ¬Q) 

Since each of the elementary sum is a tautology, hence the given formula is tautology. 

 

Principal Disjunctive Normal Form 
In this section, we will discuss the concept of principal disjunctive normal form (PDNF). 

 

Minterm: For a given number of variables, the minterm consists of conjunctions in which each 

statement variable or its negation, but not both, appears only once. 

Let P and Q be the two statement variables. Then there are 2
2 

minterms given by P ∧ Q, P ∧ ¬Q, 

¬P ∧ Q, and ¬P ∧ ¬Q. 

Minterms for three variables P , Q and R are P ∧ Q ∧ R, P ∧ Q ∧ ¬R, P ∧ ¬Q ∧ R,P∧ ¬Q ∧ ¬R, ¬P 

∧ Q ∧ R, ¬P ∧ Q ∧ ¬R, ¬P ∧ ¬Q ∧ R and ¬P ∧ ¬Q ∧ ¬R. From the truth tables of these minterms 

of P and Q, it is clear that 
 

P Q P ∧ Q P ∧ ¬Q ¬P ∧ Q ¬P ∧ ¬Q 

T T T F F F 

T F F T F F 

F T F F T F 

F F F F F T 

 

(i). no two minterms are equivalent 

(ii). Each minterm has the truth value T for exactly one combination of the truth values of the 

variables P and Q. 

Definition: For a given formula, an equivalent formula consisting of disjunctions of minterms only 

is called the Principal disjunctive normal form of the formula. 

The principle disjunctive normal formula is also called the sum-of-products canonical form. 
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Methods to obtain PDNF of a given formula 
 

(a). By Truth table: 

(i). Construct a truth table of the given formula. 
(ii). For every truth value T in the truth table of the given formula, select the minterm which 

also has the value T for the same combination of the truth values of P and Q. 

(iii). The disjunction of these minterms will then be equivalent to the given formula. 
 

Example: Obtain the PDNF of P → Q. 

Solution: From the truth table of P → Q 

P Q P → Q Minterm 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

T 

P ∧ Q 

P ∧ ¬Q 

¬P ∧ Q 

¬P ∧ ¬Q 

 

The PDNF of P → Q is (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q). 

∴ P → Q ⇔ (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q). 

Example: Obtain the PDNF for (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R). 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The PDNF of (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R) is 

(P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ ¬Q ∧ R). 

(b). Without constructing the truth table: 
 

In order to obtain the principal disjunctive normal form of a given formula is con- 

structed as follows: 

P Q R Minterm P ∧ Q ¬P ∧ R Q ∧ R (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R) 

T T T P ∧ Q ∧ R T F T T 

T T F P ∧ Q ∧ ¬R T F F T 

T F T P ∧ ¬Q ∧ R F F F F 

T F F P ∧ ¬Q ∧ ¬R F F F F 

F T T ¬P ∧ Q ∧ R F T T T 

F T F ¬P ∧ Q ∧ ¬R F F F F 

F F T ¬P ∧ ¬Q ∧ R F T F T 

F F F ¬P ∧ ¬Q ∧ ¬R F F F F 
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(1). First replace →, by their equivalent formula containing only ∧, ∨ and ¬. 

(2). Next, negations are applied to the variables by De Morgan‘s laws followed by the 

application of distributive laws. 

(3). Any elementarily product which is a contradiction is dropped. Minterms are ob-tained in 

the disjunctions by introducing the missing factors. Identical minterms appearing in the 

disjunctions are deleted. 
 

Example: Obtain the principal disjunctive normal form of 

(a) ¬P∨ Q; (b) (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R). 

Solution: 

(a) ¬P ∨ Q ⇔ (¬P ∧ T ) ∨ (Q ∧ T ) [∵ A ∧ T ⇔ A] 

- (¬P ∧ (Q ∨ ¬Q)) ∨ (Q ∧ (P ∨ ¬P )) [∵ P ∨ ¬P ⇔ T ] 

- (¬P ∧ Q) ∨ (¬P ∧ ¬Q) ∨ (Q ∧ P ) ∨ (Q ∧ ¬P ) 

[∵ P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R) 

- (¬P ∧ Q) ∨ (¬P ∧ ¬Q) ∨ (P ∧ Q) [∵ P ∨ P ⇔ P ] 

(b) (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R) 

- (P ∧ Q ∧ T ) ∨ (¬P ∧ R ∧ T ) ∨ (Q ∧ R ∧ T ) 

- (P ∧ Q ∧ (R ∨ ¬R)) ∨ (¬P ∧ R ∧ (Q ∨ ¬Q)) ∨ (Q ∧ R ∧ (P ∨ ¬P )) 

- (P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ R ∧ Q)(¬P ∧ R ∧ ¬Q) 

∨ (Q ∧ R ∧ P ) ∨ (Q ∧ R ∧ ¬P ) 

- (P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ ¬Q ∧ R) 

 

P ∨ (P ∧ Q) ⇔ P 

P ∨ (¬P ∧ Q) ⇔ P ∨ Q 

Solution: We write the principal disjunctive normal form of each formula and com-pare these 

normal forms. 

(a) P ∨ (P ∧ Q) ⇔ (P ∧ T ) ∨ (P ∧ Q) [∵ P ∧ Q ⇔ P ] 

- (P ∧ (Q ∨ ¬Q)) ∨ (P ∧ Q) [∵ P ∨ ¬P ⇔ T ] 

- ((P ∧ Q) ∨ (P ∧ ¬Q)) ∨ (P ∧ Q) [by distributive laws] 

- (P ∧ Q) ∨ (P ∧ ¬Q) [∵ P ∨ P ⇔ P] 

which is the required PDNF. 

Now, ⇔ P ∧ T 

- P ∧ (Q ∨ ¬Q) 

- (P ∧ Q) ∨ (P ∧ ¬Q) 

which is the required PDNF. 

Hence, P ∨ (P ∧ Q) ⇔ P . 



22  

(b) P ∨ (¬P ∧ Q) ⇔ (P ∧ T ) ∨ (¬P ∧ Q) 

- (P ∧ (Q ∨ ¬Q)) ∨ (¬P ∧ Q) 

- (P ∧ Q) ∨ (P ∧ ¬Q) ∨ (¬P ∧ Q) 

which is the required PDNF. 

Now, 

P ∨ Q ⇔ (P ∧ T ) ∨ (Q ∧ T ) 

- (P ∧ (Q ∨ ¬Q)) ∨ (Q ∧ (P ∨ ¬P )) 

- (P ∧ Q) ∨ (P ∧ ¬Q) ∨ (Q ∧ P ) ∨ (Q ∧ ¬P ) 

- (P ∧ Q) ∨ (P ∧ ¬Q) ∨ (¬P ∧ Q) 

which is the required PDNF. 

Hence, P ∨ (¬P ∧ Q) ⇔ P ∨ Q. 

Example: Obtain the principal disjunctive normal form of 

P → ((P → Q) ∧ ¬(¬Q ∨ ¬P )). (Nov. 2011) 

Solution: Using P → Q ⇔ ¬P ∨ Q and De Morgan‘s law, we obtain 

→ ((P → Q) ∧ ¬(¬Q ∨ ¬P )) ⇔ ¬P 

∨ ((¬P ∨ Q) ∧ (Q ∧ P )) 

 
- ¬P ∨ ((¬P ∧ Q ∧ P ) ∨ (Q ∧ Q ∧ P )) ⇔ 

¬P ∨ F ∨ (P ∧ Q) 

 
- ¬P ∨ (P ∧ Q) 

 
- (¬P ∧ T ) ∨ (P ∧ Q) 

 
- (¬P ∧ (Q ∨ ¬Q)) ∨ (P ∧ Q) 

 
- (¬P ∧ Q) ∨ (¬P ∧ ¬Q) ∨ (P ∧ Q) 

Hence (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q) is the required PDNF. 

Principal Conjunctive Normal Form 

The dual of a minterm is called a Maxterm. For a given number of variables, the maxterm consists 

of disjunctions in which each variable or its negation, but not both, appears only once. Each of the 

maxterm has the truth value F for exactly one com-bination of the truth values of the variables. Now 

we define the principal conjunctive normal form. 
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For a given formula, an equivalent formula consisting of conjunctions of the max-terms only is 

known as its principle conjunctive normal form. This normal form is also called the product-of-sums 

canonical form.The method for obtaining the PCNF for a given formula is similar to the one 

described previously for PDNF. 
 

Example: Obtain the principal conjunctive normal form of the formula (¬P→R)𝖠(Q↔P) 

Solution: 

(¬P → R) ∧ (Q ↔ P ) 

- [¬(¬P ) ∨ R] ∧ [(Q → P ) ∧ (P → Q)] 

- (P ∨ R) ∧ [(¬Q ∨ P ) ∧ (¬P ∨ Q)] 

- (P ∨ R ∨ F ) ∧ [(¬Q ∨ P ∨ F ) ∧ (¬P ∨ Q ∨ F )] 

- [(P ∨ R) ∨ (Q ∧ ¬Q)] ∧ [¬Q ∨ P ) ∨ (R ∧ ¬R)] ∧ [(¬P ∨ Q) ∨ (R ∧ ¬R)] 

- (P ∨ R ∨ Q) ∧ (P ∨ R ∨ ¬Q) ∧ (P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R) 

∧ (¬P ∨ Q ∨ R) ∧ (¬P ∨ Q ∨ ¬R) 

- (P ∨ Q ∨ R) ∧ (P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬P ∨ Q ∨ ¬R) 

which is required principal conjunctive normal form. 

Note: If the principal disjunctive (conjunctive) normal form of a given formula A containing n 

variables is known, then the principal disjunctive (conjunctive) normal form of ¬A will consist of 

the disjunction (conjunction) of the remaining minterms (maxterms) which do not appear in the 

principal disjunctive (conjunctive) normal form of A. From A ⇔ ¬¬A one can obtain the principal 

conjunctive (disjunctive) normal form of A by repeated applications of De Morgan‘s laws to the 

principal disjunctive (conjunctive) normal form of ¬A. 

 

Example: Find the PDNF form PCNF of S : P ∨ (¬P → (Q ∨ (¬Q → R))). 

Solution: 

- P ∨ (¬P → (Q ∨ (¬Q → R))) 

- P ∨ (¬(¬P ) ∨ (Q ∨ (¬(¬Q) ∨ R)) 

- P ∨ (P ∨ Q ∨ (Q ∨ R))) 

- P ∨ (P ∨ Q ∨ R) 

- P ∨ Q ∨ R 

which is the PCNF. 

Now PCNF of ¬S is the conjunction of remaining maxterms, so 

PCNF of ¬S : (P ∨ Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) 

∧ (¬P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬Q ∨ ¬R) 

Hence the PDNF of S is 

¬(PCNF of ¬S) : (¬P ∧ ¬Q ∧ R) ∨ (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R) 

∨ ( P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (P ∧ Q ∧ R) 
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Theory of Inference for Statement Calculus 

Definition: The main aim of logic is to provide rules of inference to infer a conclusion from 

certain premises. The theory associated with rules of inference is known as inference theory . 
 

Definition: If a conclusion is derived from a set of premises by using the accepted rules of 

reasoning, then such a process of derivation is called a deduction or a formal proof and the argument 

is called a valid argument or conclusion is called a valid conclusion. 
 

Note: Premises means set of assumptions, axioms, hypothesis. 
 

Definition: Let A and B be two statement formulas. We say that ‖B logically follows from A‖ or 

‖B is a valid conclusion (consequence) of the premise A‖ iff A → B is a tautology, that is A ➙ B. 

We say that from a set of premises {H1, H2, · · · , Hm}, a conclusion C follows logically iff 

H1 ∧ H2 ∧ ... ∧ Hm ➙ C 

(1) 
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Note: To determine whether the conclusion logically follows from the given premises, we use the 

following methods: 

 Truth table method 

 Without constructing truth table method. 

 

Validity Using Truth Tables 

Given a set of premises and a conclusion, it is possible to determine whether the 

conclusion logically follows from the given premises by constructing truth tables as follows. 

 
Let P1, P2, · · · , Pn be all the atomic variables appearing in the premises H1, H2, · · · , Hm and 

in the conclusion C. If all possible combinations of truth values are assigned to P1, P2, · · · , Pn and if 

the truth values of H1, H2, ..., Hm and C are entered in a table. We look for the rows in which all H1, 

H2, · · · , Hm have the value T. If, for every such row, C also has the value T, then (1) holds. That is, 

the conclusion follows logically. 

Alternatively, we look for the rows on which C has the value F. If, in every such row, at 

least one of the values of H1, H2, · · · , Hm is F, then (1) also holds. We call such a method a 

‗truth table technique‘ for the determination of the validity of a conclusion. 

 

Example: Determine whether the conclusion C follows logically from the premises 

 
H1 and H2. 

(a) H1 : P → Q H2 : P C : Q 

(b) H1 : P → Q H2 : ¬P C : Q 

(c) H1 : P → Q H2 : ¬(P ∧ Q) C : ¬P 

(d) H1 : ¬P H2 : P Q C : ¬(P ∧ Q) 

(e) H1 : P → Q H2 : Q  C : P 

Solution: We first construct the appropriate truth table, as shown in table. 
 

P Q P → Q ¬P ¬(P ∧ Q) P Q 

T T T F F T 

T F F F T F 

F T T T T F 

F F T T T T 
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10 

(a) We observe that the first row is the only row in which both the premises have the value T 

. The conclusion also has the value T in that row. Hence it is valid. 
 

In (b) the third and fourth rows, the conclusion Q is true only in the third row, but not in the 

fourth, and hence the conclusion is not valid. 

Similarly, we can show that the conclusions are valid in (c) and (d) but not in (e). 

Rules of Inference 

The following are two important rules of inferences. 
 

Rule P: A premise may be introduced at any point in the derivation. 
 

Rule T: A formula S may be introduced in a derivation if S is tautologically implied by 

one or more of the preceding formulas in the derivation. 

 

Implication Formulas 

I1 : P ∧ Q ➙ P (simplification) 

I2 : P ∧ Q ➙ Q 

I3 : P ➙ P ∨ Q 

I4 : Q ➙ P ∨ Q 

I5 : ¬P ➙ P → Q 

I6 : Q ➙ P → Q 

I7 : ¬(P → Q) ➙ P 

I8 : ¬(P → Q) ➙ ¬Q 

I9 : P, Q ➙ P ∧ Q 
I : 

¬P, P ∨ Q ➙ Q (disjunctive syllogism) 
I 

11 : P, P → Q ➙ Q (modus ponens) 

I 
12 : ¬Q, P → Q ➙ ¬P (modus tollens) 

I 
13 : P → Q, Q → R ➙ P → R (hypothetical syllogism) 

I 
14 : P ∨ Q, P → R, Q → R ➙ R (dilemma) 

Example: Demonstrate that R is a valid inference from the premises P → Q, Q → R, and P . 

Solution: 
 

{1} (1) P → Q Rule P 

{2} (2) P Rule P, 

{1, 2} (3) Q Rule T, (1), (2), and I13 

{4} (4) Q → R Rule P 

{1, 2, 4} (5) R Rule T, (3), (4), and I13 

Hence the result. 
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Example: Show that R∨S follows logically from the premises C ∨D, (C ∨D) → ¬H, ¬H → (A ∧ 

¬B), and (A ∧ ¬B) → (R ∨ S). 

Solution: 
 

{1} (1) (C ∨ D) → ¬H Rule P 

{2} (2) ¬H → (A ∧ ¬B) Rule P 

{1, 2} (3) (C ∨ D) → (A ∧ ¬B) Rule T, (1), (2), and I13 

{4} (4) (A ∧ ¬B) → (R ∨ S) Rule P 

{1, 2, 4} (5) (C ∨ D) → (R ∨ S) Rule T, (3), (4), and I13 

{6} (6) C ∨ D Rule P 

{1, 2, 4, 6} (7) R ∨ S Rule T, (5), (6), and I11 

Hence the result. 

 

Example: Show that S ∨R is tautologically implied by (P ∨Q)∧(P → R)∧(Q → S). 

Solution: 
 
 

{1} (1) P ∨ Q Rule P 

{1} (2) ¬P → Q Rule T, (1) P → Q ⇔ ¬P ∨ Q 

{3} (3) Q → S Rule P 

{1, 3} (4) ¬P → S Rule T, (2), (3), and I13 

{1, 3} (5) ¬S → P Rule T, (4), P → Q ⇔ ¬Q → ¬P 

{6} (6) P → R Rule P 

{1, 3, 6} (7) ¬S → R Rule T, (5), (6), and I13 

{1, 3, 6} (8) S ∨ R Rule T, (7) and P → Q ⇔ ¬P ∨ Q 

Hence the result. 

 

Example: Show that R ∧ (P ∨ Q) is a valid conclusion from the premises P ∨ Q, 

Q → R, P → M, and ¬M. 

Solution:  

{1} (1) P → M Rule P 

{2} (2) ¬M Rule P 

{1, 2} (3) ¬P Rule T, (1), (2), and I12 

{4} (4) P ∨ Q Rule P 

{1, 2, 4} (5) Q Rule T, (3), (4), and I10 

{6} (6) Q → R Rule P 
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{1, 2, 4, 6} (7) R Rule T, (5), (6), and I11 

{1, 2, 4, 6} (8) R ∧ (P ∨ Q) Rule T, (4), (7) and I9 

Hence the result. 

Example: Show I12 : ¬Q, P → Q ➙ ¬P . 

Solution: 

 
{1} (1) P → Q Rule P 

{1} (2) ¬Q → ¬P Rule T, (1), and P → Q ⇔ ¬Q → ¬P 

{3} (3) ¬Q Rule P 

{1, 3} (4) ¬P Rule T, (2), (3), and I11 

Hence the result. 
 

Example: Test the validity of the following argument: 
 

‖If you work hard, you will pass the exam. You did not pass. Therefore, you did not work 

hard‖. 
 

Example: Test the validity of the following statements: 
 

‖If Sachin hits a century, then he gets a free car. Sachin does not get a free car. 

Therefore, Sachin has not hit a century‖. 

Rules of Conditional Proof or Deduction Theorem 

We shall now introduce a third inference rule, known as CP or rule of conditional proof. 

Rule CP: If we can derive S from R and a set of premises, then we can derive R → S from the set 

of premises alone. 

Rule CP is not new for our purpose her because it follows from the equivalence 
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(P ∧ R) → S ⇔ P → (R → S) 

 
Let P denote the conjunction of the set of premises and let R be any formula. The above 

equivalence states that if R is included as an additional premise and S is derived from P ∧ R, then 

R → S can be derived from the premises P alone. 

Rule CP is also called the deduction theorem and is generally used if the conclu-sion of the form 

R → S. In such cases, R is taken as an additional premise and S is derived from the given 

premises and R. 

 

Example: Show that R → S can be derived from the premises P → (Q → S), ¬R ∨ P , and Q. 

(Nov. 2011) 

 

Solution: Instead of deriving R → S, we shall include R as an additional premise and show S 

first. 
 

{1} 

{2} 

(1) 

(2) 

¬R ∨ P 

R 

Rule P 

Rule P (assumed premise) 

{1, 2} (3) P Rule T, (1), (2), and I10 

{4} (4) P → (Q → S) Rule P 

{1, 2, 4} (5) Q → S Rule T, (3), (4), and I11 

{6} (6) Q Rule P 

{1, 2, 4, 6} (7) S Rule T, (5), (6), and I11 

{1, 2, 4, 6} (8) R → S Rule CP 

 

Example: Show that P → S can be derived from the premises ¬P ∨ Q, ¬Q ∨ R, and R → S. 

Solution: We include P as an additional premise and derive S. 
 

{1} (1) ¬P ∨ Q Rule P 

{2} (2) P Rule P (assumed premise) 

{1, 2} (3) Q Rule T, (1), (2), and I10 

{4} (4) ¬Q ∨ R Rule P 

{1, 2, 4} (5) R Rule T, (3), (4), and I10 

{6} (6) R → S Rule P 

{1, 2, 4, 6} (7) S Rule T, (5), (6), and I11 

{1, 2, 4, 6} (8) P → S Rule CP 

Example: ‗If there was a ball game, then traveling was difficult. If they arrived on time, then 

traveling was not difficult. They arrived on time. Therefore, there was no ball game‘. Show that  

these statements constitute a valid argument. Solution: Let us indicate the statements as follows: 

P : There was a ball game. 

Q: Traveling was difficult. 

R: They arrived on time. 
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Hence, the given premises are P → Q, R → ¬Q, and R. The conclusion is ¬P . 
 
 

{1} (1) R → ¬Q Rule P 

{2} (2) R Rule P 

{1, 2} (3) ¬Q Rule T, (1), (2), and I11 

{4} (4) P → Q Rule P 

{4} (5) ¬Q → ¬P Rule T, (4), and P → Q ⇔ ¬Q → ¬P 

{1, 2, 4} (6) ¬P Rule T, (3), (5), and I11 
 

Example: By using the method of derivation, show that following statements con-stitute a valid 

argument: ‖If A works hard, then either B or C will enjoy. If B enjoys, then A will not work hard. 

If D enjoys, then C will not. Therefore, if A works hard, D will not enjoy. 
 

Solution: Let us indicate statements as follows: 

Given premises are P → (Q∨R), Q → ¬P , and S → ¬R. The conclusion is P → ¬S. 

We include P as an additional premise and derive ¬S. 
 

{1} (1) P Rule P (additional premise) 

{2} (2) P → (Q ∨ R) Rule P 

{1, 2} (3) Q ∨ R Rule T, (1), (2), and I11 

{1, 2} (4) ¬Q → R Rule T, (3) and P → Q ⇔ P ∨ Q 

{1, 2} (5) ¬R → Q Rule T, (4), and P → Q ⇔ ¬Q → ¬P 

{6} (6) Q → ¬P Rule P 

{1, 2, 6} (7) ¬R → ¬P Rule T, (5), (6), and I13 

{1, 2, 6} (8) P → R Rule T, (7) and P → Q ⇔ ¬Q → ¬P 

{9} (9) S → ¬R Rule P 

{9} (10) R → ¬S Rule T, (9) and P → Q ⇔ ¬Q → ¬P 

{1, 2, 6, 9} (11) P → ¬S Rule T, (8), (10) and I13 

{1, 2, 6, 9} (12) ¬S Rule T, (1), (11) and I11 

 

Example: Determine the validity of the following arguments using propositional logic: 

‖Smoking is healthy. If smoking is healthy, then cigarettes are prescribed by physi- 

cians. Therefore, cigarettes are prescribed by physicians‖. (May-2012) 

Solution: Let us indicate the statements as follows: 

P : Smoking is healthy. 

Q: Cigarettes are prescribed by physicians. 

 
Hence, the given premises are P , P → Q. The conclusion is Q. 

{1} (1) P → Q Rule P 

{2} (2) P Rule P 
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{1, 2} (3) Q Rule T, (1), (2), and I11 

Hence, the given statements constitute a valid argument. 
 

Consistency of Premises 

A set of formulas H1, H2, · · · , Hm is said to be consistent if their conjunction has the 

truth value T for some assignment of the truth values to the atomic variables appearing in H1, H2, 

· · · , Hm. 

If, for every assignment of the truth values to the atomic variables, at least one of the 

formulas H1, H2, · · · , Hm is false, so that their conjunction is identically false, then the formulas 

H1, H2, · · · , Hm are called inconsistent. 

Alternatively, a set of formulas H1, H2, · · · , Hm is inconsistent if their conjunction implies a 

contradiction, that is, 

 
where R is any formula. 

H1 ∧ H2 ∧ · · · ∧ Hm ➙ R ∧ ¬R 

 

Example: Show that the following premises are inconsistent: 

(1). If Jack misses many classes through illness, then he fails high school. 

(2). If Jack fails high school, then he is uneducated. 

(3). If Jack reads a lot of books, then he is not uneducated. 

(4). Jack misses many classes through illness and reads a lot of books. 

Solution: Let us indicate the statements as follows: 

E: Jack misses many classes through illness. 

S: Jack fails high school. 

A: Jack reads a lot of books. 

H: Jack is uneducated. 

The premises are E → S, S → H, A → ¬H, and E ∧ A. 
 

{1} (1) E → S Rule P 

{2} (2) S → H Rule P 

{1, 2} (3) E → H Rule T, (1), (2), and I13 

{4} (4) A → ¬H Rule P 

{4} (5) H → ¬A Rule T, (4), and P → Q ⇔ ¬Q → ¬P 

{1, 2, 4} (6) E → ¬A Rule T, (3), (5), and I13 

{1, 2, 4} (7) ¬E ∨ ¬A Rule T, (6) and P → Q ⇔ ¬P ∨ Q 

{1, 2, 4} (8) ¬(E ∧ A) Rule T, (7), and ¬(P ∧ Q) ⇔ ¬P ∨ ¬Q 

{9} (9) E ∧ A Rule P 

{1, 2, 4, 9} (10) ¬(E ∧ A) ∧ (E ∧ A) Rule T, (8), (9) and I9 

Thus, the given set of premises leads to a contradiction and hence it is inconsistent. 
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Example: Show that the following set of premises is inconsistent: ‖If the contract is valid, then 

John is liable for penalty. If John is liable for penalty, he will go bankrupt. If the bank will loan 

him money, he will not go bankrupt. As a matter of fact, the contract is valid, and the bank will 

loan him money.‖ 

Solution: Let us indicate the statements as follows: 

V : The contract is valid. 

L: John is liable for penalty. 

M: Bank will loan him money. 

B: John will go bankrupt. 

 
{1} (1) V → L Rule P 

{2} (2) L → B Rule P 

{1, 2} (3) V → B Rule T, (1), (2), and I13 

{4} (4) M → ¬B Rule P 

{4} (5) M → ¬M Rule T, (4), and P → Q ⇔ ¬Q → ¬P 

{1, 2, 4} (6) V → ¬M Rule T, (3), (5), and I13 

{1, 2, 4} (7) ¬V ∨ ¬M Rule T, (6) and P → Q ⇔ ¬P ∨ Q 

{1, 2, 4} (8) ¬(V ∧ M) Rule T, (7), and ¬(P ∧ Q) ⇔ ¬P ∨ ¬Q 

{9} (9) V ∧ M Rule P 

{1, 2, 4, 9} (10) ¬(V ∧ M) ∧ (V ∧ M) Rule T, (8), (9) and I9 

Thus, the given set of premises leads to a contradiction and hence it is inconsistent. 
 

Indirect Method of Proof 

The method of using the rule of conditional proof and the notion of an inconsistent 

set of premises is called the indirect method of proof or proof by contradiction. 

 
In order to show that a conclusion C follows logically from the premises H1, H2, · · · , 

Hm, we assume that C is false and consider ¬C as an additional premise. If the new set of 

premises is inconsistent, so that they imply a contradiction. Therefore, the assump-tion that ¬C is 
true does not hold. 

Hence, C is true whenever H1, H2, · · · , Hm are true. Thus, C follows logically from 

the premises H1, H2, · · · , Hm. 
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Example: Show that ¬(P ∧ Q) follows from ¬P ∧ ¬Q. 

Solution: We introduce ¬¬(P ∧Q) as additional premise and show that this additional premise 

leads to a contradiction. 

 

{1} (1) ¬¬(P ∧ Q) Rule P (assumed) 

{1} (2) P ∧ Q Rule T, (1), and ¬¬P ⇔P 

{1} (3) P Rule T, (2), and I1 

{4} (4) ¬P ∧ ¬Q Rule P 

{4} (5) ¬P Rule T, (4), and I1 

{1, 4} (6) P ∧ ¬P Rule T, (3), (5), and I9 

Hence, our assumption is wrong. 

Thus, ¬(P ∧ Q) follows from ¬P ∧ ¬Q. 

Example: Using the indirect method of proof, show that 

P → Q, Q → R, ¬(P ∧ R), P ∨ R ➙ R. 

Solution: We include ¬R as an additional premise. Then we show that this leads to a 

contradiction. 
 
 

{1} (1) P → Q Rule P 

{2} (2) Q → R Rule P 

{1, 2} (3) P → R Rule T, (1), (2), and I13 

{4} (4) ¬R Rule P (assumed) 

{1, 2, 4} (5) ¬P Rule T, (4), and I12 

{6} (6) P ∨ R Rule P 

{1, 2, 4, 6} (7) R Rule T, (5), (6) and I10 

{1, 2, 4, 6} (8) R ∧ ¬R Rule T, (4), (7), and I9 

Hence, our assumption is wrong. 
 

Example: Show that the following set of premises are inconsistent, using proof by contradiction 

P → (Q ∨ R), Q → ¬P, S → ¬R, P ➙ P → ¬S. 

Solution: We include ¬(P → ¬S) as an additional premise. Then we show that this leads to a 

contradiction. 

∴ ¬(P → ¬S) ⇔ ¬(¬P ∨ ¬S) ⇔ P ∧ S. 
 

 

{1} (1) P → (Q ∨ R) Rule P 

{2} (2) P Rule P 

{1, 2} (3) Q ∨ R Rule T, (1), (2), and Modus Ponens 

{4} (4) P ∧ S Rule P (assumed) 

{1, 2, 4} (5) S Rule T, (4), and P ∧ Q ➙ P 
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{6} (6) S → ¬R Rule P 

{1, 2, 4, 6} (7) ¬R Rule T, (5), (6) and Modus Ponens 

{1, 2, 4, 6} (8) Q Rule T, (3), (7), and P ∧ Q, ¬Q ➙ P 

{9} (9) Q → ¬P Rule P 

{1, 2, 4, 6} (10) ¬P Rule T, (8), (9), and P ∧ Q, ¬Q ➙ P 

{1, 2, 4, 6} (11) P ∧ ¬P Rule T, (2), (10), and P, Q ➙ P ∧ Q 

{1, 2, 4, 6} (12) F Rule T, (11), and P ∧ ¬P ⇔ F 

Hence, it is proved that the given premises are inconsistent. 
 

The Predicate Calculus 

Predicate 
A part of a declarative sentence describing the properties of an object is called a 

predicate. The logic based upon the analysis of predicate in any statement is called 

predicate logic. 

Consider two statements: 

John is a bachelor 

Smith is a bachelor. 

In each statement ‖is a bachelor‖ is a predicate. Both John and Smith have the same 

property of being a bachelor. In the statement logic, we require two diff erent symbols to 

express them and these symbols do not reveal the common property of these statements. 

In predicate calculus these statements can be replaced by a single statement ‖x is a 

bachelor‖. A predicate is symbolized by a capital letters which is followed by the list of 

variables. The list of variables is enclosed in parenthesis. If P stands for the predicate ‖is 

a bachelor‖, then P (x) stands for ‖x is a bachelor‖,where x is a predicate variable. 

`The domain for P (x) : x is a bachelor, can be taken as the set of all human 

names. Note that P (x) is not a statement, but just an expression. Once a value is assigned 

to x, P (x) becomes a statement and has the truth value. If x is Ram, then P (x) is a 

statement and its truth value is true. 
 

Quantifiers 

Quantifiers: Quantifiers are words that are refer to quantities such as ‘some‘ or ‘all‘. 

Universal Quantifier: The phrase ‘forall‘ (denoted by ∀) is called the universal quantifier. 

For example, consider the sentence ‖All human beings are mortal‖. 

Let P (x) denote ‘x is a mortal‘. 
Then, the above sentence can be written as 

(∀x ∈ S)P (x) or ∀xP (x) 

where S denote the set of all human beings. 

∀x represents each of the following phrases, since they have essentially the same for all x 

For every x 

For each x. 

 

Existential Quantifier: The phrase ‘there exists‘ (denoted by ∃) is called the exis-tential 

quantifier. 
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For example, consider the sentence 

‖There exists x such that x
2 

= 5. 

This sentence can be written as 

(∃x ∈ R)P (x) or (∃x)P (x), 

where P (x) : x
2 

= 5. 

∃x represents each of the following phrases 

There exists an x 

There is an x 
For some x 

There is at least one x. 
 

Example: Write the following statements in symbolic form: 

(i). Something is good 

(ii). Everything is good 

(iii). Nothing is good 

(iv). Something is not good. 

Solution: Statement (i) means ‖There is atleast one x such that, x is good‖. 

Statement (ii) means ‖Forall x, x is good‖. 

Statement (iii) means, ‖Forall x, x is not good‖. 

Statement (iv) means, ‖There is atleast one x such that, x is not good. 

Thus, if G(x) : x is good, then 

statement (i) can be denoted by (∃x)G(x) 

statement (ii) can be denoted by (∀x)G(x) 

statement (iii) can be denoted by (∀x)¬G(x) 

statement (iv) can be denoted by (∃x)¬G(x). 

Example: Let K(x) : x is a man 
L(x) : x is mortal 

M(x) : x is an integer 

N(x) : x either positive or negative 

Express the following using quantifiers: 

 All men are mortal 

 Any integer is either positive or negative. 

Solution: (a) The given statement can be written as 

for all x, if x is a man, then x is mortal and this can be expressed as 

(x)(K(x) → L(x)). 

(b) The given statement can be written as 

for all x, if x is an integer, then x is either positive or negative and this can be expressed 

as (x)(M(x) → N(x)). 
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Free and Bound Variables 

Given a formula containing a part of the form (x)P (x) or (∃x)P (x), such a part is called 

an x-bound part of the formula. Any occurrence of x in an x-bound part of the formula is 

called a bound occurrence of x, while any occurrence of x or of any variable that is not a 

bound occurrence is called a free occurrence. The smallest formula immediately 

following (∀x) or (∃x) is called the scope of the quantifier. 

Consider the following formulas: 
 

 (x)P (x, y) 

 (x)(P (x) → Q(x)) 

 (x)(P (x) → (∃y)R(x, y)) 

 (x)(P (x) → R(x)) ∨ (x)(R(x) → Q(x)) 

 (∃x)(P (x) ∧ Q(x)) 

 (∃x)P (x) ∧ Q(x). 

In (1), P (x, y) is the scope of the quantifier, and occurrence of x is bound occurrence, 

while the occurrence of y is free occurrence. 
 

In (2), the scope of the universal quantifier is P (x) → Q(x), and all concrescences of x are 

bound. 

 

In (3), the scope of (x) is P (x) → (∃y)R(x, y), while the scope of (∃y) is R(x, y). All 

occurrences of both x and y are bound occurrences. 

In (4), the scope of the first quantifier is P (x) → R(x) and the scope of the second is 

R(x) → Q(x). All occurrences of x are bound occurrences. 

In (5), the scope (∃x) is P (x) ∧ Q(x). 

In (6), the scope of (∃x) is P (x) and the last of occurrence of x in Q(x) is free. 

Negations of Quantified Statements 

(i). ¬(x)P (x) ⇔ (∃x)¬P (x) 

(ii). ¬(∃x)P (x) ⇔ (x)(¬P (x)). 

Example: Let P (x) denote the statement ‖x is a professional athlete‖ and let Q(x) denote the 

statement ‖x plays soccer‖. The domain is the set of all people. 

(a). Write each of the following proposition in English. 

 (x)(P (x) → Q(x) 

 (∃x)(P (x) ∧ Q(x)) 

 (x)(P (x) ∨ Q(x)) 

(b). Write the negation of each of the above propositions, both in symbols and in words. 

Solution: 

(a). (i). For all x, if x is an professional athlete then x plays soccer. 

‖All professional athletes plays soccer‖ or ‖Every professional athlete plays 

soccer‖. 

(ii). There exists an x such that x is a professional athlete and x plays soccer. 
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‖Some professional athletes paly soccer‖. 

(iii). For all x, x is a professional athlete or x plays soccer. 

‖Every person is either professional athlete or plays soccer‖. 

 

(b). (i). In symbol: We know that 

¬(x)(P (x) → Q(x)) ⇔ (∃x)¬(P (x) → Q(x)) ⇔ (∃x)¬(¬(P (x)) ∨ Q(x)) 

- (∃x)(P (x) ∧ ¬Q(x)) 

There exists an x such that, x is a professional athlete and x does not paly soccer. 

In words: ‖Some professional athlete do not play soccer‖. 

(ii). ¬(∃x)(P (x) ∧ Q(x)) ⇔ (x)(¬P (x) ∨ ¬Q(x)) 

In words: ‖Every people is neither a professional athlete nor plays soccer‖ or All people 

either not a professional athlete or do not play soccer‖. 

(iii). ¬(x)(P (x) ∨ Q(x)) ⇔ (∃x)(¬P (x) ∧ ¬Q(x)). 

In words: ‖Some people are not professional athlete or do not paly soccer‖. 

 

Inference Theory of the Predicate Calculus 
To understand the inference theory of predicate calculus, it is important to be famil-iar 

with the following rules: 

Rule US: Universal specification or instaniation 

(x)A(x) ➙ A(y) 

From (x)A(x), one can conclude A(y). 

Rule ES: Existential specification 

(∃x)A(x) ➙ A(y) 

From (∃x)A(x), one can conclude A(y). 

Rule EG: Existential generalization 

A(x) ➙ (∃y)A(y) 

From A(x), one can conclude (∃y)A(y). 

Rule UG: Universal generalization 

A(x) ➙ (y)A(y) 

From A(x), one can conclude (y)A(y). 

Equivalence formulas: 

E31 : (∃x)[A(x) ∨ B(x)] ⇔ (∃x)A(x) ∨ (∃x)B(x) 

E32 : (x)[A(x) ∧ B(x)] ⇔ (x)A(x) ∧ (x)B(x) 

E33 : ¬(∃x)A(x) ⇔ (x)¬A(x) 

E34 : ¬(x)A(x) ⇔ (∃x)¬A(x) 

E35 : (x)(A ∨ B(x)) ⇔ A ∨ (x)B(x) 

E36 : (∃x)(A ∧ B(x)) ⇔ A ∧ (∃x)B(x) 

E37 : (x)A(x) → B ⇔ (x)(A(x) → B) 

E38 : (∃x)A(x) → B ⇔ (x)(A(x) → B) 

E39 : A → (x)B(x) ⇔ (x)(A → B(x)) 
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E40 : A → (∃x)B(x) ⇔ (∃x)(A → B(x)) 

E41 : (∃x)(A(x) → B(x)) ⇔ (x)A(x) → (∃x)B(x) 

E42 : (∃x)A(x) → (x)B(X) ⇔ (x)(A(x) → B(X)). 

Example: Verify the validity of the following arguments: 

‖All men are mortal. Socrates is a man. Therefore, Socrates is mortal‖. 

or 

Show that (x)[H(x) → M(x)] ∧ H(s) ➙ M(s). 

Solution: Let us represent the statements as follows: 
H(x) : x is a man 

M(x) : x is a mortal 

s : Socrates 

Thus, we have to show that (x)[H(x) → M(x)] ∧ H(s) ➙ M(s). 
 

{1} (1) (x)[H(x) → M(x)] Rule P 

{1} (2) H(s) → M(s) Rule US, (1) 

{3} (3) H(s) Rule P 

{1, 3} (4) M(s) Rule T, (2), (3), and I11 

 
Example: Establish the validity of the following argument:‖All integers are ratio-nal numbers. 

Some integers are powers of 2. Therefore, some rational numbers are powers of 2‖. 

Solution: Let P (x) : x is an integer 

R(x) : x is rational number 

S(x) : x is a power of 2 

Hence, the given statements becomes 

(x)(P (x) → R(x)), (∃x)(P (x) ∧ S(x)) ➙ (∃x)(R(x) ∧ S(x)) 

Solution: 

 
{1} (1) (∃x)(P (x) ∧ S(x)) Rule P 

{1} (2) P (y) ∧ S(y) Rule ES, (1) 

{1} (3) P (y) Rule T, (2) and P ∧ Q ➙ P 

{1} (4) S(y) Rule T, (2) and P ∧ Q ➙ Q 

{5} (5) (x)(P (x) → R(x)) Rule P 

{5} (6) P (y) → R(y) Rule US, (5) 

{1, 5} (7) R(y) Rule T, (3), (6) and P, P → Q ➙ Q 

{1, 5} (8) R(y) ∧ S(y) Rule T, (4), (7) and P, Q ➙ P ∧ Q 

{1, 5} (9) (∃x)(R(x) ∧ S(x)) Rule EG, (8) 

Hence, the given statement is valid. 
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Example: Show that (x)(P (x) → Q(x)) ∧ (x)(Q(x) → R(x)) ➙ (x)(P (x) → R(x)). 

Solution: 
 

{1} (1) (x)(P (x) → Q(x)) Rule P 

{1} (2) P (y) → Q(y) Rule US, (1) 

{3} (3) (x)(Q(x) → R(x)) Rule P 

{3} (4) Q(y) → R(y) Rule US, (3) 

{1, 3} (5) P (y) → R(y) Rule T, (2), (4), and I13 

{1, 3} (6) (x)(P (x) → R(x)) Rule UG, (5) 

Example: Show that (∃x)M(x) follows logically from the premises 

(x)(H(x) → M(x)) and (∃x)H(x). 

Solution: 
 

{1} (1) (∃x)H(x) Rule P 

{1} (2) H(y) Rule ES, (1) 

{3} (3) (x)(H(x) → M(x)) Rule P 

{3} (4) H(y) → M(y) Rule US, (3) 

{1, 3} (5) M(y) Rule T, (2), (4), and I11 

{1, 3} (6) (∃x)M(x) Rule EG, (5) 

Hence, the result. 

Example: Show that (∃x)[P (x) ∧ Q(x)] ➙ (∃x)P (x) ∧ (∃x)Q(x). 

Solution: 
 

{1} (1) (∃x)(P (x) ∧ Q(x)) Rule P 

{1} (2) P (y) ∧ Q(y) Rule ES, (1) 

{1} (3) P (y) Rule T, (2), and I1 

{1} (4) (∃x)P (x) Rule EG, (3) 

{1} (5) Q(y) Rule T, (2), and I2 

{1} (6) (∃x)Q(x) Rule EG, (5) 

{1} (7) (∃x)P (x) ∧ (∃x)Q(x) Rule T, (4), (5) and I9 

Hence, the result. 

Note: Is the converse true? 
 

{1} (1) (∃x)P (x) ∧ (∃x)Q(x) Rule P 

{1} (2) (∃x)P (x) Rule T, (1) and I1 

{1} (3) (∃x)Q(x) Rule T, (1), and I1 

{1} (4) P (y) Rule ES, (2) 

{1} (5) Q(s) Rule ES, (3) 
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Here in step (4), y is fixed, and it is not possible to use that variable again in step (5). 

Hence, the converse is not true. 

 

Example: Show that from (∃x)[F (x) ∧S(x)] → (y)[M(y) → W (y)] and (∃y)[M(y) ∧ ¬W (y)] the 

conclusion (x)[F (x) → ¬S(x)] follows. 

 
 

{1} (1) (∃y)[M(y) ∧ ¬W (y)] Rule P 

{1} (2) [M(z) ∧ ¬W (z)] Rule ES, (1) 

{1} (3) ¬[M(z) → W (z)] Rule T, (2), and ¬(P → Q) ⇔ P ∧ ¬Q 

{1} (4) (∃y)¬[M(y) → W (y)] Rule EG, (3) 

{1} (5) ¬(y)[M(y) → W (y)] Rule T, (4), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1} (6) (∃x)[F (x) ∧ S(x)] → (y)[M(y) → W (y)]Rule P 

{1, 6} (7) ¬(∃x)[F (x) ∧ S(x)] Rule T, (5), (6) and I12 

{1, 6} (8) (x)¬[F (x)∧S(x)] Rule T, (7), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1, 6} (9) ¬[F (z) ∧ S(z)] Rule US, (8) 

{1, 6} (10) ¬F (z) ∨ ¬S(z) Rule T, (9), and De Morgan‘s laws 

{1, 6} (11) F (z) → ¬S(z) Rule T, (10), and P → Q ⇔ ¬P ∨ Q 

{1, 6} (12) (x)(F (x) → ¬S(x)) Rule UG, (11) 

Hence, the result. 

Example: Show that (x)(P (x) ∨ Q(x)) ➙ (x)P (x) ∨ (∃x)Q(x). (May. 2012) 

Solution: We shall use the indirect method of proof by assuming ¬((x)P (x)∨(∃x)Q(x)) as an 

additional premise. 

 
{1} 

{1} 

(1) ¬((x)P (x) ∨ (∃x)Q(x)) 

(2) ¬(x)P (x) ∧ ¬(∃x)Q(x) 

Rule P (assumed) 

Rule T, (1) ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q 

{1} (3) ¬(x)P (x) Rule T, (2), and I1 

{1} (4) (∃x)¬P (x) Rule T, (3), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1} (5) ¬(∃x)Q(x) Rule T, (2), and I2 

{1} (6) (x)¬Q(x) Rule T, (5), and ¬(∃x)A(x) ⇔ (x)¬A(x) 

{1} (7) ¬P (y) Rule ES, (5), (6) and I12 

{1} (8) ¬Q(y) Rule US, (6) 

{1} (9) ¬P (y) ∧ ¬Q(y) Rule T, (7), (8)and I9 

{1} (10) ¬(P (y) ∨ Q(y)) Rule T, (9), and ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q 

{11} (11) (x)(P (x) ∨ Q(x)) Rule P 

{11} (12) (P (y) ∨ Q(y)) Rule US 

{1, 11} (13) ¬(P (y) ∨ Q(y)) ∧ (P (y) ∨ Q(y)) Rule T, (10), (11), and I9 

{1, 11} (14)   F Rule T, and (13) 
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which is a contradiction.Hence, the statement is valid. 
 

Example: Using predicate logic, prove the validity of the following argument: ‖Every 

husband argues with his wife. x is a husband. Therefore, x argues with his wife‖. 
 

Solution: Let P (x): x is a husband. 
 

Q(x): x argues with his wife. 

 

Thus, we have to show that (x)[P (x) → Q(x)] ∧ P (x) ➙ Q(y). 
 

{1} (1) (x)(P (x) → Q(x)) Rule P 

{1} (2) P (y) → Q(y) Rule US, (1) 

{1} (3) P (y) Rule P 

{1} (4) Q(y) Rule T, (2), (3), and I11 

Example: Prove using rules of inference 

Duke is a Labrador retriever. 

All Labrador retriever like to swim. 

Therefore Duke likes to swim. 

Solution: We denote 

L(x): x is a Labrador retriever. 

S(x): x likes to swim. 

d: Duke. 

We need to show that L(d) ∧ (x)(L(x) → S(x)) ➙ S(d). 
 

{1} (1) (x)(L(x) → S(x)) Rule P 

{1} (2) L(d) → S(d) Rule US, (1) 

{2} (3) L(d) Rule P 

{1, 2} (4) S(d) Rule T, (2), (3), and I11. 

 
JNTUK Previous questions 

 

1. Test the Validity of the  Following argument:  ―All dogs are barking. Some animals are 

dogs. Therefore, some animals are barking‖. 

2. Test the Validity of the Following argument: 

―Some cats are animals. Some dogs are animals. Therefore, some cats are dogs‖. 

3. Symbolizes and prove the validity of the following arguments : 

(i) Himalaya is large. Therefore every thing is large. 

(ii) Not every thing is edible. Therefore nothing is edible. 
4. a) Find the PCNF of (~p↔r) ̂ (q↔p) ? 

b) Explain in brief about duality Law? 
 

c) Construct the Truth table for ~(~p^~q)? 
d) Find the disjunctive Normal form of ~(p → (q^r)) ? 

 

5. Define Well Formed Formula? Explain about Tautology with example? 

6. Explain in detail about the Logical Connectives with Examples? 
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7. Obtain the principal conjunctive normal form of the formula (┐ P→R)Λ(Q↔P) 

8. Prove that (x)P(x)Q(x) → (x)P(x)(x)Q(x). Does the converse hold? 

9. Show that from i) (x)(F(x)  S(x))  (y)(M(y)  W(y)) 

ii) (y) (M(y)  ┐ W(y)) the conclusion (x)(F(x)  ┐ S(x)) follows. 

 
10. Obtain the principal disjunctive and conjunctive normal forms of (P (QR)) (┐ P(┐ Q┐ R)). 

Is this formula a tautology? 
11. Prove that the following argument is valid: No Mathematicians are fools. No one who is not a fool 

is an administrator. Sitha is a mathematician. Therefore Sitha is not an administrator. 
12. Test the Validity of the Following argument: If you work hard, you will pass the exam. You did not 

pass. Therefore you did not work hard. 

13. Without constructing the Truth Table prove that (pq) q=pvq? 

14. Using normal forms, show that the formula Q(P┐ Q)( ┐ P┐ Q) is a tautology. 
15. Show that (x) (P(x)  Q(x))  (x)P(x)  (x)Q(x) 

16. Show that ┐ (PQ)  ( ┐ P( ┐ PQ))  ( ┐ PQ) 
(PQ)( ┐ P( ┐ PQ))  (┐ PQ) 

17. Prove that (x) (P(x)  Q(x)) (x)P(x)  (x)Q(x) 

18. Example: Prove or disprove the validity of the following arguments using the rules of 

inference. (i) All men are fallible (ii) All kings are men (iii) Therefore, all kings are 

fallible. 

19. Test the Validity of the Following argument: 

―Lions are dangerous animals, there are lions, and therefore there are dangerous 

animals.‖ 

 

MULTIPLE CHOICE QUESTIONS 

1: Which of the following propositions is tautology? 
A.(p v q)→q B. p v (q→p) C.p v (p→q) D.Both (b) & (c) 
Option: C 

2: Which of the proposition is p^ (~ p v q) is 
A.A tautology   B.A contradiction C.Logically equivalent to p ^ q D.All of above 
Option: C 

3: Which of the following is/are tautology? 
A.a v b → b ^ c B.a ^ b → b v c C.a v b → (b → c) D.None of these 
Option: B 

4: Logical expression ( A^ B) → ( C' ^ A) → ( A ≡ 1) is 
A.ContradictionB.Valid C.Well-formed formula D.None of these 
Option: D 

5: Identify the valid conclusion from the premises Pv Q, Q → R, P → M, ˥M 
A.P ^ (R v R) B.P ̂  (P ^ R) C.R ^ (P v Q) D.Q ^ (P v R) 
Option: D 

6: Let a, b, c, d be propositions. Assume that the equivalence a ↔ (b v ˥b) and b ↔ c hold. Then 
truth value of the formula ( a ̂  b) → ((a ^ c) v d) is always 
A.True B.False C.Same as the truth value of a D.Same as the truth value of b 
Option: A 

7: Which of the following is a declarative statement? 
A. It's right B. He says C.Two may not be an even integer D.I love you 

Option: B 

8: P → (Q → R) is equivalent to 
A. (P ^ Q) → R B.(P v Q) → R C.(P v Q) → ˥ R D.None of these 
Option: A 

9: Which of the following are tautologies? 
A.((P v Q) ^ Q) ↔ Q B.((P v Q) ^ ˥ P) → Q C.((P v Q) ^ P) → P D.Both (a) & (b) 
Option: D 

10: If F1, F2 and F3 are propositional formulae such that F1 ^ F2 → F3 and F1 ^ F2→F3 are both 
tautologies, then which of the following is TRUE? 
A.Both F1 and F2 are tautologies B.The conjuction F1 ^ F2 is not satisfiable 
C.Neither is tautologies D.None of these 
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Option: B 

11. Consider two well-formed formulas in propositional logic 
F1 : P →˥P F2 : (P →˥P) v ( ˥P →) Which of the following statement is correct? 
A.F1 is satisfiable, F2 is unsatisfiable B.F1 is unsatisfiable, F2 is satisfiable 
C.F1 is unsatisfiable, F2 is valid D.F1 & F2 are both satisfiable 
Option: C 

12: What can we correctly say about proposition P1 : (p v ˥ q) ̂  (q →r) v (r v p) 
A.P1 is tautology B.P1 is satisfiable 
C.If p is true and q is false and r is false, the P1 is true 
D.If p as true and q is true and r is false, then P1 is true 
Option: C 

13: (P v Q) ^ (P → R )^ (Q →S) is equivalent to 

A.S ^ R B.S → R C.S v R D.All of above 
Option: C 

14: The functionally complete set is 
A.{ ˥ , ^, v } B.{↓, ^ }C.{↑} D.None of these 
Option: C 

15: (P v Q) ^ (P→R) ̂  (Q → R) is equivalent to 
A.P B.Q C.R D.True = T 
Option: C 

16: ˥(P → Q) is equivalent to 
A.P ^ ˥ Q B.P ^ QC.˥P v Q D.None of these 
Option: A 

17: In propositional logic , which of the following is equivalent to p → q? 
A.~p → q B.~p v q C.~p v~ q D.p →q 
Option: B 

18: Which of the following is FALSE? Read ^ as And, v as OR, ~as NOT, →as one way implication 
and ↔ as two way implication? 

A.((x → y)^ x) →y B.((~x →y)^ ( ~x ^ ~y))→y C.(x → ( x v y)) D.((x v y) ↔( ~x v ~y)) 
Option: D 

19: Which of the following well-formed formula(s) are valid? 
A.((P → Q)^(Q → R))→ (P → R) B.(P → Q) →(˥P → ˥Q) 
C.(P v (˥P v ˥Q)) →P D.((P → R) v (Q → R)) → (P v Q}→R) 
Option: A 

20: Let p and q be propositions. Using only the truth table decide whether p ↔ q does not imply p 
→ ˥q is 

A.True B.False C.None D.Both A and B 
Option: A 
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Set:A set is collection of well defined objects. 

UNIT-2 
Set Theory 

 

In the above definition the words set and collection for all practical purposes are Synonymous. We have really 

used the word set to define itself. 

Each of the objects in the set is called a member of an element of the set. The objects themselves can be almost 

anything. Books, cities, numbers, animals, flowers, etc. Elements of a set are usually denoted by lower-case 

letters. While sets are denoted by capital letters of English larguage. 

 

The symbol ∈ indicates the membership in a set. 

If ―a is an element of the set A‖, then we write a ∈  A. 
The symbol ∈ is read ―is a member of ‖ or ―is an element of ‖. 

The symbol  is used to indicate that an object is not in the given set. 

The symbol  is read ―is not a member of ‖ or ―is not an element of ‖. 

If x is not an element of the set A then we write x  A. 

Subset: 

A set A is a subset of the set B if and only if every element of A is also an element of B. We also say that A is 

contained in B, and use the notation A  B. 

Proper Subset: 

A set A is called proper subset of the set B. If (i) A is subset of B and (ii) B is not a subset A i.e., A is said to be 
a proper subset of B if every element of A belongs to the set B, but there is atleast one element of B, which is 

not in A. If A is a proper subset of B, then we denote it by A  B. 

Super set: If A is subset of B, then B is called a superset of A. 
 

Null set: The set with no elements is called an empty set or null set. A Null set is designated by the symbol  . 

The null set is a subset of every set, i.e., If A is any set then   A. 

 
Universal set: 
In many discussions all the sets are considered to be subsets of one particular set. This set is called the 

universal set for that discussion. The Universal set is often designated by the script letter  . Universal set in 

not unique and it may change from one discussion to another. 

 

Power set: 

The set of all subsets of a set A is called the power set of A. 
The power set of A is denoted by P (A). If A has n elements in it, then P (A) has 2n elements: 

 

Disjoint sets: 

Two sets are said to be disjoint if they have no element in common. 

 

Union of two sets: 
The union of two sets A and B is the set whose elements are all of the elements in A or in B or in both. The 

union of sets A and B denoted by A  B is read as ―A union B‖. 

Intersection of two sets: 
The intersection of two sets A and B is the set whose elements are all of the elements common to both A and B. 

The intersection of the sets of ―A‖ and ―B‖ is denoted by A ∩ B and is read as ―A intersection B‖ 

Difference of sets: 
If A and B are subsets of the universal set U, then the relative complement of B in Ais the set of all elements in 

A which are not in A. It is denoted by A – B thus: A – B = {x | x ∈ A and xB} 
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Complement of a set: 
If U is a universal set containing the set A, then U – A is called the complement of A. It is denoted by A1 . Thus 

A1 = {x: xA} 

Inclusion-Exclusion Principle: 

The inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining 

the number of elements in the unionof two finite sets; symbolically expressed as 

|A 𝖴 B| = |A| + |B| − |A ∩ B|. 

Fig.Venn diagram showing the 

union of sets A and B 

where A and B are two finite sets and |S| indicates the cardinality of a set S (which may be considered as the 

number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of 

the two sets may be too large since some elements may be counted twice. The double-counted elements are 

those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. 

The principle is more clearly seen in the case of three sets, which for the sets A, B and C is given by 

|A 𝖴 B𝖴 BC| = |A| + |B|+ |C| − |A ∩ B|− |C ∩ B| − |A ∩ C|+|A ∩B∩C|. 

 

Fig.Inclusion–exclusion illustrated by a 

Venn diagram for three sets 

This formula can be verified by counting how many times each region in the Venn diagram figure is included 

in the right-hand side of the formula. In this case, when removing the contributions of over-counted elements, 

the number of elements in the mutual intersection of the three sets has been subtracted too often, so must be 

added back in to get the correct total. 

In general, Let A1, · · · , Ap be finite subsets of a set U. Then, 

 

Example: How many natural numbers n ≤ 1000 are not divisible by any of 2, 3? 

Ans: Let A2 = {n ∈ N | n ≤ 1000, 2|n} and A3 = {n ∈ N | n ≤ 1000, 3|n}. 

Then, |A2 𝖴 A3| = |A2| + |A3| − |A2 ∩ A3| = 500 + 333 − 166 = 667. 
So, the required answer is 1000 − 667 = 333. 

Example: How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7? 

Ans: For i ∈ {2, 3, 5, 7}, let Ai = {n ∈ N | n ≤ 10000, i|n}. 

Therefore, the required answer is 10000 − |A2 𝖴 A3 𝖴 A5 𝖴 A7| = 2285. 
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Relations 

 

Definition: Any set of ordered pairs defines a binary relation. 

 

We shall call a binary relation simply a relation. Binary relations represent 

relationships between elements of two sets. If R is a relation, a particular ordered pair, say (x, 

y) ∈ R can be written as xRy and can be read as ―x is in relation R to y‖. 

Example: Give an example of a relation. 

Solution: The relation ―greater than‖ for real numbers is denoted by 
′  

>
′
. If x and y are any 

two real numbers such that x > y, then we say that (x, y) ∈>. Thus the relation > is { } >= (x, 

y) : x and y are real numbers and x > y 

Example: Define a relation between two sets A = {5, 6, 7} and B = {x, y}. 
 

Solution: If A = {5, 6, 7} and B = {x, y}, then the subset R = {(5, x), (5, y), (6, x), (6, y)} is a 

relation from A to B. 
 

Definition: Let S be any relation. The domain of the relation S is defined as the set of all first 

elements of the ordered pairs that belong to S and is denoted by D(S). 

D(S) = { x : (x, y) ∈ S, for some y } 

The range of the relation S is defined as the set of all second elements of the ordered pairs that 

belong to S and is denoted by R(S). 

R(S) = { y : (x, y) ∈ S, for some x} 

Example: A = {2, 3, 4} and B = {3, 4, 5, 6, 7}. Define a relation from A to B by (a, b) ∈ R if a 

divides b. 

Solution: We obtain R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}. 
 

Domain of R = {2, 3, 4} and range of R = {3, 4, 6}. 
 

Properties of Binary Relations in a Set 

A relation R on a set X is said to be 

 Reflexive relation if xRx or (x, x) ∈ R, ∀x ∈ X 

 Symmetric relation if xRy then yRx, ∀x, y ∈ X 

 Transitive relation if xRy and yRz then xRz, ∀x, y, z ∈ X 

 Irreflexive relation if x Rx or (x, x)  R, ∀x ∈ X 

 Antisymmetric relation if for every x and y in X, whenever xRy and yRx, then x = y. 

 
Examples: (i). If R1 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} be a relation on A = {1, 2, 3}, then R1 is 

a reflexive relation, since for every x ∈ A, (x, x) ∈ R1. 

 
(ii). If R2 = {(1, 1), (1, 2), (2, 3), (3, 3)} be a relation on A = {1, 2, 3}, then R2 is not a reflexive 

relation, since for every 2 ∈ A, (2, 2)  R2. 

(iii). If R3 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1)} be a relation on A = {1, 2, 3}, then R3 is a 

symmetric relation. 
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 0 0 

i j 



(iv). If R4 = {(1, 2), (2, 2), (2, 3)} on A = {1, 2, 3} is an antisymmetric. 

Example: Given S = {1, 2, ..., 10} and a relation R on S, where R = {(x, y)| x + y = 10}. 

What are the properties of the relation R? 
 

Solution: Given that 

S = {1, 2, ..., 10} 

 = {(x, y)| x + y = 10} 

 = {(1, 9), (9, 1), (2, 8), (8, 2), (3, 7), (7, 3), (4, 6), (6, 4), (5, 5)}. 

(i). For any x ∈ S and (x, x) R. Here, 1 ∈ S but (1, 1)R. 

➙ the relation R is not reflexive. It is also not irreflexive, since (5, 5) ∈ R. 

(ii). (1, 9) ∈ R ➙ (9, 1) ∈ R 

(2, 8) ∈ R ➙ (8, 2) ∈ R….. 

➙ the relation is symmetric, but it is not antisymmetric. (iii). (1, 9) ∈ R and (9, 1) ∈ R 

➙ (1, 1) R 

➙ The relation R is not transitive. Hence, R is symmetric. 

Relation Matrix and the Graph of a Relation 

Relation Matrix: A relation R from a finite set X to a finite set Y can be repre-sented by a matrix 

is called the relation matrix of R. 

 
Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be finite sets containing m and n elements, 

respectively, and R be the relation from A to B. Then R can be represented by an m × n matrix 

MR = [rij ], which is defined as follows: 
1, if (x , y )  R 

rij = 

0, if (xi , y j )  R 
 

Example. Let A = {1, 2, 3, 4} and B = {b1, b2, b3}. Consider the relation R = {(1, b2), (1, b3), (3, 

b2), (4, b1), (4, b3)}. Determine the matrix of the relation. 

Solution: A = {1, 2, 3, 4}, B = {b1, b2, b3}. 

Relation R = {(1, b2), (1, b3), (3, b2), (4, b1), (4, b3)}. 

Matrix of the relation R is written as 
 0 1 1 
 

That is MR = 
 0 0 0



 
1 

 1 0 1 
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 1 

 1 
0 


Example: Let A = {1, 2, 3, 4}. Find the relation R on A determined by the matrix 
 1 0 


MR = 
 0 0 

 
0 

 1 1 

1 0


1 0



0 1
Solution: The relation R = {(1, 1), (1, 3), (2, 3), (3, 1), (4, 1), (4, 2), (4, 4)}. 

 

Properties of a relation in a set: 

(i). If a relation is reflexive, then all the diagonal entries must be 1. 

(ii). If a relation is symmetric, then the relation matrix is symmetric, i.e., rij = rji for every i and j. 

(iii). If a relation is antisymmetric, then its matrix is such that if rij = 1 then rji = 0 for i ≠ j. 

Graph of a Relation: A relation can also be represented pictorially by drawing its graph. Let R 

be a relation in a set X = {x1, x2, ..., xm}. The elements of X are represented by points or circles 

called nodes. These nodes are called vertices. If (xi, xj ) ∈ R, then we connect the nodes xi and xj 

by means of an arc and put an arrow on the arc in the direction from xi to xj . This is called an 

edge. If all the nodes corresponding to the ordered pairs in R are connected by arcs with proper 
arrows, then we get a graph of the relation R. 

 
Note: (i). If xiRxj and xj Rxi, then we draw two arcs between xi and xj with arrows pointing in 

both directions. 

(ii). If xiRxi, then we get an arc which starts from node xi and returns to node xi. This arc is called 

a loop. 
 

Properties of relations: 
 

(i). If a relation is reflexive, then there must be a loop at each node. On the other hand, if the 

relation is irreflexive, then there is no loop at any node. 

(ii). If a relation is symmetric and if one node is connected to another, then there must be a return 

arc from the second node to the first. 

(iii). For antisymmetric relations, no such direct return path should exist. 

(iv). If a relation is transitive, the situation is not so simple. 

 

Example: Let X = {1, 2, 3, 4} and R={(x, y)| x > y}. Draw the graph of R and also give its matrix. 

Solution: R = {(4, 1), (4, 3), (4, 2), (3, 1), (3, 2), (2, 1)}. 

The graph of R and the matrix of R are 

1 2 

 

 
3 4 
Graph of R 

 0 0 0 0
 

MR = 
 1 0 0 0

 
1 0 

 1 1 1 0

0 0 
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∪ 

Partition and Covering of a Set 

Let S be a given set and A = {A1, A2, · · · , Am} where each Ai, i = 1, 2, · · · , m is a subset of S and 
m 

Ai 

i 1 

 S . 

Then the set A is called a covering of S, and the sets A1, A2, · · · , Am are said to cover S. If, in 

addition, the elements of A, which are subsets of S, are mutually disjoint, then A is called a 

partition of S, and the sets A1, A2, · · · , Am are called the blocks of the partition. 

Example: Let S = {a, b, c} and consider the following collections of subsets of S. A = {{a, b}, {b, 

c}}, B = {{a}, {a, c}}, C = {{a}, {b, c}}, D = {{a, b, c}}, E = {{a}, {b}, {c}}, and F = {{a}, {a, b}, {a, 

c}}. Which of the above sets are covering? 
 

Solution: The sets A, C, D, E, F are covering of S. But, the set B is not covering of S, since their 

union is not S. 
 

Example: Let S = {a, b, c} and consider the following collections of subsets of S. A = {{a, b}, {b, 

c}}, B = {{a}, {b, c}}, C = {{a, b, c}}, D = {{a}, {b}, {c}}, and E= {{a}, {a, c}}. 

Which of the above sets are covering? 
 

Solution: The sets B, C and D are partitions of S and also they are covering. Hence, every partition 

is a covering. 
 

The set A is a covering, but it is not a partition of a set, since the sets {a, b} and {b, c} are not 

disjoint. Hence, every covering need not be a partition. 
 

The set E is not partition, since the union of the subsets is not S. The partition C has one block and 

the partition D has three blocks. 

Example: List of all ordered partitions S = {a, b, c, d} of type (1, 2, 2). 

Solution: 

 
 

 

 

Equivalence Relations 

({a}, {b}, {c, d}), ({b}, {a}, {c, d}) 

({a}, {c}, {b, d}), ({c}, {a}, {b, d}) 

({a}, {d}, {b, c}), ({d}, {a}, {b, c}) 

({b}, {c}, {a, d}), ({c}, {b}, {a, d}) 

({b}, {d}, {a, c}), ({d}, {b}, {a, c}) 

({c}, {d}, {a, b}), ({d}, {c}, {a, b}). 

A relation R in a set X is called an equivalence relation if it is reflexive, symmetric and transitive. 

The following are some examples of equivalence relations: 

1. Equality of numbers on a set of real numbers. 

2. Equality of subsets of a universal set. 
 

Example: Let X = {1, 2, 3, 4} and R == {(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)}. 

Prove that R is an equivalence relation. 
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 0 


 1 0 0 


MR = 
 0 1 1 

 
1 1 

 1 0 0 

1 


0 

01

1 
















The corresponding graph of R is shown in figure: 

Clearly, the relation R is reflexive, symmetric and transitive. Hence, R is an equivalence relation. 

Example: Let X = {1, 2, 3, ..., 7} and R =(x, y)| x − y is divisible by 3. Show that R is an 

equivalence relation. 

Solution: (i). For any x ∈ X, x − x = 0 is divisible by 3. 

∴ xRx 

➙ R is reflexive. 

(ii). For any x, y ∈ X, if xRy, then x − y is divisible by 3. 

➙ −(x − y) is divisible by 3. 

➙ y − x is divisible by 3. 

➙ yRx 

Thus, the relation R is symmetric. 

(iii). For any x, y, z ∈ X, let xRy and yRz. 

➙ (x − y) + (y − z) is divisible by 3 

➙ x − z is divisible by 3 

➙ xRz 

Hence, the relation R is transitive. 

Thus, the relation R is an equivalence relation. 

Congruence Relation: Let I denote the set of all positive integers, and let m be apositive integer. 

For x ∈ I and y ∈ I, define R as R = {(x, y)| x − y is divisible by m } 

The statement ‖x − y is divisible by m‖ is equivalent to the statement that both x and y have the 

same remainder when each is divided by m. 

In this case, denote R by ≡ and to write xRy as x ≡ y (mod m), which is read as ‖x equals to y 

modulo m‖. The relation ≡ is called a congruence relation. 

Example: 83 ≡ 13(mod 5), since 83-13=70 is divisible by 5. 

Example: Prove that the relation ―congruence modulo m‖ over the set of positive integers is an 

equivalence relation. 
 

Solution: Let N be the set of all positive integers and m be a positive integer. We define the 
relation ‖congruence modulo m‖ on N as follows: 

Let x, y ∈ N. x ≡ y (mod m) if and only if x − y is divisible by m. 
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Let x, y, z ∈ N. Then 

(i). x − x = 0.m 

➙ x ≡ x (mod m) for all x ∈ N 

(ii). Let x ≡ y (mod m). Then, x − y is divisible by m. 

➙ −(x − y) = y − x is divisible by m. 

i.e., y ≡ x (mod m) 

∴ The relation ≡ is symmetric. 

➙ x − y and y − z are divisible by m. Now (x − y) + (y − z) is divisible by m. i.e., x − z is 

divisible by m. 

➙ x ≡ z (mod m) 

∴ The relation ≡ is transitive. 

Since the relation ≡ is reflexive, symmetric and transitive, the relation congruence modulo m is an 

equivalence relation. 
 

Example: Let R denote a relation on the set of ordered pairs of positive integers such that (x,y)R(u, 

v) iff xv = yu. Show that R is an equivalence relation. 
 

Solution: Let R denote a relation on the set of ordered pairs of positive integers. 

Let x, y, u and v be positive integers. Given (x, y)R(u, v) if and only if xv = yu. 

(i). Since xy = yx is true for all positive integers 

➙ (x, y)R(x, y), for all ordered pairs (x, y) of positive integers. 

∴ The relation R is reflexive. (ii). Let (x, y)R(u, v) 

➙ xv = yu ➙ yu 

= xv ➙ uy = vx 

➙ (u, v)R(x, y) 

∴ The relation R is symmetric. 

(iii). Let x, y, u, v, m and n be positive integers 

Let (x, y)R(u, v) and (u, v)R(m, n) 

➙ xv = yu and un = vm 

➙ xvun = yuvm 

➙ xn = ym, by canceling uv 

➙ (x, y)R(m, n) 

∴ The relation R is transitive. 

Since R is reflexive, symmetric and transitive, hence the relation R is an 

equivalence relation. 
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Compatibility Relations 

Definition: A relation R in X is said to be a compatibility relation if it is reflexive and symmetric. 

Clearly, all equivalence relations are compatibility relations. A compatibility relation is sometimes 

denoted by ≈. 
 

Example: Let X = {ball, bed, dog, let, egg}, and let the relation R be given by 

R = {(x, y)| x, y ∈ X ∧ xRy if x and y contain some common letter}. 

Then R is a compatibility relation, and x, y are called compatible if xRy. 

Note: ball≈bed, bed≈egg. But ball egg. Thus ≈ is not transitive. 

Denoting ‖ball‖ by x1, ‖bed‖ by x2, ‖dog‖ by x3, ‖let‖ by x4, and ‖egg‖ by x5, the graph of ≈ is 

given as follows: 

Maximal Compatibility Block: 

Let X be a set and ≈ a compatibility relation on X. A subset A ⊆ X is called a maximal 

compatibility block if any element of A is compatible to every other element of A and no element 

of X − A is compatible to all the elements of A. 

Example: The subsets {x1, x2, x4}, {x2, x3, x5}, {x2, x4, x5}, {x1, x4, x5} are maximal compatibility 

blocks. 

 

Example: Let the compatibility relation on a set {x1, x2, ..., x6} be given by the matrix: 

x2 1 
x3 1 1   

x4 0 0 1 

x5 0 0 1 1  

x6 1 0 1 0 1 
x1 x2 x3 x4 x5 

Draw the graph and find the maximal compatibility blocks of the relation. 

Solution: 

 

 

 

 

 

The maximal compatibility blocks are {x1, x2, x3},{x1, x3, x6},{x3, x5, x6},{x3, x4, x5}. 
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1 1 

1 

1 

1 

1 1 1 1 1 

 




 1   1  

Composition of Binary Relations 
Let R be a relation from X to Y and S be a relation from Y to Z. Then a relation written as R ◦ S 

is called a composite relation of R and S where R◦S = {(x, z)| x ∈ X, z ∈ Z, and there exists y ∈ 

Y with (x, y) ∈ R and (y, z) ∈ S }. 

Theorem: If R is relation from A to B, S is a relation from B to C and T is a relation from C to D 

then T◦ (S ◦ R) = (T ◦ S) ◦ R 
 

Example: Let R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}. Find R 

◦ S, S ◦ R, R ◦ (S ◦ R), (R ◦ S) ◦ R, R ◦ R, S ◦ S, and (R ◦ R) ◦ R. 

Solution: Given R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}. 

R ◦ S = {(1, 5), (3, 2), (2, 5)} 

S ◦ R = {(4, 2), (3, 2), (1, 4)} ≠ R ◦ S 

(R ◦ S) ◦ R = {(3, 2)} 

R ◦ (S ◦ R) = {(3, 2)} = (R ◦ S) ◦ R 

R ◦ R = {(1, 2), (2, 2)} 

R ◦ R ◦ S = {(4, 5), (3, 3), (1, 1)} 
 

Example: Let A = {a, b, c}, and R and S be relations on A whose matrices are as 

given below: 

 1 0 


MR =  0 1 

 1 

1  1 
 

0 and MS = 1 
 
 

0 0


0 1

1 



Find the composite relations R ◦ S, S ◦ R, R ◦ R, S ◦ S and their matrices. 

Solution: 

R = {(a, a), (a, c), (b, a), (b, b), (b, c), (c, b)} 

S= {(a, a), (b, b), (b, c), (c, a), (c, c)}. From these, we find that 

R ◦ S = {(a, a), (a, c), b, a), (b, b), (b, c), (c, b), (c, c)} 
S ◦ R = {(a, a), (a, c), (b, b), (b, a), (b, c), (c, a), (c, b), (c, c)} 

R ◦ R = R
2 

= {(a, a), (a, c), (a, b), (b, a), (b, c), (b, b), (c, a), (c, b), 

(c, c)} S ◦ S = S
2 

= {(a, a), (b, b), (b, c), (b, a), (c, a), (c, c)}. 
 

The matrices of the above composite relations are as given 

below: 

 1 0 1
 

1 0 1
 1 1 1 

1 1 1
 

MRO S=  0 1 1 ; MSO R =  ; MRO R =1   1 1 ; 

 1  
   

1 0 0
 

MSO S =1 0 1 

 1 

1 0 
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Transitive Closure 

Let X be any finite set and R be a relation in X. The relation R
+ 

= R∪R
2
∪R

3 
∪· · ·∪R

n
 

in X is called the transitive closure of R in X. 

Example: Let the relation R = {(1, 2), (2, 3), (3, 3)} on the set {1, 2, 3}. What is the transitive closure of 

R? 

Solution: Given that R = {(1, 2), (2, 3), (3, 3)}. 

The transitive closure of R is R
+ 

= R ∪ R
2 

∪ R
3 

∪ · · · = 

R= {(1, 2), (2, 3), (3, 3)} 

R
2 

= R ◦ R = {(1, 2), (2, 3), (3, 3)} ◦ {(1, 2), (2, 3), (3, 3)} = {(1, 3), 

(2, 3), (3, 3)} 

R
3 

= R
2 

◦ R = {(1, 3), (2, 3), (3, 3)} 

R
4 

= R
3 

◦ R = {(1, 3), (2, 3), (3, 3)} 

R
+ 

= R ∪ R
2 

∪ R
3 

∪ R
4 

∪ ... 

= {(1, 2), (2, 3), (3, 3)} ∪ {(1, 3), (2, 3), (3, 3)} ∪ {(1, 3), (2, 3), (3, 3)} ∪ ... 

={(1, 2), (1, 3), (2, 3), (3, 3)}. 

Therefore R
+ 

= {(1, 2), (1, 3), (2, 3), (3, 3)}. 

Example: Let X = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4)} be a relation on X. Find R
+
. 

Solution: Given R = {(1, 2), (2, 3), (3, 4)} 

R
2 

= {(1, 3), (2, 4)} 

R
3 

= {(1, 4)} 

R
4 

= {(1, 4)} 

R
+ 

= {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}. 

Partial Ordering 
A binary relation R in a set P is called a partial order relation or a partial ordering in P iff R is 

reflexive, antisymmetric, and transitive. i.e., 

 aRa for all a ∈ P 

 aRb and bRa ➙ a = b 

 aRb and bRc ➙ aRc 

A set P together with a partial ordering R is called a partial ordered set or poset. The relation R is 

often denoted by the symbol ≤ which is diff erent from the usual less than equal to symbol. Thus, if 

≤ is a partial order in P , then the ordered pair (P, ≤) is called a poset. 
 

Example: Show that the relation ‖greater than or equal to‖ is a partial ordering on the set of 

integers. 

Solution: Let Z be the set of all integers and the relation R =
′
≥

′
 

(i). Since a ≥ a for every integer a, the relation 
′ 
≥

′ 
is reflexive. 

(ii). Let a and b be any two integers. 

Let aRb and bRa ➙ a ≥ b and b ≥ a 

➙ a = b 

∴ The relation 
′ 
≥

′ 
is antisymmetric. (iii). 

Let a, b and c be any three integers. 
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Let aRb and bRc ➙ a ≥ b and b ≥ c 

➙ a ≥ c 

∴ The relation 
′ 
≥

′ 
is transitive. 

Since the relation 
′ 
≥

′ 
is reflexive, antisymmetric and transitive, 

′ 
≥

′ 
is partial ordering on the set of 

integers. Therefore, (Z, ≥) is a poset. 

 

Example: Show that the inclusion ⊆ is a partial ordering on the set power set of a set S. 

Solution: Since (i). A ⊆ A for all A ⊆ S, ⊆ is reflexive. 

(ii). A ⊆ B and B ⊆ A ➙ A = B, ⊆ is antisymmetric. 

(iii). A ⊆ B and B ⊆ C ➙ A ⊆ C, ⊆ is transitive. 

Thus, the relation ⊆ is a partial ordering on the power set of S. 

Example: Show that the divisibility relation 
′
/
′ 
is a partial ordering on the set of positive integers. 

Solution: Let Z
+ 

be the set of positive integers. 

Since (i). a/a for all a ∈ Z
+
, / is reflexive. 

(ii). a/b and b/a ➙ a = b, / is antisymmetric. 

(iii). a/b and b/c ➙ a/c, / is transitive. 

It follows that / is a partial ordering on Z
+ 

and (Z
+
, /) is a poset. 

Note: On the set of all integers, the above relation is not a partial order as a and −a both divide 

each other, but a = −a. i.e., the relation is not antisymmetric. Definition: Let (P, ≤) be a partially 

ordered set. If for every x, y ∈ P we have either x ≤ y ∨ y ≤ x, then ≤ is called a simple ordering or 

linear ordering on P , and (P, ≤) is called a totally ordered or simply ordered set or a chain. 

Note: It is not necessary to have x ≤ y or y ≤ x for every x and y in a poset P . In fact, x may not be 
related to y, in which case we say that x and y are incomparable. Examples: 

(i). The poset (Z, ≤) is a totally ordered. 

Since a ≤ b or b ≤ a whenever a and b are integers. 
(ii). The divisibility relation / is a partial ordering on the set of positive integers. 

Therefore (Z
+
, /) is a poset and it is not a totally ordered, since it contain elements that are 

incomparable, such as 5 and 7, 3 and 5. 

 

Definition: In a poset (P, ≤), an element y ∈ P is said to cover an element x ∈ P if x < y and if 

there does not exist any element z ∈ P such that x ≤ z and z ≤ y; that is, y covers x ⇔ (x < y ∧ (x ≤ 

z 

≤ y ➙ x = z ∨ z = y)). 

Hasse Diagrams 
A partial order ≤ on a set P can be represented by means of a diagram known as Hasse diagram of 

(P, ≤). In such a diagram, 

(i). Each element is represented by a small circle or dot. 

(ii). The circle for x ∈ P is drawn below the circle for y ∈ P if x < y, and a line is drawn 

between x and y if y covers x. 

(iii). If x < y but y does not cover x, then x and y are not connected directly by a single line. 
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0 

1 

1 




Note: For totally ordered set (P, ≤), the Hasse diagram consists of circles one below the other. The 

poset is called a chain. 

 

Example: Let P = {1, 2, 3, 4, 5} and ≤ be the relation ‖less than or equal to‖ then the Hasse 

diagram is: 

 

It is a totally ordered set. 
 

Example: Let X = {2, 3, 6, 12, 24, 36}, and the relation ≤ be such that x ≤ y if x divides y. Draw the 

Hasse diagram of (X, ≤). Solution: The Hasse diagram is is shown below: 

 

 
It is not a total order set. 

 

Example: Draw the Hasse diagram for the relation R on A = {1, 2, 3, 4, 5} whose relation matrix 

given below: 

 

 

 

 

 

 

 
Solution: 

 1 0 1 1 1
 
 0 1 1 1 1
 0 0 1 1 

MR   =  
 0 0 0 1 0

 0 0 0 



 
 

R= {(1, 1), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (5.5)}. 

 
Hasse diagram for MR is 
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Example: A partial order R on the set A = {1, 2, 3, 4} is represented by the following digraph. 

Draw the Hasse diagram for R. 

 

 
Solution: By examining the given digraph , we find that 

R= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. 

We check that R is reflexive, transitive and antisymmetric. Therefore, R is partial order relation 

on A. 

The hasse diagram of R is shown below: 

 

Example: Let A be a finite set and ρ(A) be its power set. Let ⊆ be the inclusion relation on the 

elements of ρ(A). Draw the Hasse diagram of ρ(A), ⊆) for 

 A = {a} 

 A = {a, b}. 

Solution: (i). Let A = {a} 

ρ(A) = {ϕ, a} 

Hasse diagram of (ρ(A), ⊆) is shown in Fig: 

 

 

(ii). Let A = {a, b}. ρ(A) = {ϕ, {a}, {b}, {a, b}}. 

The Hasse diagram for (ρ(A), ⊆) is shown in fig: 

 
 

 
Example: Draw the Hasse diagram for the partial ordering ⊆ on the power set P (S) where S = {a, 

b, c}. 

Solution: S = {a, b, c}. 
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P (S) = {ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. 

Hasse diagram for the partial ordered set is shown in fig: 
 

 
Example: Draw the Hasse diagram representing the positive divisions of 36 (i.e., D36). 

Solution: We have D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36} if and only a divides b. The Hasse diagram 

for R is shown in Fig. 

Minimal and Maximal elements(members): Let (P, ≤) denote a partially or-dered set. An 

element y ∈ P is called a minimal member of P relative to ≤ if for no x ∈ P , is x < y. 

Similarly an element y ∈ P is called a maximal member of P relative to the partial ordering ≤ if 

for no x ∈ P , is y < x. 

Note: 
(i). The minimal and maximal members of a partially ordered set need not unique. 

(ii). Maximal and minimal elements are easily calculated from the Hasse diagram. 

They are the 'top' and 'bottom' elements in the diagram. 

Example: 

 

 

 

 

 
In the Hasse diagram, there are two maximal elements and two minimal elements. 

The elements 3, 5 are maximal and the elements 1 and 6 are minimal. 

Example: Let A = {a, b, c, d, e} and let the partial 

order on A in the natural way. 

The element a is maximal. 

The elements d and e are minimal. 

 

Upper and Lower Bounds: Let (P, ≤) be a partially ordered set and let A ⊆ P . Any element x ∈ P 

is called an upper bound for A if for all a ∈ A, a ≤ x. Similarly, any element x ∈ P is called a 
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lower bound for A if for all a ∈ A, x ≤ a. Example: A = {1, 2, 3, ..., 6} be ordered as pictured in 

figure. 

 

 

 

 

 
 

If B = {4, 5} then the upper bounds of B are 1, 2, 3. The lower bound of B is 6. 

Least Upper Bound and Greatest Lower Bound: 

Let (P, ≤) be a partial ordered set and let A ⊆ P . An element x ∈ P is a least upper bound or 

supremum for A if x is an upper bound for A and x ≤ y where y is any upper bound for A. 

Similarly, the the greatest lower bound or in mum for A is an element x ∈ P such that x is a lower 

bound and y ≤ x for all lower bounds y. 

Example: Find the great lower bound and the least upper bound of {b, d, g}, if they exist in the 
poset shown in fig: 

Solution: The upper bounds of {b, d, g} are g and h. Since g < h, g is the least upper bound. The 

lower bounds of {b, d, g} are a and b. Since a < b, b is the greatest lower bound. 

Example: Let A = {a, b, c, d, e, f, g, h} denote a partially ordered set whose Hasse diagram is 

shown in Fig: 

 

 

If B = {c, d, e} then f, g, h are upper bounds of B. 

The element f is least upper bound. 

 

 

Example: Consider the poset A = {1, 2, 3, 4, 5, 6, 7, 8} whose Hasse diagram is shown in Fig and 

let B = {3, 4, 5} 

 

 

 

 
The elements 1, 2, 3 are lower bounds of B. 

3 is greatest lower bound. 
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Functions 
A function is a special case of relation. 
Definition: Let X and Y be any two sets. A relation f from X to Y is called a function if for every x 

∈ X, there is a unique element y ∈ Y such that (x, y) ∈ f. Note: The definition of function requires 

that a relation must satisfies two additional conditions in order to qualify as a function. These 

conditions are as follows: 

(i) For every x ∈ X must be related to some y ∈ Y , i.e., the domain of f must be X and nor merely 

a subset of X. 

(ii). Uniqueness, i.e., (x, y) ∈ f and (x, z) ∈ f ➙ y = z. 

The notation f : X → Y , means f is a function from X toY . 

Example: Let X = {1, 2, 3}, Y = {p, q, r} and f = {(1, p), (2, q), (3, r)} then f(1) = p, f(2) = q, f(3) 

= r. Clearly f is a function from X to Y . 

 

 

 

Domain and Range of a Function: If f : X → Y is a function, then X is called the Domain of f and 

the set Y is called the codomain of f. The range of f is defined as the set of all images under f. 

It is denoted by f(X) = {y| for some x in X, f(x) = y} and is called the image of X in Y . The Range 

f is also denoted by Rf . 

Example: If the function f is defined by f(x)=x
2 

+ 1 on the set {−2, −1, 0, 1, 2}, find the range of 

f. 

Solution: f(−2) = (−2)
2 

+ 1 = 5 

f(−1) = (−1)
2 

+ 1 = 2 

f(0) = 0 + 1 = 1 
 

f(1) = 1 + 1 = 2 
 

f(2) = 4 + 1 = 5 
 

Therefore, the range of f = {1, 2, 5}. 

 

Types of Functions 

One-to-one(Injection): A mapping f : X → Y is called one-to-one if distinct elements of X are 

mapped into distinct elements of Y , i.e., f is one-to-one if 

x1 ≠ x2 ➙ f(x1) ≠ f(x2) 

or equivalently f(x1) = f(x2) ➙ x1 = x2 for x1, x2 ∈ X. 
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Example: f : R → R defined by f(x) = 3x, ∀x ∈ R is one-one, since 

f(x1) = f(x2) ➙ 3x1 = 3x2 ➙ x1 = x2, ∀x1, x2 ∈ R. 

Example: Determine whether f : Z → Z given by f(x) = x
2
, x ∈ Z is a one-to-One function. 

Solution: The function f : Z → Z given by f(x) = x
2
, x ∈ Z is not a one-to-one function. This is 

because both 3 and -3 have 9 as their image, which is against the definition of a one-to-one 

function. 

 
Onto(Surjection): A mapping f : X → Y is called onto if the range set Rf = Y . 

If f : X → Y is onto, then each element of Y is f-image of atleast one element of X. 

i.e., {f(x) : x ∈ X} = Y . 

If f is not onto, then it is said to be into. 
 

 

 
Surjective Not Surjective 

Example: f : R → R, given by f(x) = 2x, ∀x ∈ R is onto. 

Bijection or One-to-One, Onto: A mapping f : X → Y is called one-to-one, onto or bijective if it is 

both one-to-one and onto. Such a mapping is also called a one-to-one correspondence between X 

and Y . 
 

Example: Show that a mapping f : R → R defined by f(x) = 2x + 1 for x ∈ R is a bijective map 

from R to R. 

Solution: Let f : R → R defined by f(x) = 2x + 1 for x ∈ R. We need to prove that f is a bijective 

map, i.e., it is enough to prove that f is one-one and onto. 

 Proof of f being one-to-one 
Let x and y be any two elements in R such that f(x) = f(y) 

➙ 2x + 1 = 2y + 1 

➙ x = y 

Thus, f(x) = f(y) ➙ x = y 

This implies that f is one-to-one. 
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 Proof of f being onto 

Let y be any element in the codomain R 

➙ f(x) = y 

➙ 2x + 1 = y 

➙ x = (y-1)/2 

Clearly, x = (y-1)/2∈ R 

Thus, every element in the codomain has pre-image in the domain. 

This implies that f is onto 

Hence, f is a bijective map. 

Identity function: Let X be any set and f be a function such that f : X → X is defined by f(x) = x 

for all x ∈ X. Then, f is called the identity function or identity transformation on X. It can be 

denoted by I or Ix. 

Note: The identity function is both one-to-one and onto. 

Let Ix(x) = Ix(y) 

➙ x = y 

➙ Ix is one-to-one 

Ix is onto since x = Ix(x) for all x. 

Composition of Functions 

Let f : X → Y and g : Y → Z be two functions. Then the composition of f and g denoted by g ◦ f, 

is the function from X to Z defined as 

(g ◦ f)(x) = g(f(x)), for all x ∈ X. 

Note. In the above definition it is assumed that the range of the function f is a subset of Y (the 

Domain of g), i.e., Rf ⊆ Dg. g ◦ f is called the left composition g with f. 

Example: Let X = {1, 2, 3}, Y = {p, q} and Z = {a, b}. Also let f : X → Y be f = {(1, p), (2, q), (3, 
q) } and g : Y → Z be given by g = {(p, b), (q, b)}. Find g ◦ f. Solution: g ◦ f = {(1, b), (2, b), (3, b). 

 

Example: Let X = {1, 2, 3} and f, g, h and s be the functions from X to X given 

by 

f = {(1, 2), (2, 3), (3, 1)} g = {(1, 2), (2, 1), (3, 3)} 

h = {(1, 1), (2, 2), (3, 1)} s = {(1, 1), (2, 2), (3, 3)} 

Find f ◦ f; g ◦ f; f ◦ h ◦ g; s ◦ g; g ◦ s; s ◦ s; and f ◦ s. 
 

Solution: 

f ◦ g = {(1, 3), (2, 2), (3, 1)} 

g ◦ f = {(1, 1), (2, 3), (3, 2)} ̸= f ◦ g 

f ◦ h ◦ g = f ◦ (h ◦ g) = f ◦ {(1, 2), (2, 1), (3, 1)} 

= {(1, 3), (2, 2), (3, 2)} 

s ◦ g = {(1, 2), (2, 1), (3, 3)} = g 

g ◦ s = {(1, 2), (2, 1), (3, 3)} 

∴ s ◦ g = g ◦ s = g 

s ◦ s = {(1, 1), (2, 2), (3, 3)} = s 

f ◦ s = {(1, 2), (2, 3), (3, 1)} 

Thus, s ◦ s = s, f ◦ g ≠g ◦ f, s ◦ g = g ◦ s = g and h ◦ s = s ◦ h = h. 
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Example: Let f(x) = x + 2, g(x) = x − 2 and h(x) = 3x for x ∈ R, where R is the set of real 

numbers. Find g ◦ f; f ◦ g; f ◦ f; g ◦ g; f ◦ h; h ◦ g; h ◦ f; and f ◦ h ◦ g. 

Solution: f : R → R is defined by f(x) = x + 2 
f: R → R is defined by g(x) = x − 2 

h : R → R is defined by h(x) = 3x 

 g ◦ f : R → R 

Let x ∈ R. Thus, we can write 

(g ◦ f)(x) = g(f(x)) = g(x + 2) = x + 2 − 2 = x 

∴ (g ◦ f)(x) = {(x, x)| x ∈ R} 

 (f ◦ g)(x) = f(g(x)) = f(x − 2) = (x − 2) + 2 = x 

∴ f ◦ g = {(x, x)| x ∈ R} 

 (f ◦ f)(x) = f(f(x)) = f(x + 2) = x + 2 + 2 = x + 4 

∴ f ◦ f = {(x, x + 4)| x ∈ R} 

 (g ◦ g)(x) = g(g(x)) = g(x − 2) = x − 2 − 2 = x − 4 

➙ g ◦ g = {(x, x − 4)| x ∈ R} 

 (f ◦ h)(x) = f(h(x)) = f(3x) = 3x + 2 

∴ f ◦ h = {(x, 3x + 2)| x ∈ R} 

 (h ◦ g)(x) = h(g(x)) = h(x − 2) = 3(x − 2) = 3x − 6 

∴ h ◦ g = {(x, 3x − 6)| x ∈ R} 

 (h ◦ f)(x) = h(f(x)) = h(x + 2) = 3(x + 2) = 3x + 6 h ◦ f = 

{(x, 3x + 6)| x ∈ R} 

 (f ◦ h ◦ g)(x) = [f ◦ (h ◦ g)](x) 

f(h ◦ g(x)) = f(3x − 6) = 3x − 6 + 2 = 3x − 4 

∴ f ◦ h ◦ g = {(x, 3x − 4)| x ∈ R}. 

 
Example: What is composition of functions? Let f and g be functions from R to R, where R is a 

set of real numbers defined by f(x) = x
2 

+ 3x + 1 and g(x) = 2x − 3. Find the composition of 
functions: i) f ◦ f ii) f ◦ g iii) g ◦ f. 
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Inverse Functions 

A function f : X → Y is aid to be invertible of its inverse function f
−1 

is also function from the 

range of f into X. 

Theorem: A function f : X → Y is invertible ⇔ f is one-to-one and onto. 

Example: Let X = {a, b, c, d} and Y = {(1, 2, 3, 4} and let f : X → Y be given by f = {(a, 1), (b, 2), 

(c, 2), (d, 3)}. Is f
−1 

a function? 

Solution: f
−1 

= {(1, a), (2, b), (2, c), (3, d)}. Here, 2 has two distinct images b and c. 

Therefore, f−1 is not a function. 

Example: Let R be the set of real numbers and f : R → R be given by f = {(x, x2)| x ∈ R}. Is f−1 a 

function? 

Solution: The inverse of the given function is defined as f−1 = {(x2, x)| x ∈ R}. 

Therefore, it is not a function. 

Theorem: If f : X → Y and g : Y → X be such that g ◦ f = Ix and f ◦ g = Iy, then f and g are both 

invertible. Furthermore, f
−1 

= g and g
−1 

= f. 

Example: Let X = {1, 2, 3, 4} and f and g be functions from X to X given by f = {(1, 4), (2, 1), (3, 

2) , (4, 3)} and g = {(1, 2), (2, 3), (3, 4), (4, 1)}. Prove that f and g are inverses of each other. 

Solution: We check that 

 
(g ◦ f)(1) = g(f(1)) = g(4) = 1 = Ix(1), (f ◦ g)(1) = f(g(1)) = f(2) = 1 = Ix(1). 

(g ◦ f)(2) = g(f(2)) = g(1) = 2 = Ix(2), (f ◦ g)(2) = f(g(2)) = f(3) = 2 = Ix(2). 

(g ◦ f)(3) = g(f(3)) = g(2) = 3= Ix(3), (f ◦ g)(3) = f(g(3)) = f(4) = 3 = Ix(3). 

(g ◦ f)(4) = g(f(4)) = g(3) = 4= Ix(4), (f ◦ g)(4) = f(g(4)) = f(1) = 4 = Ix(4). 

Thus, for all x ∈ X, (g ◦ f)(x) = Ix(x) and (f ◦ g)(x) = Ix(x). Therefore g is inverse of f and f is 

inverse of g. 

Example: Show that the functions f(x) = x
3 

and g(x) = x
1/3 

for x ∈ R are inverses of one another. 

Solution: f : R → R is defined by f(x) = x
3 ; f: R → R is defined by g(x) = x

1/3
 

(f ◦ g)(x) = f(g(x)) = f(x
1/3

) = x
3(1/3) 

= x = Ix(x) 

i.e., (f ◦ g)(x) = Ix(x) 

and (g ◦ f)(x) = g(f(x)) = g(x
3
) = x

3(1/3) 
= x = Ix(x) 

i.e., (g ◦ f)(x) = Ix(x) 

Thus, f = g
−1 

or g = f
−1

 

i.e., f and g are inverses of one other. 

***Example: f : R → R is defined by f(x) = ax + b, for a, b ∈ R and a ≠ 0. Show that f is 

invertible and find the inverse of f. 

(i) First we shall show that f is one-to-one 

Let x1, x2 ∈ R such that f(x1) = f(x2) 

➙ ax1 + b = ax2 + b 

➙ ax1 = ax2 
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➙ x1 = x2 

∴ f is one-to-one. 

 To show that f is onto. 

Let y ∈ R(codomain) such that y = f(x) for some x ∈ R. 

➙ y = ax + b 

➙ ax = y − b 

➙ x = (y-b)/a 

Given y ∈ R(codomain), there exists an element x = (y-b)/a ∈ R such that f(x) = y. 

∴ f is onto 

➙ f is invertible and f
−1

(x)= (x-b)/a 

Example: Let f : R → R be given by f(x) = x
3 

− 2. Find f
−1

. 

(i) First we shall show that f is one-to-one 

Let x1, x2 ∈ R such that f(x1) = f(x2) 

➙ x
3

1 − 2 = x
3

2 − 

2 ➙ x
3
1 = x

3
2 

➙ x1 = x2 

∴ f is one-to-one. 

 To show that f is onto. 

➙ y = x
3 

− 2 

➙ x
3 

= y+2 

➙ x= 

Given y ∈ R(codomain), there exists an element x = 3 

∴ f is onto 

➙ f is invertible and f
−1

(x) = 

y  2 ∈ R such that f(x) = y. 

 

Floor and Ceiling functions: 

Let x be a real number, then the least integer that is not less than x is called the CEILING of x. 

The CEILING of x is denoted by ⌈x⌉. 

Examples: ⌈2.15⌉ = 3,⌈ √ 5⌉ = 3,⌈ −7.4⌉ = −7, ⌈−2⌉ = −2 

Let x be any real number, then the greatest integer that does not exceed x is called the Floor of x. 

The FLOOR of x is denoted by ⌊x⌋. 

Examples: ⌊5.14⌋ = 5, ⌊ √5⌋ = 2,⌊ −7.6⌋ = −8,⌊6⌋ = 6,⌊ −3⌋ = −3 

Example: Let f and g abe functions from the positive real numbers to positive real numbers 

defined by f(x) = ⌊2x⌋, g(x) = x
2
. Calculate f ◦ g and g ◦ f. 

Solution: f ◦ g(x) = f(g(x)) =f(x
2
)=⌊2x

2
⌋ 

g ◦ f(x) = g(f(x))=g(⌊2x⌋)=(⌊2x⌋)
2
 

 

3 x  2 
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1 

1 1 2 3 

Recursive Function 

Total function: Any function f : N
n 

→ N is called total if it is defined for every n-tuple in N
n
. 

Example: f(x, y) = x + y, which is defined for all x, y ∈ N and hence it is a total function. 

Partial function: If f : D → N where D ⊆ N
n
, then f is called a partial function. 

Example: g(x, y) = x − y, which is defined for only x, y ∈ N which satisfy x ≥ y. 

Hence g(x, y) is partial. 
Initial functions: 

The initial functions over the set of natural numbers is given by 

 Zero function Z: Z(x) = 0, for all x. 
 Successor function S: S(x) = x + 1, for all x. 
 Projection function U 

n
: U 

n
(x , x , ..., x ) = x for all n tuples (x , x , ..., x ), 1 ≤ 

i ≤ n. 
i i 1 2 n i 1 2 n 

Projection function is also called generalized identity function. 

For example, U 
1 
(x) = x for every x ∈ N is the identity function.1 

U 
2 
(x, y) = x, U 

3 
(2, 6, 9) = 2, U 

3 
(2, 6, 9) = 6, U 

3 
(2, 6, 9) = 9. 

Composition of functions of more than one variable: 

The operation of composition will be used to generate the other function. 

Let f1(x, y), f2(x, y) and g(x, y) be any three functions. Then the composition of g with f1 and f2 is 

defined as a function h(x, y) given by 

h(x, y) = g(f1(x, y), f2(x, y)). 

In general, let f1, f2, ..., fn each be partial function of m variables and g be a partial function of n 

variables. Then the composition of g with f1, f2, ..., fn produces a partial function h given by 

h(x1, x2, ..., xm) = g(f1(x1, x2, ..., xm), ..., fn(x1, x2, ...xm)). 

Note: The function h is total iff f1, f2, ..., fn and g are total. 

Example: Let f1(x, y) = x + y, f2(x, y) = xy + y
2 

and g(x, y) = xy. Then 

h(x, y) = g(f1(x, y), f2(x, y)) 

= g(x + y, xy + y
2
 

= (x + y)(xy + y
2
) 

 
Recursion: The following operation which defines a function f(x1, x2, ..., xn, y) of n + 1 variables 

by using other functions g(x1, x2, .., xn) and h(x1, x2, ..., xn, y, z) of n and n + 2 variables, 

respectively, is called recursion. 

f(x1, x2, ..., xn, 0) = g(x1, x2, ..., xn) 

f(x1, x2, ..., xn, y + 1) = h(x1, x2, ..., xn, y, f(x1, x2, ..., xn, y)) 

where y is the inductive variable. 

Primitive Recursive: A function f is said to be Primitive recursive iff it can be obtained from the 

initial functions by a finite number of operations of composition and recursion. 

 

***Example: Show that the function f(x, y) = x + y is primitive recursive. Hence compute the 

value of f(2, 4). 

Solution: Given that f(x, y) = x + y. 
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1 

3 

Here, f(x, y) is a function of two variables. If we want f to be defined by recursion, we 

need a function g of single variable and a function h of three variables. Now, 
 

f(x, y + 1) = x + (y + 1) 

= (x + y) + 1 

= f(x, y) + 1. 
 

Also, f(x, 0) = x. 

We define f(x, 0) as  
f(x, 0) = x =U 

1 
(x) 

= S(f(x, y)) 

=S(U 
3 
(x, y, f(x, y))) 

If we take g(x) = U1
1
(x) and h(x, y, z) = S(U3

3
(x, y, z)), we get f(x, 0) = g(x) and f(x, y + 1) = 

h(x, y, z). 

Thus, f is obtained from the initial functions U1
1
, U3

3
, and S by applying composition once and 

recursion once. 
Hence f is primitive recursive. 

Here, 

f(2, 0) = 2 
f(2, 4) = S(f(2, 3)) 

=S(S(f(2, 2))) 

=S(S(S(f(2, 1)))) 

=S(S(S(S(f(2, 0))))) 

=S(S(S(S(2))))) 

=S(S(S(3))) 

=S(S(4)) 

=S(5) 

=6 

Example: Show that f(x, y) = x ∗ y is primitive recursion. 

Solution: Given that f(x, y) = x ∗ y. 

Here, f(x, y) is a function of two variables. If we want f to be defined by recursion, we 
need a function g of single variable and a function h of three variables. Now, f(x, 0) = 0 

and 

 

 
We can write 

f(x, y + 1) = x ∗ (y + 1) = x ∗ y 

 f(x, y) + x 

f(x, 0) = 0 =Z(x) and 

f(x, y + 1) =f1(U3
3
(x, y, f(x, y)), U1

3
(x, y, f(x, y))) 

where f1(x, y) = x + y, which is primitive recursive. By taking g(x) = Z(x) = 0 and h defined by 

h(x, y, z) = f1(U3
3
(x, y, z), U1

3
(x, y, z)) = f(x, y + 1), we see that f defined by recursion. Since g 

and h are primitive recursive, f is primitive recursive. Example: Show that f(x, y) = x
y 

is primitive 

recursive function. Solution: Note that x
0 

= 1 for x ≠ 0 and we put x
0 

= 0 for x = 0. 

Also, x
y+1 

= x
y 

∗ x 

Here f(x, y) = x
y 

is defined as 

f(x, 0) = 1 = S(0) = S(Z(x)) 
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f(x, y + 1) = x ∗ f(x, y) 

 U1
3
(x, y, f(x, y)) ∗ U3

3
(x, y, f(x, y)) 

h(x, y, f(x, y) = f1(U1
3
(x, y, f(x, y)), U3

3
(x, y, f(x, y))) where f1(x, y) = x ∗ y, which is 

primitive recursive. 

∴ f(x, y) is a primitive recursive function. 

 
Example: Consider the following recursive function definition: If x < y then f(x, y) = 0, if y ≤ x 

then f(x, y) = f(x − y, y) + 1. Find the value of f(4, 7), f(19, 6). 

 
Solution: Given f(x, y) 

0;x < y 

f(x -y,y)+ 1 ; yx 

 

f(4, 7) = 0 [∴ 4 < 7] 

f(19, 6) = f(19 − 6, 6) + 1 

= f(13, 6) + 1 

f(13, 6) = f(13 − 6, 6) + 1 

= f(7, 6) + 1 

f(7, 6) = f(7 − 6, 6) + 1 

= f(1, 6) + 1 

=0 + 1 

=1 

f(13, 6) = f(7, 6) + 1 

=1 + 1 

=2 

f(19, 6) = 2 + 1 

= 3 

Example: Consider the following recursive function definition: If x < y then f(x, y) = 0, if y ≤ x 

then f(x, y) = f(x − y, y) + 1. Find the value of f(86, 17) 

 

Permutation Functions 
Definition: A permutation is a one-one mapping of a non-empty set onto itself. 

Let S = {a1, a2, ..., an} be a finite set and p is a permutation on S, we list the elements of S and 

the corresponding functional values of p(a1), p(a2), ..., p(an) in the following form: 
 a1 a2 .  .  . an 
p(a ) p(a ) .  .  . p(a ) 
 1 2 n 

If p : S → S is a bijection, then the number of elements in the given set is called the degree of its 

permutation. 
Note: For a set with three elements, we have 3! permutations. 

Example: Let S = {1, 2, 3}. The permutations of S are as follows: 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

P1=1 2 ; P2=3 2  ; P3=1 3 2  ; P4=3 1 3  ; P5=2 1 3 1  ; P6= 2 
          1 3 2

Example: Let S = {1, 2, 3, 4} and p : S → S be given by f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3. Write 

this in permutation notation. 

Solution: The function can be written in permutation notation as given below: 

={ 
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1 2 3 4
f= 

 2 1 4 3

Identity Permutation: If each element of a permutation be replaced by itself, then such a 

permutation is called the identity permutation. 
 a1 a2 ... an 

Example: Let S = {a1, a2, , an}.then I=  
a a

 ...  is the identity permutation on S. a 
 1 2 n 

Equality of Permutations: Two permutations f and g of degree n are said to be equal if and only 

if f(a) = g(a) for all a ∈ S. 

Example: Let S = {1, 2, 3, 4} 
 

1 2 3 4  4 1 3 2
f= 3 1  ;g=  2 4 4 3 2 1 
   

We have f(1) = g(1) = 3 

f(2) = g(2) = 1 

f(3) = g(3) = 2 

f(4) = g(4) = 4 

i.e., f(a) = g(a) for all a ∈ S. 

Product of Permutations: (or Composition of Permutations) 
   a b ... h     a b ... h  

Let S={a,b,…h}and let f (a) f (b) ...  ,g=f (h) g(a) g(b) ... g(h) 
   

We define the composite of f and g as follows: 
   a b ... h      a b ... h  

f ◦ g = f (a) f (b) ... of (h) g(a) g(b) ... g(h) 

 a b 

   
... h 

= 

 f (g(a)) f (g(b)) ... 


f (g(h))
Clearly, f ◦ g is a permutation. 

1 
 

2 3 4


1 2 3 4
Example: Let S = {1, 2, 3, 4} and let f = 

 2 1 



4 3

and g = 

 4 1 



2 3
Find f ◦ g and g ◦ 

f in the permutation from. 
1 2 3 4 1 2 3 4

Solution: f ◦ g = 3 2  ;g ◦ f = 4 1 
  1 3 4 2

Note: The product of two permutations of degree n need not be commutative. 

Inverse of a Permutation: 
 

 a1 a2 ... an 
If f is a permutation on S = {a1, a2, , an} such that f   

b b
 .... b 

 1 2 n 

then there exists a permutation called the inverse f, denoted f
−1 

such that f ◦ f
−1 

= f
−1 

◦ f = 

I (the identity permutation on S) 
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1 b1 b2 ... bn 

where f  

a1 a 2 ... 


an 


1 
Example: If f = 

 2 

2 3 4 −1 
 , then find f 

4 3 1
, and show that f ◦f

−1
 = f

−1 
 

◦f = I 

 

−1  2 4 3 1  1 2 3 4
Solution: f =  = 

1 2 3 4    4 1 3 2


−1 1 2 3 4  1 2 3 4 1 2 3 4
f ◦f =2  o4 3 1 4 1  =3 2 2 3 4 

     1 


Similarly, f
−1 

◦ f = I.➙ f ◦ f
−1 

= f
−1 

◦ f = I. 

Cyclic Permutation: Let S = {a1, a2, ..., an} be a finite set of n symbols. A permutation f defined 

on S is said to be cyclic permutation if f is defined such that 

f(a1) = a2, f(a2) = a3, .... , f(an−1) = an and f(an) = a1. 

Example: Let S = {1, 2, 3, 4}. 
 

1 
Then 

 4 

2 3 4
 =(1 4)(2 3) is a cyclic permutation. 

3 2 1


Disjoint Cyclic Permutations: Let S = {a1, a2, ..., an}. If f and g are two cycles on S such that 

they have no common elements, then f and g are said to be disjoint cycles. 

Example: Let S = {1, 2, 3, 4, 5, 6}. 

If f = (1 4 5) and g = (2 3 6) then f and g are disjoint cyclic permutations on S. 

Note: The product of two disjoint cycles is commutative. 

1 
Example: Consider the permutation f = 

 2 

2 3 4 5 

3 4 5 1 

6 7


7 6


The above permutation f can be written as f = (1 2 3 4 5)(6 7). Which is a product of two disjoint 

cycles. 

Transposition: A cyclic of length 2 is called a transposition. 

Note: Every cyclic permutation is the product of transpositions. 

1 
Example: f =

 2 

2 3 4 

4 5 1 

5
 =(1 2 4)(3 5) = (1 4)(1 2)(3 5). 

3


Inverse of a Cyclic Permutation: To find the inverse of any cyclic permutation, we write its 

elements in the reverse order. 
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For example, (1 2 3 4)
−1 

= (4 3 2 1). 

Even and Odd Permutations: A permutation f is said to be an even permutation if f can be 

expressed as the product of even number of transpositions. 

A permutation f is said to be an odd permutation if f is expressed as the product of odd number of 

transpositions. 

Note: 

(i) An identity permutation is considered as an even permutation. 

(ii) A transposition is always odd. 

(iii). The product of an even and an odd permutation is odd. Similarly the product of an 

odd permutation and even permutations is odd. 

Example: Determine whether the following permutations are even or odd permutations. 
 

1 
(i) f= 

 2 

2 3 4 5


4 3 1 5


1 
(ii) g = 

 2 

1 
(iii) h= 

 4 

2 3 4 5 6 7 8


5 7 8 6 1 4 3

2 3 4 5


3 1 2 5

1 2 3 4 5
Solution: (i). For f = 

 2 4 3 1 
 = (1 2 4) = (1 4)(1 2) 

5


➙ f is an even permutation 
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1 
(ii). For g = 

 2 

= (1 2 5 6)(3 7 4 8) = (1 6)(1 5)(1 2)(3 8)(3 4)(3 7) 
⇒ g is an even permutation. 

 

1 
(iii) h= 

 4 

2 3 4 

3 1 2 

5
 = (1 4 2 3) = (1 3)(1 2)(1 4) 

5


Product of three transpositions 

➙ h is an odd permutation. 

2 3 4 5 6 7 8


5 7 8 6 1 4 3
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Lattices 
In this section, we introduce lattices which have important applications in the theory and design 

of computers. 

Definition: A lattice is a partially ordered set (L, ≤) in which every pair of elements a, b ∈ L has 

a greatest lower bound and a least upper bound. 

Example: Let Z
+ 

denote the set of all positive integers and let R denote the relation ‘division‘ in 

Z
+
, such that for any two elements a, b ∈ Z

+
, aRb, if a divides b. Then (Z

+
, R) is a lattice in 

which the join of a and b is the least common multiple of a and b, i.e. 

a ∨ b = a ⊕ b = LCM of a and b, 

and the meet of a and b, i.e. a ∗ b is the greatest common divisor (GCD) of a and b i.e., 

a ∧ b = a ∗ b = GCD of a and b. 

We can also write a+b = a∨b = a⊕b=LCM of a and b and a.b = a∧b = a∗b=GCD of a and b. 

Example: Let n be a positive integer and Sn be the set of all divisors of n If n = 30, S30 = {1, 2, 

3, 5, 6, 10, 15, 30}. Let R denote the relation division as defined in Example 1. Then (S30, R) is 

a Lattice see Fig: 

 

 

 

 

 

 

 

 

Example: Let A be any set and P (A) be its power set. The poset P (A), ⊆) is a lattice in which the 

meet and join are the same as the operations ∩ and ∪ on sets respectively. 

S = {a}, P (A) = {ϕ, {a}} 
 

S = {a, b}, P (A) = {ϕ, {a}, {a}, S}. 
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

Some Properties of Lattice 

Let (L, ≤) be a lattice and ∗ and ⊕ denote the two binary operation meet and join on (L, ≤). Then 

for any a, b, c ∈ L, we have 

(L1): a∗a = a, (L1)′ : a⊕a = a (Idempotent laws) 

(L2): b∗a = b∗a, (L2)
′ 
: a ⊕b = b + a (Commutative laws) 

(L3) : (a∗b)∗c = a∗(b∗c), (L3)
′ 
: (a⊕b)⊕c = a⊕(b + c) (Associative laws) 

(L4) : a∗(a + b) = a,(L4)
′ 
: a⊕(a∗b) = a (Absorption laws). 

The above properties (L1) to (L4) can be proved easily by using definitions of meet and 

join. We can apply the principle of duality and obtain (L1)
′ 
to (L4)

′
. 

Theorem: Let (L, ≤) be a lattice in which ∗ and ⊕ denote the operations of meet and join 

respectively. For any a, ∈ L, a ≤ b ⇔ a ∗ b = a ⇔ a ⊕ b = b. 

Proof: We shall first prove that a ≤ b ⇔ a ∗ b = b. 

In order to do this, let us assume that a ≤ b. Also, we know that a ≤ a. 

Therefore a ≤ a ∗ b. From the definition of a ∗ b, we have a ∗ b ≤ a. 

Hence a ≤ b ➙ a ∗ b = a. 

Next, assume that a ∗ b = a; but it is only possible if a ≤ b, that is, a ∗ b = a ➙ a ≤ b. 

Combining these two results, we get the required equivalence. 

It is possible to show that a ≤ b ⇔ a ⊕ b = b in a similar manner. 

Alternatively, from a ∗ b = a, we have 

b ⊕ (a ∗ b) = b ⊕ a = a ⊕ b 

but b ⊕ (a ∗ b) = b 

Hence a ⊕ b = b follows from a ∗ b = a. 

By repeating similar steps, we can show that a ∗ b = a follows from a ⊕ b = b. 

Therefore a ≤ b ⇔ a ∗ b = a ⇔ a ⊕ b = b. 

Theorem: Let (L, ≤) be a lattice. Then b  c  
 a * b  a * c

 

a  b  a  c 

Proof: By above theorem a ≤ b ⇔ a ∗ b = a ⇔ a ⊕ b = b. 

To show that a ∗ b ≤ a ∗ c, we shall show that (a ∗ b) ∗ (a ∗ c) = a ∗ b 

(a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ a) ∗ c 

= a ∗ (a ∗ b) ∗ c 

= (a ∗ a) ∗ (b ∗ c) 

= a ∗ (b ∗ c) 

= a ∗ b 

∴ If b ≤ c then a ∗ b ≤ a ∗ c.Next, let b ≤ c ➙ b ⊕ c = c. 

To show that a ⊕ b ≤ a ⊕ c. It sufficient to show that (a ⊕ b) ⊕ (a ⊕ c) = a ⊕ c. 
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Consider,(a ⊕ b) ⊕ (a ⊕ c) = a ⊕ (b ⊕ a) ⊕ c 

= a ⊕ (a ⊕ b) ⊕ c 

= (a ⊕ a) ⊕ (b ⊕ c) 

= a ⊕ (b ⊕ c) 

= a ⊕ b 

∴ If b ≤ c then a ⊕ b ≤ a ⊕ c. 

Note: The above properties of a Lattice are called properties of Isotonicity. 

Lattice as an algebraic system: 

We now define lattice as an algebraic system, so that we can apply many concepts 

associated with algebraic systems to lattices. 

Definition: A lattice is an algebraic system (L, ∗,⊕) with two binary operation ‗∗‘and ‗⊕‘ on L 

which are both commutative and associative and satisfy absorption laws. 

Bounded Lattice: 

A bounded lattice is an algebraic structure (L,,,0,1) sucha that (L,,) is a lattice, and the 

constants 0,1∈ L satisfy the following: 

1. for all x∈ L, x1=x and x1=1 

2. for all x∈ L, x0=0 and x0=x. 

The element 1 is called the upper bound, or top of L and the element 0 is called the lower bound 

or bottom of L. 

Distributive lattice: 

A lattice (L,∨,𝖠) is distributive if the following additional identity holds for all x, y, and z in L: 

x 𝖠 (y ∨ z) = (x 𝖠 y) ∨ (x 𝖠 z) 

Viewing lattices as partially ordered sets, this says that the meet peration preserves nonempty 

finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its dual 

x ∨ (y 𝖠 z) = (x ∨ y) 𝖠 (x ∨ z) for all x, y, and z in L. 

Example: Show that the following simple but significant lattices are not distributive. 

Solution a) To see that the diamond lattice is not distributive, use the middle elements of the 

lattice: a 𝖠 (b ∨ c) = a 𝖠 1 = a, but (a 𝖠 b) ∨ (a 𝖠 c) = 0 ∨ 0 = 0, and a ≠0. 

Similarly, the other distributive law fails for these three elements. 

b) The pentagon lattice is also not distributive 
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Example: Show that lattice is not a distributive lattice. 

Sol. A lattice is distributive if all of its elements follow distributive property so let we verify the 

distributive property between the elements n, l and m. 

GLB(n, LUB(l, m)) = GLB(n, p) [∴ LUB(l, m) = p] 

= n (LHS) 

also LUB(GLB(n, l), GLB(n, m)) = LUB(o, n); [∴ GLB(n, l) = o and GLB(n, m) = n] 

= n (RHS) 

so LHS = RHS. 

But GLB(m, LUB(l, n)) = GLB(m, p) [∴ LUB(l, n) = p] 

= m (LHS) 

also LUB(GLB(m, l), GLB(m, n)) = LUB(o, n); [∴ GLB(m, l) = o and GLB(m, n) = n] 

= n (RHS) 
Thus, LHS ≠ RHS hence distributive property doesn‘t hold by the lattice so lattice is not 

distributive. 

Example: Consider the poset (X, ≤ ) where X = {1, 2, 3, 5, 30} and the partial ordered relation ≤ 

is defined as i.e. if x and y ∈X then x ≤ y means ‗x divides y‘. Then show that poset (I+, ≤) is a 

lattice. 

Sol. Since GLB(x, y) = x 𝖠 y = lcm(x, y) 
and LUB(x, y) = x ∨ y = gcd(x, y) 
Now we can construct the operation table I and table II for GLB and LUB respectively and the 

Hasse diagram is shown in Fig. 

Test for distributive lattice, i.e., 

GLB(x, LUB(y, z)) = LUB(GLB(x, y), GLB(x, z)) 

Assume x = 2, y = 3 and z = 5, then 

RHS:GLB(2, LUB(3, 5)) = GLB(2, 30) = 2 

LHS: LUB(GLB(2, 3), GLB(2, 5)) = LUB(1, 1) = 1 

SinceRHS ≠ LHS, hence lattice is not a distributive lattice. 
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Complemented lattice: 

A complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in 

which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a 𝖠 b = 0. 

Complements need not be unique. 

Example: Lattices shown in Fig (a), (b) and (c) are complemented lattices. 

Sol. 

For the lattice (a) GLB(a, b) = 0 and LUB(x, y) = 1. So, the complement a is b and vise versa. 

Hence, a complement lattice. 

 

For the lattice (b) GLB(a, b) = 0 and GLB(c, b) = 0 and LUB(a, b) = 1 and LUB(c, b) = 1; so 

both a and c are complement of b. 

Hence, a complement lattice. 

 

In the lattice (c) GLB(a, c) = 0 and LUB(a, c) = 1; GLB(a, b) = 0 and LUB(a, b) = 1. So, 

complement of a are b and c. 

Similarly complement of c are a and b also a and c are complement of b. 

Hence lattice is a complement lattice. 

Previous Questions 
1. a) Let R be the Relation R= {(x,y)/ x divides y )} . Draw the Hasse diagram? 

b) Explain in brief about lattice? 

c) Define Relation? List out the Operations on Relations 

2. Define Relation? List out the Properties of Binary operations? 

3. Let the Relation R be R={(1,2) ,(2,3),(3,3)} on the set A= {1,2,3}. What is the Transitive 

Closure of R? 

4. Explain in brief about Inversive and Recursive functions with examples? 

5. Prove that (S, ≤) is a Lattice, where S= {1,2,5,10} and ≤ is for divisibility. Prove that it is also  

a Distributive Lattice? 

6. Prove that (S,≤) is a Lattice, where S= {1,2,3,6} and ≤ is for divisibility. Prove that it is also a 

Distributive Lattice? 

7. Let A be a given finite set and P(A) its power set. Let  be the inclusion relation on the 

elements of P(A). Draw Hasse diagrams of (P(A),  ) for A={a}; A={a,b}; A={a,b,c} and 

A={a,b.c.d}. 

8. Let Fx be the set of all one-to-one onto mappings from X onto X, where X={1,2,3}. Find all 

the elements of Fx and find the inverse of each element. 

9. Show that the function f(x) = x+y is primitive recursive. 

10. Let X={2,3,6,12,24,36) and a relation ≤‘ be such that x≤ _if x divides y. Draw the Hasse 

diagram of (x,≤). 

11.If A={1,2,3,4} and P={{1,2},{3},{4}} is a partition of A, find the equivalence relation 
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

determined by P. 

12. Let X={1,2,3} and f, g, h and s be functions from X to X given by f={<1,2>, <2,3>, <3,1>} 

g={<1,2>, <2,1>, <3,3>} h={<1,1>, <2,2>, <3,1>} and s={<1,1>, <2,2>, <3,3>}. Find 

fog, fohog, gos, fos. 

13. Let X={1,2,3,4} and R={<1,1>, <1,4>, <4,1>, <4,4>, <2,2>, <2,3>, <3,2>, <3,3>}. Write the 

matrix of R and sketch its graph. 

14. Let X = {a,b,c,d,e} and let C = {{a,b},{c},{d,e}}. Show that the partition C defines an 

equivalence relation on X. 
15. Show that the function f(x)= 

x / 2;
 when xiseven is primitive recursive. 

 
(x 1) / 2; when xis odd 

16. If A={1,2,3,4} and R,S are relations on A defined by R={(1,2),(1,3),(2,4),(4,4)} 

S={(1,1),(1,2),(1,3),(1,4),(2,3),(2,4)} find R o S, S o R, R2, S2, write down there matrices. 

17.Determine the number of positive integers n where 1≤n≤2000 and n is not divisible by2,3 or 

5 but is divisible by 7. 

18. Determine the number of positive integers n where 1≤n≤100 and n is not divisible by2,3 or 5. 

19. Which elements of the poset /({2,4,5,10,12,20,25},/) are maximal and which are minimal? 

20. Let X={(1,2,3} and f,g,h and s be functions from X to X given by f={(1,2),(2,3),(3,1)}, 

g={(1,2),(2,1),(3,3)}, h={(1,1),(2,2),(3,1) and s={(1,1),(2,2),(3,3)}. 

 
 

Multiple choice questions 
 

1. A is an ordered collection of objects. 

a) Relation b) Function c) Set d) Proposition 

Answer: c 

2. The set O of odd positive integers less than 10 can be expressed by . 

a) {1, 2, 3}      b) {1, 3, 5, 7, 9} c) {1, 2, 5, 9} d) {1, 5, 7, 9, 11} 

Answer: b 

3. Power set of empty set has exactly          subset. 

a) One b) Two c) Zero d) Three 

Answer: a 

4. What is the Cartesian product of A = {1, 2} and B = {a, b}? 

a) {(1, a), (1, b), (2, a), (b, b)} b) {(1, 1), (2, 2), (a, a), (b, b)} 

c) {(1, a), (2, a), (1, b), (2, b)} d) {(1, 1), (a, a), (2, a), (1, b)} 

Answer: c 

5. The Cartesian Product B x A is equal to the Cartesian product A x B. Is it True or False? 

a) True b) False 

Answer: b 

6. What is the cardinality of the set of odd positive integers less than 10? 

a) 10 b) 5 c) 3 d) 20 

Answer: b 

7. Which of the following two sets are equal? 

a) A = {1, 2} and B = {1} b) A = {1, 2} and B = {1, 2, 3} 

c) A = {1, 2, 3} and B = {2, 1, 3} d) A = {1, 2, 4} and B = {1, 2, 3} 

Answer: c 

8. The set of positive integers is . 

a) Infinite b) Finite c) Subset d) Empty 

Answer: a 
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A) Yes, No, No, Yes B) No, Yes, No, Yes 
C) No, No, No, Yes D) No, Yes, Yes, Yes E) No, No, Yes, No 

13. Let R be a non-empty relation on a collection of sets defined by ARB if and only if A∩ B 

= ØThen (pick the TRUE statement) 

A.R is relexive and transitive B.R is symmetric and not transitive 

C.R is an equivalence relation D.R is not relexive and not symmetric 

Option: B 

14. Consider the divides relation, m | n, on the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10}. The cardinality 

of the covering relation for this partial order relation (i.e., the number of edges in the Hasse 

diagram) is 

(a) 4 (b) 6 (c) 5 (d) 8 (e) 7 
Ans:e 

15. Consider the divides relation, m | n, on the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10}. Which of the 

following permutations of A is not a topological sort of this partial order relation? 

(a) 7,2,3,6,9,5,4,10,8 (b) 2,3,7,6,9,5,4,10,8 

(c) 2,6,3,9,5,7,4,10,8 (d) 3,7,2,9,5,4,10,8,6 

(e) 3,2,6,9,5,7,4,10,8 

Ans:c 

16. Let A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and consider the divides relation 

on A. Let C denote the length of the maximal chain, M the number of maximal elements, and 

m the number of minimal elements. Which is true? 

(a) C = 3, M = 8, m = 6       (b) C = 4, M = 8, m = 6 

(c) C = 3, M = 6, m = 6      (d) C = 4, M = 6, m = 4 
(e) C = 3, M = 6, m = 4 

Ans:a 

17. What is the smallest N > 0 such that any set of N nonnegative integers must have two distinct 

integers whose sum or difference is divisible by 1000? 

(a) 502 (b) 520 (c) 5002 (d) 5020 (e) 52002 

Ans:a 
18. Let R and S be binary relations on a set A. Suppose that R is reflexive, symmetric, and transitive and 

that S is symmetric, and transitive but is not reflexive. Which statement is always true for any such R 
and S? 

(a) R 𝖴 S is symmetric but not reflexive and not transitive. 

(b) R 𝖴 S is symmetric but not reflexive. 

(c) R 𝖴 S is transitive and symmetric but not reflexive 

9. What is the Cardinality of the Power set of the set {0, 1, 2}. 

a) 8 b) 6 c) 7 d) 9 

Answer: a 

10. The members of the set S = {x | x is the square of an integer and x < 100} is----- 

a) {0, 2, 4, 5, 9, 58, 49, 56, 99, 12} b) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81} 

c) {1, 4, 9, 16, 25, 36, 64, 81, 85, 99} d) {0, 1, 4, 9, 16, 25, 36, 49, 64, 121} 

Answer: b 

11. Let R be the relation on the set of people consisting of (a,b) where aa is the parent of b. Let S 

be the relation on the set of people consisting of (a,b) where a and b are siblings. What are S∘R 

and R∘S? 

A) (a,b) where a is a parent of b and b has a sibling; (a,b) where a is the aunt or uncle of b. 
B) (a,b) where a is the parent of b and a has a sibling; (a,b) where a is the aunt or uncle of b. 

C) (a,b) where a is the sibling of b's parents; (a,b) where aa is b's niece or nephew. 

D) (a,b) where a is the parent of b; (a,b) where a is the aunt or uncle of b. 

12. On the set of all integers, let (x,y)∈R(x,y)∈R iff xy≥1xy≥1. Is relation R reflexive, 

symmetric, antisymmetric, transitive? 
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(d)  R 𝖴 S is reflexive and symmetric. (e) R 𝖴 S is symmetric but not transitive. 
Ans:d 

19. Let R be a relation on a set A. Is the transitive closure of R always equal to the transitive 

closure of R2? Prove or disprove. 

Solution: Suppose A = {1, 2, 3} and R = {(1, 2),(2, 3)}. Then R2 = {(1, 3)}. 

Transitive closure of R is R∗ = {(1, 2),(2, 3),(1, 3)}. 

Transitive closure of R2 is {(1, 3)}. 

They are not always equal. 

20. Suppose R1 and R2 are transitive relations on a set A. Is the relation R1 𝖴 R2 necessariy a 
transitive relation? Justify your answer. 

Solution: No. {(1, 2)} and {(2, 3)} are each transitive relations, but their union 
{(1, 2),(2, 3)} is not transitive. 

21. Let D30 = {1, 2, 3, 4, 5, 6, 10, 15, 30} and relation I be partial ordering on D30. The all lower 

bounds of 10 and 15 respectively are 

A.1,3 B.1,5 C.1,3,5 D.None of these Option: B 

22. Hasse diagrams are drawn for 

A.partially ordered sets B.lattices C.boolean Algebra D.none of these 

Option: D 

23. A self-complemented, distributive lattice is called 

A.Boolean algebra B.Modular lattice C.Complete lattice D.Self dual lattice 

Option: A 

24.  Let D30 = {1, 2, 3, 5, 6, 10, 15, 30} and relation I be a partial ordering on D30. The lub of 

10 and 15 respectively is 

A.30 B.15 C.10 D.6 Option: A 

25: Let X = {2, 3, 6, 12, 24}, and ≤ be the partial order defined by X ≤ Y if X divides Y. 

Number of edges in the Hasse diagram of (X, ≤ ) is 

A.3 B.4 C.5 D.None of these 

Option: B 

26. Principle of duality is defined as 

A. ≤ is replaced by ≥ B.LUB becomes GLB 

C.all properties are unaltered when ≤ is replaced by ≥ 

D.all properties are unaltered when ≤ is replaced by ≥ other than 0 and 1 element. 

Option: D 

27. Different partially ordered sets may be represented by the same Hasse diagram if they are 

A.same B.lattices with same order C.isomorphic D.order-isomorphic 

Option: D 

28. The absorption law is defined as 

A.a * ( a * b ) = b B.a * ( a ⊕ b ) = b C.a * ( a * b ) = a ⊕ bD.a * ( a ⊕ b ) = a 

Option: D 

29. A partial order is deined on the set S = {x, a1, a2, a3,...... an, y} as x ≤ a i for all i and ai 
≤ y for all i, where n ≥ 1. Number of total orders on the set S which contain partial 

order ≤ is 

A.1 B.n C.n + 2 D.n ! Option: D 

30. Let L be a set with a relation R which is transitive, antisymmetric and reflexive and for 

any two elements a, b ∈ L. Let least upper bound lub (a, b) and the greatest lower 

bound glb (a, b) exist. Which of the following is/are TRUE ? 

A.L is a Poset B.L is a boolean algebra C.L is a lattice D.none of these 

Option: C 
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UNIT-3 
Algebraic Structures 

Algebraic Systems with One Binary Operation 

Binary Operation 

Let S be a non-empty set. If f : S × S → S is a mapping, then f is called a binary 

operation or binary composition in S. 

The symbols +, ·, ∗, ⊕ etc are used to denote binary operations on a set. 

 For a, b ∈ S ➙ a + b ∈ S ➙ + is a binary operation in S. 

 For a, b ∈ S ➙ a · b ∈ S ➙ · is a binary operation in S. 

 For a, b ∈ S ➙ a ◦ b ∈ S ➙ ◦ is a binary operation in S. 

 For a, b ∈ S ➙ a ∗ b ∈ S ➙ ∗ is a binary operation in S. 

 This is said to be the closure property of the binary operation and the set S is said to be 

closed with respect to the binary operation. 

Properties of Binary Operations 

Commutative: ∗ is a binary operation in a set S. If for a, b ∈ S, a ∗ b = b ∗ a, then ∗ is said to be 

commutative in S. This is called commutative law. 

Associative: ∗ is a binary operation in a set S. If for a, b, c ∈ S, (a∗b)∗c = a∗(b∗c), then ∗ is said to 

be associative in S. This is called associative law. 

Distributive: ◦, ∗ are binary operations in S. If for a, b, c ∈ S, (i) a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ c), (ii) 

(b ∗ c) ◦ a = (b ◦ a) ∗ (c ◦ a), then ◦ is said to be distributive w.r.t the operation ∗. 

Example: N is the set of natural numbers. 

(i)  +, · are binary operations in N, since for a, b ∈ N, a + b ∈ N and a · b ∈ N. In 

other words N is said to be closed w.r.t the operations + and ·. 

(ii) +, · are commutative in N, since for a, b ∈ N, a + b = b + a and a · b = b · a. 

(iii) +, · are associative in N, since for a, b, c ∈ N, 

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c. 

(iv) is distributive w.r.t the operation + in N, since for a, b, c ∈ N, a · (b + c) = a · b + a · 

c and (b + c) · a = b · a + c · a. 

(v) The operations subtraction (−) and division (÷) are not binary operations in N, since 

for 3, 5 ∈ N does not imply 3 − 5 ∈ N and 
3

5 ∈ N. 

Example: A is the set of even integers. 

(i) +, · are binary operations in A, since for a, b ∈ A, a + b ∈ A and a · b ∈ A. 

(i) +, · are commutative in A, since for a, b ∈ A, a + b = b + a and a · b = b · a. 

(ii) +, · are associative in A, since for a, b, c ∈ A, 

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c. 

(iv) · is distributive w.r.t the operation + in A, since for a, b, c ∈ A, a · 

(b + c) = a · b + a · c and (b + c) · a = b · a + c · a. 
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Example: Let S be a non-empty set and ◦ be an operation on S defined by a ◦ b = a for a, b ∈ S. 

Determine whether ◦ is commutative and associative in S. 

Solution: Since a ◦ b = a for a, b ∈ S and b ◦ a = b for a, b ∈ S. 

➙ a ◦ b ≠ b ◦ a. 

∴ ◦ is not commutative in S. 

Since (a ◦ b) ◦ c = a ◦ c = a 

a ◦ (b ◦ c) = a ◦ b = a for a, b, c ∈ S. 

∴ ◦ is associative in S. 

Example: ◦ is operation defined on Z such that a ◦ b = a + b − ab for a, b ∈ Z. Is the operation ◦ a 

binary operation in Z? If so, is it associative and commutative in Z? 

Solution: If a, b ∈ Z, we have a + b ∈ Z, ab ∈ Z and a + b − ab ∈ Z. 

➙ a ◦ b = a + b − ab ∈ Z. 

∴ ◦ is a binary operation in Z. 

➙ a ◦ b = b ◦ a. 

∴ ◦ is commutative in Z. 

Now 

 

 

and 

 
(a ◦ b) ◦ c = (a ◦ b) + c − (a ◦ b)c 

= a + b − ab + c − (a + b − ab)c 

=a + b − ab + c − ac − bc + abc 

 

a ◦ (b ◦ c) = a + (b ◦ c) − a(b ◦ c) 

=a + b + c − bc − a(b + c − bc) 

=a + b + c − bc − ab − ac + abc 

=a + b − ab + c − ac − bc + abc 

➙ (a ◦ b) ◦ c = a ◦ (b ◦ c). ∴ 

◦ is associative in Z. 

Example: Fill in blanks in the following composition table so that
′
◦
′
is associative in S = {a,b,c,d}. 

◦ a b c d 

a a b c d 

b b a c d 

c c d c d 

d     

Solution: d ◦ a = (c ◦ b) ◦ a[∵ c ◦ b = d] 

=c ◦ (b ◦ a) [∵ ◦ is associative] 

=c ◦ b 

=d 

d ◦ b = (c ◦ b) ◦ b = c ◦ (b ◦ b) = c ◦ a = c. 

d ◦ c = (c ◦ b) ◦ c = c ◦ (b ◦ c) = c ◦ c = c. 
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d ◦ d = (c ◦ b) ◦ (c ◦ b) 

=c ◦ (b ◦ c) ◦ b 

=c ◦ c ◦ b 

=c ◦ (c ◦ b) 

=c ◦ d 

=d 

Hence, the required composition table is 
 

◦ a b c d 

a a b c d 

b b a c d 

c c d c d 

d d c c d 

 

Example: Let P (S) be the power set of a non-empty set S. Let ∩ be an operation in P (S). Prove 

that associative law and commutative law are true for the operation in P (S). 
 

Solution: P(S)= Set of all possible subsets of S. 

Let A,B ∈ P(S). 

Since A ⊆ S, B ⊆ S ⇒ A ∩ B ⊆ S ⇒ A ∩ B ∈ P(S). 

∴ ∩ is a binary operation in P (S). 

Also A ∩ B = B ∩ A 

∴ ∩ is commutative in P (S). 

Again A ∩ B, B ∩ C, (A ∩ B) ∩ C and A ∩ (B ∩ C) are subsets of S. 

 

∴ (A ∩ B) ∩ C, A ∩ (B ∩ C) ∈ P (S). 

Since (A ∩ B) ∩ C = A ∩ (B ∩ C) 

∴ ∩ is associative in P (S). 

Algebraic Structures 
Definition: A non-empty set G equipped with one or more binary operations is called an 

algebraic structure or an algebraic system. 

If ◦ is a binary operation on G, then the algebraic structure is written as (G, ◦). 

Example: (N, +), (Q, −), (R, +) are algebraic structures. 

Semi Group 
Definition: An algebraic structure (S, ◦) is called a semi group if the binary oper-ation ◦ is 

associative in S. 

That is, (S, ◦) is said to be a semi group if 

(i) a, b ∈ S ➙ a ◦ b ∈ S for all a, b ∈ S 

(ii) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ S. 

Example: 

1. (N, +) is a semi group. For a, b ∈ N ➙ a + b ∈ N and a, b, c ∈ N ➙ (a + b) + c =a+ (b + c). 

2. (Q, −) is not a semi group. For 5,3/2 , 1 ∈ Q does not imply (5 – 3/2 ) −1 = 5 −(3/2 −1). 

3. (R, +) is a semi group. For a, b ∈ R ➙ a + b ∈ R and a, b, c ∈ R ➙ (a + b) + c = a+ (b + c). 
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Example: The operation ◦ is defined by a ◦ b = a for all a, b ∈ S. Show that (S, ◦) is a semi group. 

Solution: Let a, b ∈ S ➙ a ◦ b = a ∈ S. 

∴ ◦ is a binary operation in S. Let a, b, c ∈ S, a ◦ (b ◦ c) = a ◦ b = a 

(a ◦ b) ◦ c = a ◦ c = a. 

➙ ◦ is associative in S. 

∴ (S, ◦) is a semi group. 

Example: The operation ◦ is defined by a ◦ b = a + b − ab for all a, b ∈ Z. Show that (Z, ◦) is a 

semi group. 

Solution: Let a, b ∈ Z ➙ a ◦ b = a + b − ab ∈ Z. 

∴ ◦ is a binary operation in Z. 

Let a, b, c ∈ Z. 

 

 

 

 
 

abc ➙ (a ◦ b) ◦ c = a ◦ (b ◦ c). 

(a ◦ b) ◦ c = (a + b − ab) ◦ c 
=a + b − ab + c − (a + b − ab)c 

=a + b + c − ab − bc − ac + abc 
 

a ◦ (b ◦ c) = a ◦ (b + c − bc) 

=a + (b + c − bc) − a(b + c − bc) 

=a + b + c − bc − ab − ac + 

➙ ◦ is associative in Z. ∴ (Z, ◦) is semi group. 

Example: (P (S), ∩) is a semi group, where P (S) is the power set of a non-empty set S. 

Solution: P (S)= Set of all possible subsets of S. 

Let A, B ∈ P (S). 

Since A ⊆ S, B ⊆ S ➙ A ∩ B ⊆ S ➙ A ∩ B ∈ P (S). 

∴ ∩ is a binary operation in P (S). Let A, B, C ∈ P (S). 

∴ (A ∩ B) ∩ C, A ∩ (B ∩ C) ∈ P (S). Since (A ∩ B) ∩ C 

= A ∩ (B ∩ C) 

∴ ∩ is associative in P (S). 

Hence (P (S), ∩) is a semi group. 

Example: (P (S), ∪) is a semi group, where P (S) is the power set of a non-empty set S. 

Solution: P (S)= Set of all possible subsets of S. 

Let A, B ∈ P (S). 

Since A ⊆ S, B ⊆ S ➙ A ∪ B ⊆ S ➙ A ∪ B ∈ P (S). 

∴ ∪ is a binary operation in P (S). Let A, B, C ∈ P (S). 

∴ (A ∪ B) ∪ C, A ∪ (B ∪ C) ∈ P (S). Since (A ∪ B) ∪ C = A ∪ (B ∪ C) 

∴ ∪ is associative in P (S). 

Hence (P (S), ∪) is a semi group. 
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Example: Q is the set of rational numbers, ◦ is a binary operation defined on Q such that a ◦ b = a 

− b + ab for a, b ∈ Q. Then (Q, ◦) is not a semi group. 

Solution: For a, b, c ∈ Q, 

(a ◦ b) ◦ c = (a ◦ b) − c + (a ◦ b)c 
=a − b + ab − c + (a − b + ab)c 

=a − b + ab − c + ac − bc + abc 

a ◦ (b ◦ c) = a − (b ◦ c) + a(b ◦ c) 

=a − (b − c + bc) + a(b − cbc) 

=a − b + c − bc + ab − ac + abc. 
Therefore, (a ◦ b) ◦ c ≠ a ◦ (b ◦ c). 

Example: Let (A, ∗) be a semi group. Show that for a, b, c in A if a ∗ c = c ∗ a and b ∗ c = c ∗ b, 

then (a ∗ b) ∗ c = c ∗ (a ∗ b). 

Solution: Given (A, ∗) be a semi group, a ∗ c = c ∗ a and b ∗ c = c ∗ b. 

Consider 

(a ∗ b) ∗ c = a ∗ (b ∗ c) [∵ A is seme group] 

=a ∗ (c ∗ b) [∵ b ∗ c = c ∗ b] 

=(a ∗ c) ∗ b [∵ A is seme group] 

=(c ∗ a) ∗ b [∵ a ∗ c = c ∗ a] 

=c ∗ (a ∗ b) [∵ A is seme group]. 

Homomorphism of Semi-Groups 

Definition: Let (S, ∗) and (T, ◦) be any two semi-groups. A mapping f : S → T such that for any 

two elements a, b ∈ S, f(a ∗ b) = f(a) ◦ f(b) is called a semi-group homomorphism. 

Definition: A homomorphism of a semi-group into itself is called a semi-group en-domorphism. 

Example: Let (S1, ∗1), (S2, ∗2) and (S3, ∗3) be semigroups and f : S1 → S2 and g : S2 → S3 be 

homomorphisms. Prove that the mapping of g ◦ f : S1 → S3 is a semigroup homomorphism. 

Solution: Given that (S1, ∗1), (S2, ∗2) and (S3, ∗3) are three semigroups and f : S1 → 

S2 and g : S2 → S3 be homomorphisms. 

Let a, b be two elements of S1. 

(g ◦ f)(a ∗1 b) = g[f(a ∗1 b)] 

= g[f(a) ∗2 f(b)] (∵ f is a homomorphism) 

= g(f(a)) ∗3 g(f(b)) (∵ g is a homomorphism) 

=(g ◦ f)(a) ∗3 (g ◦ f)(b) 

∴ g ◦ f is a homomorphism. 

Identity Element: Let S be a non-empty set and ◦ be a binary operation on S. If there exists an 

element e ∈ S such that a ◦ e = e ◦ a = a, for a ∈ S, then e is called an identity element of S. 
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Example:  
(i) In the algebraic system (Z, +), the number 0 is an identity element. 

(ii) In the algebraic system (R, ·), the number 1 is an identity element. 

Note: The identity element of an algebraic system is unique. 

 

Monoid 
Definition: A semi group (S, ◦) with an identity element with respect to the binary operation ◦ 

is known as a monoid. i.e., (S, ◦) is a monoid if S is a non-empty set and ◦ is a binary 

operation in S such that ◦ is associative and there exists an identity element w.r.t ◦. 

Example: 

1. (Z, +) is a monoid and the identity is 0. 

2. (Z, ·) is a monid and the identity is 1. 
 

Monoid Homomorphism 

Definition: Let (M, ∗) and (T, ◦) be any two monoids, em and et denote the identity elements 

of (M, ∗) and (T, ◦) respectively. A mapping f : M → T such that for any two elements a, b ∈ 

M, 

f(a ∗ b) = f(a) ◦ f(b) and 

f(em) = et 

is called a monoid homomorphism. 
 

Monoid homomorphism presents the associativity and identity. It also preserves 

commutative. If a ∈ M is invertible and a
−1 

∈ M is the inverse of a in M, then f(a
−1

) is the 

inverse of f(a), i.e., f(a
−1

) = [f(a)]
−1

. 

Sub Semi group 

Let (S, ∗) be a semi group and T be a subset of S. Then (T, ∗) is called a sub semi group of (S, 

∗) whenever T is closed under ∗. i.e., a ∗ b ∈ T, for all a, b ∈ T . 

Sub Monoid 

Let (S,∗) be a monoid with e is the identity element and T be a non-empty subset of S. Then 

(T, ∗) is the sub monoid of (S, ∗) if e ∈ T and a ∗ b ∈ T , whenever a, b ∈ T . Example: 

1. Under the usual addition, the semi group formed by positive integers is a sub semi group of 
all integers. 

2. Under the usual addition, the set of all rational numbers forms a monoid. We denote it (Q, 

+). The monoid (Z, +) is a submonid of (Q, +). 

3. Under the usual multiplication, the set E of all even integers forms a semi group. 

This semi group is sub semi group of (Z, ·). But it is not a submonoid of (Z, ·), because 1≠ E. 

 

Example: Show that the intersection of two submonoids of a monoid is a monoid. 

Solution: Let S be a monoid with e as the identity, and S1 and S2 be two submonoids of S. 

Since S1 and S2 are submonoids, these are monoids. Therefore e ∈ S1 and e ∈ S2. 
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Since S1 ∩S2 is a subset of S, the associative law holds in S1 ∩S2, because it holds in S. 

Accordingly S1 ∩ S2 forms a monoid with e as the identity. 

Invertible Element: Let (S,◦) be an algebraic structure with the identity element e in S w.r.t 

◦. An element a ∈ S is said to be invertible if there exists an element x∈ S such that a ◦ x = x ◦ 

a = e. 

Note: The inverse of an invertible element is unique. 
From the composition table, one can conclude 

1. Closure Property: If all entries in the table are elements of S, then S closed under ◦. 

2. Commutative Law: If every row of the table coincides with the corresponding column, 

then ◦ is commutative on S. 

3. Identity Element: If the row headed by an element a of S coincides with the top row, then a 

is called the identity element. 

4. Invertible Element: If the identity element e is placed in the table at the intersection of the 

row headed by 
′
a

′ 
and the column headed by 

′
b

′
, then b

−1 
= a and a

−1 
= b. 

Example: A = {1, ω, ω
2
}. 

· 1 ω ω
2 

1 1 ω ω2 

ω ω ω
2 

1 

ω2 ω2 1 ω 

From the table we conclude that 

1. Closure Property: Since all entries in the table are elements of A. So, closure property is 

satisfied. 

2. Commutative Law: Since 1
st

, 2
nd 

and 3
rd 

rows coincides with 1
st

, 2
nd 

and 3
rd

columns 

respectively. So multiplication is commutative on A. 

3. Identity Element: Since row headed by 1 is same as the initial row, so 1 is the identity 

element. 

4. Inverses: Clearly 1
−1 

= 1, ω
−1 

= ω
2
, (ω

2
)
−1 

= ω. 

 
Groups 
Definition: If G is a non-empty set and ◦ is a binary operation defined on G such that the 

following three laws are satisfied then (G, ◦) is a group. 

Associative Law: For a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c) 

Identity Law: There exists e ∈ G such that a ◦ e = a = e ◦ a for every a ∈ G, e is called an 

identity element in G. 

Inverse Law: For each a ∈ G, there exists an element b ∈ G such that a◦b = b◦a = e, b is called 

an inverse of a. 

Example: The set Z of integers is a group w.r.t. usual addition. 

(i). For a, b ∈ Z ➙ a + b ∈ Z 

(ii). For a, b, c ∈ Z, (a + b) + c = a + (b + c) 

(iii). 0 ∈ Z such that 0 + a = a + 0 = a for each a ∈ G 
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∴ 0 is the identity element in Z. 

(iv). For a ∈ Z, there exists −a ∈ Z such that a + (−a) = (−a) + a = 0. 

∴ −a is the inverse of a. (Z, +) is a 

group. 

Example: Give an example of a monoid which is not a group. 

Solution: The set N of natural numbers w.r.t usual multiplication is not a group. 

(i). For a, b ∈ N ➙ a · b. 

(ii). For a, b, c ∈ N, (a · b) · c = a · (b · c). 

(iii). 1 ∈ N such that 1 · a = a · 1 = a, for all a ∈ N. 

∴ (N, ·) is a monoid. 

(iv). There is no n ∈ N such that a · n = n · a = 1 for a ∈ N. 

∴ Inverse law is not true. 

∴ The algebraic structure (N, ·) is not a group. 

Example: (R, +) is a group, where R denote the set of real numbers. 

Abelian Group (or Commutative Group): Let (G, ∗) be a group. If ∗ is com-mutative that is 

a ∗ b = b ∗ a for all a, b ∈ G then (G, ∗) is called an Abelian group. 

Example: (Z, +) is an Abelian group. 

Example: Prove that G = {1, ω, ω
2
} is a group with respect to multiplication where 1, ω, ω

2
 

are cube roots of unity. 

Solution: We construct the composition table as follows: 

 

 

 

 

 

 

The algebraic system is (G, ·) where ω
3 

= 1 and multiplication · is the binary opera-tion on G. 

From the composition table; it is clear that (G, ·) is closed with respect to the oper-ation 

multiplication and the operation · is associative. 

1 is the identity element in G such that 1 · a = a = a · 1, ∀ a ∈ G. 

Each element of G is invertible 

1. 1· 1 = 1 ➙ 1 is its own inverse. 

2. ω · ω
2 

= ω
3 

= 1 ➙ ω
2 

is the inverse of ω and ω is the inverse of ω
2 

in G. 

∴ (G, ·) is a group and a · b = b · a, ∀a, b ∈ G, that is commutative law holds in 

G with respect to multiplication. 

∴ (G, ·) is an abelian group. 

· 1 ω ω
2 

1 1 ω ω
2 

ω ω ω
2 

ω
3 

= 1 

ω
2 

ω
2 

ω
3 

= 1 ω
4 

= ω 
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1 Example: Show that the set G = {1, −1, i, −i} where i = is an abelian group with respect 

to multiplication as a binary operation. Solution: Let us construct the composition table: 
 

· 1 −1 i −i 

1 1 −1 i −i 

-1 −1 1 −i i 

i i −i −1 1 

−i −i i 1 -1 

 

From the above composition, it is clear that the algebraic structure (G, ·) is closed and 

satisfies the following axioms: 

Associativity: For any three elements a, b, c ∈ G, (a · b) · c = a · (b · c). 

Since 

1 · (−1 · i) = 1 · −i = −i 
(1 · −1) · i = −1 · i = −i 

➙ 1 · (−1 · i) = (1 · −1) · i 

Similarly with any other three elements of G the properties holds. 

∴ Associative law holds in (G, ·). 

Existence of identity: 1 is the identity element in (G, ·) such that 1 · a = a = a · 1, ∀ a ∈ G. 

Existence of inverse: 1 · 1 = 1 = 1 · 1 ➙ 1 is inverse of 1. 

(−1) · (−1) = 1 = (−1) · (−1) ➙ −1 is the inverse of (−1) 

i · (−i) = 1 = −i · i ➙ −i is the inverse of i in G. 

−i · i = 1 = i · (−i) ➙ i is the inverse of −i in G. 

Hence inverse of every element in G exists. 

Thus all the axioms of a group are satisfied. 

Commutativity: a · b = b · a, ∀a, b ∈ G hold in G. 

1 · 1 = 1 = 1 · 1; − 1 · 1 = −1 = 1 · −1 

i · 1 = i = 1 · i;  i · −i = −i · i = 1 etc. 

Commutative law is satisfied. 

Hence (G, ·) is an abelian group. 

Example: Prove that the set Z of all integers with binary operation ∗ defined by a ∗ b = a + b 

+ 1, ∀ a, b ∈ Z is an abelian group. Solution: 

Closure: Let a, b ∈ Z. Since a + b ∈ Z and a + b + 1 ∈ Z. 

∴ Z is closed under ∗. 

Associativity: Let a, b, c ∈ Z. 

Consider (a ∗ b) ∗ c = (a + b + 1) ∗ c 

=a + b + 1 + c + 1 

=a + b + c + 2 

also 
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a ∗ (b ∗ c) = a ∗ (b + c + 1) 

 

Hence (a ∗ b) ∗ c = a ∗ (b ∗ c) for a, b, c ∈ Z. 

 

=a + b + c + 1 + 1 

=a + b + c + 2 

Existence of Identity: Let a ∈ Z. Let e ∈ Z such that e ∗ a = a ∗ e = a, i.e., a + e + 1 

= a 

➙ e = −1 

e = −1 is the identity element in Z. 

Existence of Inverse: Let a ∈ Z. Let b ∈ Z such that a ∗ b = e. 

➙ a + b + 1 = −1 

b = −2 − a 

∴ For every a ∈ Z, there exits −2−a ∈ Z such that a∗(−2−a) = (−2−a)∗a = −1. 

∴ (Z, ∗) is an abelian group. 

Example: Show that the set Q+ of all positive rational numbers forms an abelian group under 

the composition defined by ◦ such that a ◦ b = ab/3 for a, b ∈ Q+. Solution: Q+ of the set of all 

positive rational numbers and for a, b ∈ Q+, we have the operation ◦ such that a ◦ b = ab/3. 

Associativity: a, b, c ∈ Q+➙ (a ◦ b) ◦ c = a ◦ (b ◦ c). 

Since ab∈ Q+ and ab/3∈ Q+. 

Associativity: a, b, c ∈ Q+ ⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c). 

Since (a ◦ b) ◦ c = ( ab/3 ) ◦ c =[ab/3 .c]/3 = a/3( bc/3 ) = a/3 (b ◦ c) = a ◦ (b ◦ c). 

Existence of Identity: Let a ∈ Q+. Let e ∈ Q+ such that e ◦ a = a. 

i.e., ea/3 = a 

➙ ea − 3a = 0 ➙ (e − 3)a = 0 

➙ e − 3 = 0 (∵ a ≠ 0) 

➙ e = 3 

∴ e = 3 is the identity element in Q+. 

Existence of Inverse: Let a ∈ Q+. Let b ∈ Q+ such that a ◦ b = e. 

➙ab/3 = 3 

b = 9/a (∵ a ≠ 0) 

∴ For every a ∈ Q+, there exists 9/a ∈ Q+ such that a ◦ 9/a = 9/a ◦ a = 3. 

Commutativity: Let a, b ∈ Q+ ➙ a ◦ b = b ◦ a. 

Since a ◦ b = ab/3=ba/3 = b ◦ a. 

(Q+, ◦) is an abelian group. 

Exercises: 1. Prove that the set G of rational numbers other than 1 with operation ⊕ such that 

a ⊕ b = a + b − ab for a, b ∈ G is abelian group. 
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4 

2. Consider the algebraic system (G, ∗), where G is the set of all non-zero real numbers and ∗ 

is a binary operation defined by: a ∗ b = 
ab 

, ∀a, b ∈ G. Show that (G, ∗) is an 

Addition modulo m 

We shall now define a composite known as ―addition modulo m‖ where m is fixed integer. 

If a and b are any two integers, and r is the least non-negative reminder obtained by dividing 

the ordinary sum of a and b by m, then the addition modulo m of a and b is r symbolically 

a +m b = r, 0 ≤ r < m. 

Example: 20 +6 5 = 1, since 20 + 5 = 25 = 4(6) + 1, i.e., 1 is the remainder when 20+5 is 

divisible by 6. 

Example: −15 +5 3 = 3, since −15 + 3 = −12 = 3(−5) + 3. 

Multiplication modulo p 
If a and b are any two integers, and r is the least non-negative reminder obtained by dividing 

the ordinary product of a and b by p, then the Multiplication modulo p of a and b is r 

symbolically 

a ×p b = r, 0 ≤ r < p. 

Example: Show that the set G = {0, 1, 2, 3, 4} is an abelian group with respect to addition 

modulo 5. 

Solution: We form the composition table as follows: 

+5 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

 

Since all the entries in the composition table are elements of G, the set G is closed with 

respect to addition modulo 5. 

Associativity: For any three elements a, b, c ∈ G, (a +5 b) +5 c and a +5 (b +5 c) leave the 

same remainder when divided by 5. 

i.e., (a +5 b) +5 c = a +5 (b +5 c) 

(1 +5 3) +5 4 = 3 = 1 +5 (3 +5 4) etc. 

Existence of Identity: Clearly 0 ∈ G is the identity element, since we have 

0 +5 9 = 4 = 9 +5 0,∀ a ∈ G. 

Existence of Inverse: Each element in G is invertible with respect to addition modulo 5. 
0 is its own inverse; 4 is the inverse of 1 and 1 is the inverse of 4. 

2 is the inverse of 3 and 3 is the inverse of 2 with respect to addition modulo 5 in G. 

Commutativity: From the composition table it is clear that a+5 b = b+5 a, ∀ a, b ∈ G. 

Hence (G, +5) is an abelian group. 
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Example: Show that the set G= {1, 2, 3, 4} is an abelian with respect to multipli-cation 

modulo 5. 

Solution: The composition table for multiplication modulo 5 is 

× 
5 

 

1 
 

2 
 

3 
 

4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

From the above table, it is clear that G is closed with respect to the operation ×5 and the 

binary composition ×5 is associative; 1 is the identity element. 

Each element in G has a inverse. 
1 is its own inverse 

2 is the inverse of 3 

3 is the inverse of 2 

4 is the inverse of 4, with respect to the binary operation ×5. 

Commutative law holds good in (G, ×5). 

Therefore (G, ×5) is an abelian group. 
Example: Consider the group, G = {1, 5, 7, 11, 13, 17} under multiplication modulo 18. 

Construct the multiplication table of G and find the values of: 5
−1

, 7
−1

and 17
−1

. 

Example: If G is the set of even integers, i.e., G = {· · · , −4, −2, 0, 2, 4, · · · } then prove that 

G is an abelian group with usual addition as the operation. Solution: Let a, b, c ∈ G. 

∴ We can take a = 2x, b = 2y, c = 2z, where x, y, z ∈ Z. 

Closure: a, b ∈ G ➙ a + b ∈ G. 

Since a + b = 2x + 2y = 2(x + y) ∈ G. 

Associativity: a, b, c ∈ G ➙ a + (b + c) = (a + b) + c 

Since 

a + (b + c) = 2x + (2y + 2z) 

=2[x + (y + z)] 

=2[(x + y) + z] 

=(2x + 2y) + 2z 

=(a + b) + c 

Existence of Identity: a ∈ G, there exists 0 ∈ G such that a + 0 = 0 + a = a. Since a + 0 = 

2x + 0 = 2x = a and 0 + a = 0 + 2x = 2x = a 

∴ 0 is the identity in G. 

Existence of Inverse: a ∈ G, there exists −a ∈ G such that a+(−a) = (−a)+a = 0. 

Since a + (−a) = 2x + (−2x) = 0 and (−a) + a = (−2x) + 2x = 0. 

∴ (G, +) is a group. 

Commutativity: a, b ∈ G ➙ a + b = b + a. 

Since a + b = 2x + 2y = 2(x + y) = 2(y + x) = 2y + 2x = b + a. 

∴ (G, +) is an abelian group. 
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Example: Show that set G = {x| x = 2
a
3

b 
for a, b ∈ Z} is a group under multipli-cation. 

Solution: Let x, y, z ∈ G. We can take x = 2
p
3

q
, y = 2

r
3

s
, z = 2

l
3

m
, where p, q, r, s, l, m ∈ Z. 

We know that (i). p + r, q + s ∈ Z 

(ii). (p + r) + l = p + (r + l), (q + s) + m = q + (s + m). 

Closure: x, y ∈ G ➙ x · y ∈ G. 

Since x · y = (2
p
3

q
)(2

r
3

s
) = 2

p+r
3

q+s 
∈ G. Associativity: x, y, z ∈ G ➙ (x · y) · z = x · (y · z) 

Since (x · y) · z = (2
p
3

q
2

r
3

s
)(2

l
3

m
) 

=2(p+r)+l3(q+s)+m 

=2p+(r+l)3q+(s+m) 

=(2
p
3

q
)(2

r
3

s
2

l
3

m
) 

=x · (y · z) 

Existence of Identity: Let x ∈ G. We know that e = 2
0
3

0 
∈ G, since 0 ∈ Z. 

∴ x · e = 2
p
3

q
2

0
3

0 
= 2

p+0
3

q+0 
= 2

p
3

q 
= x and e · x = 2

0
3

0
2

p
3

q 
= 2

p
3

q 
= x. ∴ e ∈ G such 

that x · e = e · x = x 

∴ e = 2
0
3

0 
is the identity element in G. 

Existence of Inverse: Let x ∈ G. 

Now y = 2
−p

3
−q 

∈ G exists, since −p, −q ∈ Z such that 

x · y = 2
p
3

q
2

−p
3

−q 
= 2

0
3

0 
= e and y · x = 2

−p
3

−q
2

p
3

q 
= 2

0
3

0 
= e. 

∴ For every x = 2
p
3

q 
∈ G there exists y = 2

−p
3

−q 
∈ G such that x ·y = y ·x = e. ∴ (G, ·) is a 

group. 

 

Example: Show that the sets of all ordered pairs (a, b) of real numbers for which a ≠ 0 w.r.t 

the operation ∗ defined by (a, b) ∗ (c, d) = (ac, bc + d) is a group. Is the commutative? 

Solution: Let G = {(a, b)| a, b ∈ R and a ≠ 0}. Define a binary operation ∗ on G by (a, b) ∗ (c, 

d) = (ac, bc + d), for all (a, b), (c, d) ∈ G. Now we show that (G, ∗) is a group. 

Closure: (a, b), (c, d) ∈ G ➙ (a, b) ∗ (c, d) = (ac, bc + d) ∈ G. 

Since a ≠ 0, c ≠ 0 ➙ ac ≠ 0. 

Associativity: (a, b), (c, d), (e, f) ∈ G ➙ {(a, b) ∗ (c, d)} ∗ (e, f) = (a, b) ∗ {(c, d) ∗(e, f)}. 

Since {(a, b) ∗ (c, d)} ∗ (e, f) = (ac, bc + d) ∗ (e, f) 

= (ace, (bc + d)e + f) 
= (ace, bce + de + f) 

Also (a, b) ∗ {(c, d) ∗ (e, f)} = (a, b) ∗ (ce, de + f) 

= (a(ce), b(ce) + de + f) 
= (ace, bce + de + f) 

Existence of Identity: Let (a, b)∈G. Let (x, y)∈ G such that (x, y)∗(a, b)=(a,b)∗(x, y)=(a, b) 

➙ (xa, ya + b) = (a, b) 
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a 

➙ xa = a, ya + b = b 

 

➙ x = 1, (∵ a ≠ 0) and ya = 0 ➙ x = 1 and y = 0 (∵ a ≠ 0) 

➙ (1, 0) ∈ G such that (a, b) ∗ (1, 0) = (a, b). 

∴ (1, 0) is the identity in G. 

Existence of Inverse: Let (a, b) ∈ G. Let (x, y) ∈ G such that (x, y) ∗ (a, b) = (1, 0) 

➙ (xa, ya + b) = (1, 0) 

➙ xa = 1, ya + b = 0 ➙ x = a
1 

, y = 
− b

 

∴ The inverse of (a, b) exits and it is (1/a,-b/a ). 

Commutativity: Let (a, b), (c, d) ∈ G ➙ (a, b) ∗ (c, d) ≠ (c, d) ∗ (a, b) 

Since (a, b) ∗ (c, d) = (ac, bc + d) and (c, d) ∗ (a, b) = (ca, da + b). 

∴ G is a group but not commutative group w.r.t ∗. 

Example: If (G, ∗) is a group then (a ∗ b)
−1 

= b
−1 

∗ a
−1 

for all a, b ∈ G. 

Solution: Let a, b ∈ G and e be the identity element in G. 

Let a ∈ G ➙ a
−1 

∈ G such that a∗a
−1

=a
−1

∗a=e and b∈ G ➙ b
−1

∈ G such that b∗b
−1

=b
−1 

∗ b = 

e. 

Now a, b ∈ G ➙ a ∗ b ∈ G and (a ∗ b)
−1 

∈ G. 

Consider 

(a ∗ b) ∗ (b
−1 

∗ a
−1

) = a ∗ [b ∗ (b
−1 

∗ a
−1

)] (by associativity law) 

=a ∗ [(b ∗ b
−1

) ∗ a
−1

] 

= a ∗ (e ∗ a
−1

) (b ∗ b
−1 

= e) 

= a ∗ a
−1 

(e is the identity) 

= e 

and 

(b
−1 

∗ a
−1

) ∗ (a ∗ b) = b
−1 

∗ [a
−1 

∗ (a ∗ b)] 

= b
−1 

∗ [(a
−1 

∗ a) ∗ b] 

= b
−1 

∗ [e ∗ b] 

= b
−1 

∗ b 

= e 

➙ (a ∗ b) ∗ (b
−1 

∗ a
−1

) = (b
−1 

∗ a
−1

) ∗ (a ∗ b) = e 

(a ∗ b)
−1 

= b
−1 

∗ a
−1 

for all a, b ∈ G. 

Note: 

1. (b
−1

a
−1

)
−1 

= ab 

2. (abc)
−1 

= c
−1

b
−1

a
−1

 

3. If (G, +) is a group, then −(a + b) = (−b) + (−a) 

4. −(a + b + c) = (−c) + (−b) + (−a). 
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Theorem: Cancelation laws hold good in G, i.e., for all a, b, c ∈ G a ∗ b = a ∗ c ➙ b = c (left 

cancelation law) b ∗ a = c ∗ a ➙ b = c (right cancelation law). 

Proof: G is a group. Let e be the identity element in G. 

a ∈ G ➙ a
−1 

∈ G such that a ∗ a
−1 

= a
−1 

∗ a = e. 

Consider 

a ∗ b = a ∗ c 

➙ a
−1 

∗ (a ∗ b) = a
−1

(a ∗ c) 

➙ (a
−1 

∗ a) ∗ b = (a
−1 

∗ a) ∗ c (by associative law) 

➙ e ∗ b = e ∗ c (a
−1 

is the inverse of a in G) 

➙ b = c (e is the identity element in G) 

and 

b ∗ a = c ∗ a 

➙ (b ∗ a)a
−1 

= (c ∗ a) ∗ a
−1

 

➙ b ∗ (a ∗ a
−1

) = c ∗ (a ∗ a
−1

) (by associative law) 

➙ b ∗ e = c ∗ e (∵ a ∗ a
−1 

= e) 

➙ b = c (e is the identity element in G) 

Note: 

1. If G is an additive group, a + b = a + c ➙ b = c and b + a = c + a ➙ b = c. 

2. In a semi group cancelation laws may not hold. Let S be the set of all 2 × 2 matrices over 

integers and let matrix multiplication be the binary operation defined on S. Then S is a semi 

group of the above operation. 
1 0  0 0  0 0

If A= 0 ; B= 0 0  ;C=1 1  , then A, B, C ∈ S and AB = AC, we observe that left 0 
     

cancellation law is not true in the semi group. 

3. (N, +) is a semi group. For a, b, c ∈ N 

a + b = a + c ➙ b + c and b + a = c + a ➙ b = c. 

But (N, +) is not a group. 

In a semigroup even if cancellation laws holds, then semigroup is not a group. 

 
Example: If every element of a group G is its own inverse, show that G is an abelian group. 

Solution: Let a, b ∈ G. By hypothesis a
−1 

= a, b
−1 

= b. 

Then ab ∈ G and hence (ab)
−1 

= ab. 

Now 

(ab)
−1 

= ab 

➙ b
−1

a
−1 

= ab 

➙ ba = ab 

∴ G is an abelian group. 
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Note: The converse of the above not true. 

For example, (R, +), where R is the set of real numbers, is abelian group, but no element 

except 0 is its own inverse. 

Example: Prove that if a
2 

= a, then a = e, a being an element of a group G. 

Solution: Let a be an element of a group G such that a
2 

= a. To prove that a = e. 

a
2 

= a ➙ aa = a 

➙ (aa)a
−1 

= aa
−1 

➙ a(aa
−1

) = e 

➙ ae = e [∵ aa
−1 

= e] ➙ a = e [∵ ae = a] 

Example: In a group G having more than one element, if x
2 

= x, for every x ∈ G. 

Prove that G is abelian. 

Solution: Let a, b ∈ G. Under the given hypothesis, we have a
2 

= a, b
2 

= b, (ab)
2 

= ab. 

∴ a(ab)b = (aa)(bb) = a
2
b

2 
= ab = (ab)

2 
= (ab)(ab) = a(ba)b 

➙ ab = ba (Using cancelation laws) 

∴ G is abelian. 

Example: Show that in a group G, for a, b ∈ G, (ab)
2 

= a
2
b

2 
⇔ G is abelian. (May. 2012) 

Solution: Let a, b ∈ G, and (ab)
2 

= a
2
b

2
. To prove that G is abelian. 

Then 

(ab)
2 

= a
2
b

2
 

➙ (ab)(ab) = (aa)(bb) 

➙ a(ba)b = a(ab)b (by Associative law) ➙ ba = ab, (by cancellation 

laws) 

➙ G is abelian. 

Conversely, let G be abelian. To prove that (ab)
2 

= a
2
b

2
. 

Then (ab)
2 

= (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a
2
b

2
. 

***Example: If a, b are any two elements of a group (G, ·), which commute. Show that 

1. a
−1 

and b commute 

2. b
−1 

and a commute 

3. a
−1 

and b
−1 

commute. 

Solution: (G, ·) is a group and such that ab = ba. 

1. ab = ba ➙ a
−1

(ab) = a
−1

(ba) 

➙ (a
−1

a)b = a
−1

(ba) 

➙ eb = (a
−1

b)a 

➙ b = (a
−1

b)a 

➙ ba
−1 

= [(a
−1

b)a]a
−1

 

=(a
−1

b)(aa
−1

) 

=(a
−1

b)e 

=a
−1

b 
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➙ a
−1 

and b commute. 

1 ab = ba ➙ (ab)b
−1 

= (ba)b
−1

 

➙ a(bb
−1

) = 

(ba)b
−1 

➙ 

ae = b(ab
−1

) 

➙ a = b(ab
−1

) 

➙ b
−1

a = b
−1

[b(ab
−1

)] 

=(b
−1

b)(ab
−1

)] 

=e(ab
−1

) 

=ab
−1

 

➙ b
−1 

and a commute. 

2 ab = ba ➙ (ab)
−1 

= (ba)
−1 

b
−1 

a
−1 

= a
−1 

b
−1

 

➙ a
−1 

and b
−1 

are commute. 

Order of an Element 

Definition: Let (G, ∗) be a group and a ∈ G, then the least positive integer n if it exists such 

that a
n 

= e is called the order of a ∈ G. 

The order of an element a ∈ G is be denoted by O(a). 

Example: G = {1, −1, i, −i} is a group with respect to multiplication. 1 is the identity in G. 

1
1 

= 1
2 

= 1
3 

= · · · = 1 ➙ O(1) = 1. 

(−1)
2 

= (−1)
4 

= (−1)
6 

= · · · = 1 ➙ O(−1) = 2. 

i
4 

= i
8 

= i
12 

= · · · = 1 ➙ O(i) = 4. 

(−i)
4 

= (−i)
8 

= · · · = 1 ➙ O(−i) = 4. 

Example: In a group G, a is an element of order 30. Find order of a
5
. 

Solution: Given O(a) = 30 

➙ a
30 

= e, e is the identity element of G. Let O(a
5
) = n 

➙ (a
5
)
n 

= e 

➙ a
5n 

= e, where n is the least positive integer. Hence 30 is divisor of 5n. 

∴ n = 6. 

Hence O(a
5
) = 6 

Sub Groups 

Definition: Let (G, ∗) be a group and H be a non-empty subset of G. If (H, ∗) is itself is a 

group, then (H, ∗) is called sub-group of (G, ∗). 

Examples: 
1. (Z, +) is a subgroup of (Q, +). 
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2.  The additive group of even integers is a subgroup of the additive group of all 

integers. 

3. (N, +) is not a subgroup of the group (Z, +), since identity does not exist in N under 

+. 

Example: Let G = {1, −1, i, −i} and H = {1, −1}. 

Here G and H are groups with respect to the binary operation multiplication and H is a subset 

of G. Therefore (H, ·) is a subgroup of (G, ·). 

Example: Let H = {0, 2, 4} ⊆ Z6. Check that (H, +6) is a subgroup of (Z6, +6). 

Solution: Z6 = {0, 1, 2, 3, 4, 5}. 

 

 

 

 

 
 

 

 
∴ (Z6, +6) is a group. 

H= {0, 2, 4}. 
 

+6 0 2 4 

0 0 2 4 

2 2 4 0 

4 4 0 2 

 

The following conditions are to be satisfied in order to prove that it is a subgroup. 

(i). Closure: Let a, b ∈ H ➙ a +6 b ∈ H. 

0, 2 ∈ H ➙ 0 +6 2 = 2 ∈ H. 

(ii). Identity Element: The row headed by 0 is exactly same as the initial row. 

∴ 0 is the identity element. 

(iii). Inverse: 0
−1 

= 0, 2
−1 

= 4, 4
−1 

= 2. 

Inverse exist for each element of (H, +6). 

∴ (H, +6) is a subgroup of (Z6, +6). 

Theorem: If (G, ∗) is a group and H ⊆ G, then (H, ∗) is a subgroup of (G, ∗) if and only if 

(i) a, b ∈ H ➙ a ∗ b ∈ H; 

(ii) a ∈ H ➙ a
−1 

∈ H. 

Proof: The condition is necessary 

Let (H, ∗) be a subgroup of (G, ∗). 

To prove that conditions (i) and (ii) are satisfied. 

+6 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 
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Since (H, ∗) is a group, by closure property we have a, b ∈ H ➙ ab ∈ H. 

Also, by inverse property a ∈ H ➙ a
−1 

∈ H. 

The condition is sufficient: 

Let (i) and (ii) be true. To prove that (H, ∗) is a subgroup of (G, ∗). 

We are required to prove is: ∗ is associative in H and identity e ∈ H. 

That ∗ is associative in H follows from the fact that ∗ is associative in G. Since H is nonempty, 

let a ∈ H ➙ a
−1 

∈ H (by (ii)) 

∴ a ∈ H, a
−1 

∈ H ➙ aa
−1 

∈ H (by (i)) 

⇒ e ∈ H (∵ aa−1 ∈ H ⇒ aa−1 ∈ G ⇒ aa−1 = e, where e is the identity in G.) 

⇒ e is the identity in H. 

Hence H itself is a group. 

∴ H is a subgroup of G. 
 

Example: The set S of all ordered pairs (a, b) of real numbers for which a ≠ 0 w.r.t the 

operation × defined by (a, b) × (c, d) = (ac, bc + d) is non-abelian. Let H= {(1, b)| b ∈ R} is a 

subset of S. Show that H is a subgroup of (S, ×). 

Solution: Identity element in S is (1, 0). Clearly (1, 0) ∈ H. 

Inverse of (a, b) in S is (1/a,-b/a ) (∵ a ≠ 0) 

Inverse of (1, c) in S is (1, -c/1 ), i.e., (1, −c) 

Clearly (1, c) ∈ H ➙ (1, c)
−1 

= (1, −c) ∈ H. 

Let (1, b) ∈ H. 

(1, b) × (1, c)
−1 

= (1, b) × (1, −c) 

= (1.1, b.1 − c) = (1, b − c) ∈ H (∵ b − c ∈ R) 

∴ (1, b), (1, c) ∈ H ➙ (1, b) × (1, c)
−1 

∈ H ∴ H is a 

subgroup of (S, ×). 

Note: (1, b) × (1, c) = (1.1, b.1 + c) 
=(1, b + c) 

=(1, c + b) 

=(1, c) × (1, b) 

∴ H is an abelian subgroup of the non-abelian group (S, ×). 

Theorem: If H1 and H2 are two subgroups of a group G, then H1 ∩ H2 is also a subgroup of 

G. 

Proof: Let H1 and H2 be two subgroups of a group G. 

Let e be the identity element in G. 

∴ e ∈ H1 and e ∈ H2. ∴ e ∈ H1 ∩ 

H2. 

➙ H1 ∩ H2 ≠ ϕ. 

Let a ∈ H1 ∩ H2 and b ∈ H1 ∩ H2. 
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∴ a ∈ H1, a ∈ H2 and b ∈ H1, b ∈ H2. 

Since H1 is a subgroup, a ∈ H1 and b ∈ H1 ➙ ab
−1 

∈ H1. 

Similarly ab
−1 

∈ H2. 

∴ ab
−1 

∈ H1 ∩ H2. 

Thus we have, a ∈ H1 ∩ H2, b ∈ H1 ∩ H2 ➙ ab
−1 

∈ H1 ∩ H2. 

∴ H1 ∩ H2 is a subgroup of G. 

Example: Let G be the group and Z={x ∈ G| xy=yx for all y∈G}. Prove that Z is a subgroup of 

G. 

Solution: Since e ∈ G and ey = ye, for all y ∈ G. It follows that e ∈ Z. 

Therefore Z is non-empty. 

Take any a, b ∈ Z and any y ∈ G. Then 

(ab)y = a(by) 

=a(yb), since b ∈ Z, by = yb 

=(ay)b 

=(ya)b 

=y(ab) 

This show that ab ∈ Z. 

Let a ∈ Z ➙ ay = ya for all y ∈ G. 

➙ a
−1

(ay)a
−1 

= a
−1

(ya)a
−1

 

➙ (a
−1

a)(ya
−1

) = (a
−1

y)(aa
−1

) 

➙ e(ya
−1

) = (a
−1

y)e ➙ a
−1

y = ay
−1

 

This shows that a
−1 

∈ Z. 

Thus, when a, b ∈ Z, we have ab ∈ Z and a
−1 

∈ Z. 

Therefore Z is a subgroup of G. 

This subgroup is called the center of G. 

Homomorphism 

Homomorphism into: Let (G, ∗) and (G
′
, ·) be two groups and f be a mapping from G into 

G
′
. If for a, b ∈ G, f(a∗b) = f(a)·f(b), then f is called homomorphism G into G

′
. 

Homomorphism onto: Let (G, ∗) and (G
′
, ·) be two groups and f be a mapping from G onto 

G
′
. If for a, b ∈ G, f(a∗b) = f(a)·f(b), then f is called homomorphism G onto G

′
. 

Also then G′ is said to be a homomorphic image of G. We write this as f(G)  G′. 

Isomorphism: Let (G, ∗) and (G
′
, ·) be two groups and f be a one-one mapping of G onto G

′
. 

If for a, b ∈ G, f(a ∗ b) = f(a) · f(b), then f is said to be an isomorphism from G onto G
′
. 

Endomorphism: A homomorphism of a group G into itself is called an endomor-phism. 

Monomorphism: A homomorphism into is one-one, then it is called an monomor-phism. 

Epimorphism: If the homomorphism is onto, then it is called epimorphism. 

Automorphism: An isomorphism of a group G into itself is called an automorphism. 
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Example: Let G be the additive group of integers and G
′ 

be the multiplicative group. Then 

mapping f : G → G
′ 
given by f(x) = 2

x 
is a group homomorphism of G into G

′
. 

Solution: Since x, y ∈ G ➙ x + y ∈ G and 2
x
, 2

y 
∈ G

′ 
➙ 2

x 
· 2

y 
∈ G

′
. 

∴ f(x + y) = 2
x+y 

= 2
x 

· 2
y 

= f(x) · f(y). 

➙ f is a homomorphism of G into G
′
. 

Example: Let G be a group of positive real numbers under multiplication and G 
′
be a group of 

all real numbers under addition. The mapping f : G → G
′ 
given by f(x) = log10 x. Show that f 

is an isomorphism. 

Solution: Given f(x) = log10 x. 

Let a, b ∈ G ➙ ab ∈ G. Also, f(a), f(b) ∈ G
′
. 

∴ f(ab) = log10 ab = log10 a + log10 b = f(a) + f(b). 

➙ f is a homomorphism from G into G
′
. 

Let x1, x2 ∈ G and f(x1) = f(x2) 

log x = log x 
10    1 10   2 

 

 

➙ 10
log

10 
x

1 = 10
log

10 
x

2
 

➙ x1 = x2 

➙ f is one-one. 

➙ f(10
y
) = log10(10

y
) = y. 

∴ For ever y ∈ G
′
, there exists 10

y 
∈ G such that f(10

y
) = y 

➙ f is onto. 

∴ f an isomorphism from G to G
′
. 

Example: If R is the group of real numbers under the addition and R
+ 

is the group of positive 

real numbers under the multiplication. Let f : R → R
+ 

be defined by f(x) = e
x
, then show that f 

is an isomorphism. 

Solution: Let f : R → R
+ 

be defined by f(x) = e
x
. 

f is one-one: Let a, b ∈ G and f(a) = f(b) 

➙ e
a 

= e
b
 

➙ log e
a 

= log e
b
 

➙ a log e = b log e 

➙ a = b 

Thus f is one-one. 

f is onto: If c ∈ R
+ 

then log c ∈ R and f(log c) = e
log c 

= c 

Thus each element of R
+ 

has a pre-image in R under f and hence f is onto. 

f is Homomorphism: f(a + b) = e
a+b 

= e
a
.e

b 
= f(a).f(b) Hence f is an isomorphism. 

➙ 
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Example: Let G be a multiplicative group and f : G → G such that for a ∈ G, f(a) = a
−1

. 

Prove that f is one-one and onto. Also, prove that f is homomorphism if and only if G is 

commutative. 

Solution: f : G → G is a mapping such that f(a) = a
−1

, for a ∈ G. 

(i). To prove that f is one-one. 

Let a, b ∈ G. ∴ a
−1

, b
−1 

∈ G and f(a), f(b) ∈ G. 

Now f(a) = f(b) 

➙ a
−1 

= b
−1 

 
➙ (a−1)−1 = (b−1)−1 

➙ a = b 

∴ f is one-one. 

 
(ii). To prove that f is onto. 

Let a ∈ G. ∴ a
−1 

∈ G such that f(a
−1

) = (a
−1

)
−1 

= a. 

∴ f is onto. 

(iii). Suppose f is a homomorphism. 

For a, ∈ G, ab ∈ G. Now f(ab) = f(a)f(b) 

 

➙ (ab)
−1 

= a
−1

b
−1 

➙ b−1a−1 = a−1b−1 

➙ (b−1a−1)−1 = (a−1b−1)−1 

➙ (a−1)−1(b−1)−1 = (b−1)−1(a−1)−1 

➙ ab = ba 

∴ G is abelian. 

(iv). Suppose G is abelian ➙ ab = ba, ∀ a, b ∈ G. 

For a, b ∈ G, f(ab) = (ab)
−1

 

= b−1a−1 

=a−1b−1 

=f(a)f(b) 

∴ f is a homomorphism. 
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Number Theory 
Properties of Integers 
Let us denote the set of natural numbers (also called positive integers)by N and the set of 

integers by Z. 

i.e., N = {1, 2, 3...} and Z = {...., −2, −1, 0, 1, 2...}. 

The following simple rules associated with addition and multiplication of these inte-gers are 

given below: 

(a). Associative law for multiplication and addition 

(a + b) + c = a + (b + c) and (ab)c = a(bc), for all a, b, c ∈ Z. 

(b). Commutative law for multiplication and addition a + b = b + a and ab = ba, for all a, b ∈ 

Z. 

(c). Distritbutive law a(b + c) = ab + ac and (b + c)a = ba + ca, for all a, b, c ∈ Z. 

(d). Additive identity 0 and multiplicative identity 1 

a + 0 = 0 + a = a and a.1 = 1.a = a, for all a ∈ Z. 

(e). Additive inverse of −a for any integer a 

a + (−a) = (−a) + a = 0. 
Definition: Let a and b be any two integers. Then a is said to be greater than b if a − b is 

positive integer and it is denoted by a > b. a > b can also be denoted by b < a. 

 

Basic Properties of Integers 
Divisor: A non-zero integer a is said to be divisor or factor of an integer b if there exists an 

integer q such that b = aq. 

If a is divisor of b, then we will write a/b (read as a is a divisor of b). If a is divisor of b, then 

we say that b is divisible by a or a is a factor of b or b is multiple of a. Examples: 

(a). 2/8, since 8 = 2 × 4. 

(b). −4/16, since 16 = (−4) × (−4). 

(c). a/0 for all a ∈ Z and a ≠ 0, because 0 = a.0. 

Theorem: Let a, b, c ∈ Z, the set of integers. Then, 

(i). If a/b and b ≠ 0, then |a| ≤ |b|. 

(ii). If a/b and b/c, then a/c. 
(iii). If a/b and a/c, then a/b + c and a/b − c. 

(iv). If a/b, then for any integer m, a/bm. 

(v). If a/b and a/c, then for any integers m and n, a/bm + cn. 

(vi). If a/b and b/a then a = ±b. 

(vii). If a/b and a/b + c, then a/c. 

(viii). If a/b and m ≠ 0, then ma/mb. 

Proof: 

(i). We have a/b ➙ b = aq, where q ∈ Z. 

Since b ≠ 0, therefore q ≠ 0 and consequently |q| ≥ 1. 

Also, |q| ≥ 1 ➙ |a||q| ≥ |a| 

➙ |b| ≥ |a|. 

(ii). We have a/b ➙ b = aq1, where q1 ∈ Z. 

b/c ➙ c = bq2, where q2 ∈ Z. 
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∴ c = bq2 = (aq1)q2 = a(q1q2) = aq, where q = q1q2 ∈ Z. ➙ a/c. 

(iii). We have a/b ➙ b = aq1, where q1 ∈ Z. 

a/c ➙ c = aq2, where q2 ∈ Z. 

Now b + c = aq1 + aq2 = a(q1 + q2) = aq, where q = q1 + q2 ∈ Z. 

➙ a/b + c. 

Also, b − c = aq1 − aq2 = a(q1 − q2) = aq, where q = q1 − q2 ∈ Z. 

➙ a/b − c. 

(iv). We have a/b ➙ b = aq, where q ∈ Z. 

For any integer m, bm = (aq)m = a(qm) = aq, where a = qm ∈ Z. 

➙ a/bm. 

(v). We have a/b ➙ b = aq1, where q1 ∈ Z. 

a/c ➙ c = aq2, where q2 ∈ Z. 

Now bm + cn = (aq1)m + (aq2)n = a(q1m + q2n) = aq, where q = q1m + q2n ∈ Z 

➙ a/mb + cn. 

(vi). We have a/b ➙ b = aq1, where q1 ∈ Z. 

b/a ➙ a = bq2, where q2 ∈ Z. 

∴ b = aq1 = (bq2)q1 = b(q2q1) 

➙ b(1 − q2q1) = 0 

q2q1 = 1 ➙ q2 = q1 = 1 or q2 = q1 = −1 

∴ a = b or a = −b i.e., a ± b. (vii). We have a/b ➙ b 

= aq1, where q1 ∈ Z. 

a/b + c ➙ b + c = aq2, where q2 ∈ Z 

Now, c = b − aq2 = aq1 − aq2 = a(q1 − q2) = aq, where q = q1 − q2 ∈ Z. 

➙ a/c. 

(viii). We have a/b ➙ b = aq1, where q1 ∈ Z. 

Since m ≠ 0, mb = m(aq1) = ma(q1) 

➙ ma/mb. 

Greatest Common Divisor (GCD) 
Common Divisor: A non-zero integer d is said to be a common divisor of integers a and b if 
d/a and d/b. 

 

Example: 

(1). 3/ − 15 and 3/21 ➙ 3 is a common divisor of 15, 21. 

(2). ±1 is a common divisor of a, b, where a, b ∈ Z. 
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Greatest Common Divisor: A non-zero integer d is said to be a greatest common divisor 

(gcd) of a and b if 

(i). d is a common divisor of a and b; and 

(ii). every divisor of a and b is a divisor of d. 

We write d = (a, b)=gcd of a, b. 

Example: 2, 3 and 6 are common divisors of 18, 24. 

Also 2/6 and 3/6. Therefore 6 = (18, 24). 

Relatively Prime: Two integers a and b are said to be relatively prime if their greatest 

common divisor is 1, i.e., gcd(a, b)=1. 

Example: Since (15, 8) = 1, 15 and 8 are relatively prime. 

Note: 

(i). If a, b are relatively prime then a, b have no common divisors. 

(ii). a, b ∈ Z are relatively prime iff there exists x, y ∈ Z such that ax + by = 1. 

Basic Properties of Greatest Common Divisors: 

(1). If c/ab and gcd(a, c) = 1 then c/b. 

Solution: We have c/ab ➙ ab = cq1, q1 ∈ Z. 

(a, c) = 1 ➙ there exist x, y ∈ Z such that 

ax + cy = 1. 

ax + cy = 1 ➙ b(ax + cy) = b 

➙ (ba)x + b(cy) = b ➙ (cq1)x + b(cy) = b ➙ c[q1x + by] = b 

➙ cq = b, where q = q1x + by ∈ Z ➙ c/b. 

(2). If (a, b) = 1 and (a, c) = 1, then (a, bc) = 1. 

Solution: (a, b) = 1, there exist x1, y1 ∈ Z such that 

ax1 + by1 = 1 

➙ by1 = 1 − ax1——————-(1) 

(a, c) = 1, there exist x2, y2 ∈ Z such that 

ax2 + by2 = 1 

➙ cy2 = 1 − ax2——————-(2) 

From (1) and (2), we have 

(by1)(cy2) = (1 − ax1)(1 − ax2) 

➙ bcy1y2 = 1 − a(x1 + x2) + a
2
x1x2 ➙ a(x1 + x2 − 

ax1x2) + bc(y1y2) = 1 

➙ ax3 + bcy3 = 1, where x3 = x1 + x2 −ax1x2 and y3 = y1y2 are integers. 

∴ There exists x3, y3 ∈ Z such that ax3 + bcy3 = 1. 

 
(3). If (a, b) = d, then (ka, kb) = |k|d., k is any integer. 

Solution: Since d = (a, b) ➙ there exist x, y ∈ Z such that 

ax + by = d. 

➙ k(ax) + k(by) = kd ➙ (ka)x + (kb)y = kd 
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∴ (ka, kb) = kd = k(a, b) 

(4). If (a, b) = d, then (
a

d , d
b 

) = 1. 

Solution: Since (a, b) = d ➙ there exist x, y ∈ Z such that ax + by = d. 

➙( ax+by)/d = 1 

➙ (a/d)x + (b/d)y = 1 

Since d is a divisor of both a and b, a/d and b/d are both integers. 

Hence (a/d,b/d) = 1. 

 

Division Theorem (or Algorithm) 
Given integers a and d are any two integers with b > 0, there exist a unique pair of integers q 

and r such that a = dq + r, 0 ≤ r < b. The integer‘s q and r are called the quotient and the 

remainder respectively. Moreover, r = 0 if, and only if, b|a. 

 

Proof: 

 

Consider the set, S, of all numbers of the form a+nd, where n is an integer. 

S = {a - nd : n is an integer} 

S contains at least one nonnegative integer, because there is an integer, n, that ensures a-nd ≥ 

0, namely 

 

n = -|a| d makes a-nd = a+|a| d2 ≥ a+|a| ≥ 0. 

 

Now, by the well-ordering principle, there is a least nonnegative element of S, which we will 

call r, where r=a-nd for some n. Let q = (a-r)/d = (a-(a-nd))/d = n. To show that r < |d|, 

suppose to the contrary that r ≥ |d|. In that case, either r-|d|=a-md, where m=n+1 (if d is 

positive) or m=n-1 (if d is negative), and so r-|d| is an element of S that is nonnegative and 

smaller than r, a contradiction. Thus r < |d|. 

 

To show uniqueness, suppose there exist q,r,q',r' with 0 ≤ r,r' < |d| 

such that a=qd + r and a =q'd + r'. 

Subtracting these equations gives d(q'-q) = r'-r, so d|r'-r. Since 0 ≤ r,r' < |d|, the difference r'-r 

must also be smaller than d. Since d is a divisor of this difference, it follows that the 

difference r'-r must be zero, i.e. r'=r, and so q'=q. 

 

Example: If a = 16, b = 5, then 16 = 3 × 5 + 1; 0 ≤ 1 < 5. 
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Euclidean Algorithm for finding the GCD 
An efficient method for finding the greatest common divisor of two integers based on the 

quotient and remainder technique is called the Euclidean algorithm. The following lemma 

provides the key to this algorithm. 

Lemma: If a = bq + r, where a, b, q and r are integers, then gcd(a, b)=gcd(b, r). 

Statement: When a and b are any two integers (a > b), if r1 is the remainder when a is 

divided by b, r2 is the remainder when b is divided by r1, r3 is the remainder when r1 is 

divided by r2 and so on and if rk+1 = 0, then the last non-zero remainder rk is the gcd(a, b). 

Proof: 

 

By the unique division principle, a divided by b gives quotient q and remainder r, 

such that a = bq+r, with 0 ≤ r < |b|. 

Consider now, a sequence of divisions, beginning with a divided by b giving quotient q1 and 

remainder b1, then b divided by b1 giving quotient q2 and remainder b2, etc. 

 

a=bq1+b1, 

b=b1q2+b2, 

b1=b2q3+b3, 

... 

bn-2=bn-1qn+bn, 

bn-1=bnqn+1 

 

In this sequence of divisions, 0 ≤ b1 < |b|, 0 ≤ b2 < |b1|, etc., so we have the sequence 

|b| > |b1| > |b2| > ... ≥ 0. Since each b is strictly smaller than the one before it, eventually one 

of them will be 0. We will let bn be the last non-zero element of this sequence. 

 

From the last equation, we see bn | bn-1, and then from this fact and the equation before it, we 

see that bn | bn-2, and from the one before that, we see that bn | bn-3, etc. Following the chain 

backwards, it follows that bn | b, and bn | a.  So we see that bn is a common divisor of a and b. 

 

To see that bn is the greatest common divisor of a and b, consider, d, an arbitrary common 

divisor of a and b. From the first equation, a-bq1=b1, we see d|b1, and from the second, 

equation, b-b1q2=b2, we see d|b2, etc. Following the chain to the bottom, we see that d|bn. 

Since an arbitrary common divisor of a and b divides bn, we see that bn is the greatest 

common divisor of a and b. 

 

Example: Find the gcd of 42823 and 6409. 

Solution: By Euclid Algorithm for 42823 and 6409, we have 

42823= 6.6409+ 4369, r1= 4369, 

6409= 1.4369+2040, r2= 2040, 

4369= 2.2040+289, r3 = 289, 

2040= 7.289+ 17, r4 = 17, 

289= 17.17+ 0, 

r5 = 0 

∴ r4 = 17 is the last non-zero remainder. ∴ d = (42823, 6409) = 17. 
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Example: Find the gcd of 826, 1890. 

Solution: By Euclid Algorithm for 826 and 1890, we have 

1890= 2.826+ 238,r1= 238 

826= 3.238+ 112,r2= 112 

238= 2.112+ 14,r3 = 14 

112= 8.14 + 0, r4 = 0 

∴ r3 = 14 is the last non-zero remainder. ∴ d = (826, 1890) = 14. 

****Example: Find the gcd of 615 and 1080, and find the integers x and y such that gcd(615, 

1080) = 615x + 1080y. 

Solution: By Euclid Algorithm for 615 and 1080, we have 

1080 = 1.615 + 465,  r1 = 465 − − − − − (1) 

615 = 1.465 + 150,  r2 = 150 − − − − − (2) 

465 = 3.150 + 15, r3 = 15 − − − − − −(3) 

150 = 10.15 + 0,  r4 = 0 − − − − − − − (4) 

∴ r3 = 15 is the last non-zero remainder. 

∴ d = (615, 1080) = 15. Now, we find x and y such that 

615x + 1080y = 15. 

To find x and y, we begin with last non-zero remainder as follows. 
d = 15 = 465 + (−3).150; using (3) 

 

=465 + (−3){615 + (−1)465}; using (2) 

=(−3).615 + (4).465 

=(−3).615 + 4{1080 + (−1).615}; using (1) 

=(−7).615 + (4).1080 

=615x + 1080y 

Thus gcd(615, 1080) = 15 provided 15 = 615x + 1080y, where x = −7 and y = 4. 

Example: Find the gcd of 427 and 616 and express it in the form 427x + 616y. 

Solution: By Euclid Algorithm for 427 and 616, we have 

616= 1.427+189,r1 = 189. ...... (1) 

427= 2.189+49,r2 = 49. ......... (2) 

189= 3.49+ 42,  r3 = 42. ........... (3) 

49= 1.42+ 7,r4 = 7. ............... (4) 

42= 6.7 + 0,r5 = 0. ................. (5) 

∴ r5 = 7 is the last non-zero remainder. 

∴ d = (427, 616) = 7. Now, we find x and y such that 

427x + 616y = 7. 

To find x and y, we begin with last non-zero remainder as follows. 
d = 7 = 49 + (−1).42; using (4) 

=49 + (−1){189 + (−3).49}; using (3) 

=4.49 − 189 

=4.{427 + (−2).189} − 189; using (2) 

=4.427 + (−8).189 − 189 

=4.427 + (−9).189 

=4.427 + (−9){616 + (−1)427}; using (1) 

=4.427 + (−9).616 + 9.427 

=13.427 + (−9).616 
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Thus gcd(427, 616) = 7 provided 7 = 427x + 616y, where x = 13 and y = −9. 

Example: For any positive integer n, prove that the integers 8n + 3 and 5n + 2 are relatively 

prime. 

Solution: If n = 1, then gcd(8n + 3, 5n + 2)=gcd(11, 7) = 1. 

If n ≥ 2, then we have 8n + 3 > 5n + 2, so we may write 

8n + 3 = 1.(5n + 2) + 3n + 1, 0 < 3n + 1 < 5n + 2 

5n + 2 = 1.(3n + 1) + 2n + 1, 0 < 2n + 1 < 3n + 1 

3n + 1 = 1.(2n + 1) + n, 0 < n < 2n + 1 

2n + 1 = 2.n + 1, 0 < 1 < n 

n = n.1 + 0. 

Since the last non-zero remainder is 1, gcd(8n + 3, 5n + 2) = 1 for all n ≥ 1. 

Therefore the given integers 8n + 3 and 5n + 2 are relatively prime. 

Example: If (a, b) = 1, then (a + b, a − b) is either 1 or 2. 

Solution: Let (a + b, a − b) = d ➙ d|a + b, d|a − b. 

Then a + b = k1d ....... (1) 

and a − b = k2d ......... (2) 

Solving (1) and (2), we have 

2a = (k1 + k2)d and 2b = (k1 − k2)d 

∴ d divides 2a and 2b 

∴ d ≤gcd(2a, 2b) = 2 gcd(a, b) = 2, since gcd(a, b) = 1 ∴ d = 1 or 2. 

Then 2a + b = k1d.......... (1) 

and a + 2b = k2d ............ (2) 

 
3a = (2k1 − k2)d and 3b = (2k2 − k1)d 

∴ d divides 3a and 3b 

∴ d ≤gcd(3a, 3b) = 3 gcd(a, b) = 3, since gcd(a, b) = 1 ∴ d = 1 or 2 or 3. 

But d cannot be 2, since 2a + b and a + 2b are not both even [when a is even and b is odd, 2a 

+ b is odd and a + 2b is even; when a is odd and b is even, 2a + b is even and a + 2b is odd; 

when both a and b are odd 2a + b and a + 2b are odd.] Hence d = (2a + b, a + 2b) is 1 or 3. 
 

Least Common Multiple (LCM) 

Let a and b be two non-zero integers. A positive integer m is said to be a least common 

multiple (lcm) of a and b if 

(i) m is a common multiple of a and b i.e., a/m and b/m, 

and 

(ii) c is a common multiple of a and b, c is also a multiple of m 

i.e., if a/c and b/c, then m/c. 
 

In other words, if a and b are positive integers, then the smallest positive integer that is 

divisible by both a and b is called the least common multiple of a and b and is denoted by 

lcm(a, b). 

Note: If either or both of a and b are negative then lcm(a, b) is always positive. 

Example: lcm(5, -10)=10, lcm(16, 20)=80. 
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Prime Numbers 

Definition: An integer n is called prime if n > 1 and if the only positive divisors of n are 1 

and n. If n > 1 and if n is not prime, then n is called composite. 
 

Examples: The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97. 
 

Theorem: Every integer n > 1 is either a prime number or a product of prime numbers. 
 

Proof: We use induction on n. The theorem is clearly true for n = 2. Assume it is true for 

every integer < n. Then if n is not prime it has a positive divisor d ≠ 1, d ≠ n. Hence n = cd, 

where c ≠ n. But both c and d are < n and > 1 so each of c, d is a product of prime numbers, 

hence so is n. 
 

Fundamental Theorem of Arithmetic 

 
Theorem: Every integer n > 1 can be expressed as a product of prime factors in 

only one way, a part from the order of the factor. 
 

Proof: 

 

There are two things to be proved. Both parts of the proof will use he Well-ordering 

Principle for the set of natural numbers. 

(1) We first prove that every a > 1 can be written as a product of prime factors. (This 

includes the possibility of there being only one factor in case a is prime.) 

Suppose bwoc that there exists a integer a > 1 such that a cannot be written as a product of 

primes. 

By the Well-ordering Principle, there is a smallest such a. 

Then by assumption a is not prime so a = bc where 1 < b, c < a. 

So b and c can be written as products of prime factors (since a is the smallest positive 

integer than cannot be.) 

But since a = bc, this makes a a product of prime factors, a contradiction. 

(2) Now suppose bwoc that there exists an integer a > 1 that has two different prime 

factorizations, say a = p1 ··· ps = q1 ··· qt , where the pi and qj are all primes. (We allow 

repetitions among the pi and qj . That way, we don‘t have to use exponents.) 

Then p1| a = q1 ··· qt . Since p1 is prime, by the Lemma above, p1| qj for some j .  

Since qj is prime and p1 > 1, this means that p1 = qj . 

For convenience, we may renumber the qj so that p1 = q1 . 

We can now cancel p1 from both sides of the equation above to get p2 ··· ps = q2 ··· qt . But 

p2 ··· ps < a and by assumption a is the smallest positive integer with a non–unique prime 

factorization. 

It follows that s = t and that p2,...,ps are the same as q2,...,qt , except possibly in a different 

order. 

But since p1 = q1 as well, this is a contradition to the assumption that these were two 

different factorizations. 

Thus there cannot exist such an integer a with two different factorizations 

Example: Find the prime factorisation of 81, 100 and 289. Solution: 81 = 3 × 3 × 3 × 3 = 3
4
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2 2 

1 2 k 1 2 k 

=p1 × p2 × ... × pk 1 1    1  2 2    2  k  

k× p  .p  ...p 

k 

100 = 2 × 2 × 5 × 5 = 2
2 

× 5
2
 

289 = 17 × 17 = 17
2
. 

Theorem: Let m = p1
a1 

p 
a2 

...p 
ak 

and n = p 

 
 b1 

p 
b2 

...p 
bk 

. Then 

gcd(m, n) = p1
min(a

1
,b

1
)
 

2 
min(a ,b ) 

× p2 

k 

× ... × pk 

1 2 k 
min(ak,bk) 

=∏ pi
min(ai,bi), where min(a, b) represents the minimum of the two numbers a and b. 

lcm(m, n) = p1
max(a1,b1) 

× p2
max(a2,b2) 

× ... × pk
max(ak,bk) 

=∏ pi
max(ai,bi), where max(a,b) represents the maximum of the two numbers a and b. 

Theorem: If a and b are two positive integers, then gcd(a, b).lcm(a, b) = ab. 
 

Proof: Let prime factorisation of a and b be 

m= pa 1 pa 2 ...pa k and n = pb 1 pb 2 ...pb k 

Then gcd(a, b) = p1
min(a1,b1) 

× p2
min(a2,b2) 

× ... × pk
min(ak,bk)

and 

lcm(m, n) = p1
max(a1,b1) 

× p2
max(a2,b2) 

× ... × pk
max(ak,bk) 

We observe that if min(ai, bi) is ai(or bi) then max(ai, bi) is bi(or ai), i = 1, 2.., n. 

Hence gcd(a, b).lcm(a, b) 

 
min(a

1
,b
1

) min(a
2

,b
2

) min(a
k

,b
k

) max( a ,b ) max( a ,b ) max( a
k
,b ) 

[min(a ,b )+max(a ,b )] [min(a ,b )+max(a ,b )] [min(a ,b )+max(a ,b )] 

p1 1    1 1    1    .p2 2    2 2    2    ...pk k    k k    k 

(a +b ) (a +b ) (a +b ) 

=p1 1 1 .p2 2 2 ...pk k k
 

=( p1
a1 

p2
a2 

...pk
ak  

)( p1
b1 

p2
b2 

...p 
bk

) 

=ab. 
 

Example: Use prime factorisation to find the greatest common divisor of 18 and 30. 

Solution: Prime factorisation of 18 and 30 are 

18 = 2
1 

× 3
2 

× 5
0 

and 30 = 2
1 

× 3
1 

× 5
1
. 

gcd(18, 30) = 2min(1,1) × 3min(2,1) × 5min(0,1) 

=2
1 

× 3
1 

× 5
0
 

=2 × 3 × 1 

=6. 
 

Example: Use prime factorisation to find the least common multiple of 119 and 544. 

Solution: Prime factorisation of 119 and 544 are 

119 = 2
0 

× 7
1 

× 17
1 

and 544 = 2
5 

× 7
0 

× 17
1
. 

lcm(119, 544) = 2max(0,5) × 7max(1,0) × 17max(1,1) 

=2
5 

× 7
1 

× 17
1
 

=32 × 7 × 17 

=3808. 
 

Example: Using prime factorisation, find the gcd and lcm of 

= 
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(i). (231, 1575) (ii). (337500, 21600). Verify also gcd(m, n). lcm(m, n) = mn. 

 
Example: Prove that log3 5 is irrational number. 

Solution: If possible, let log3 5 is rational number. 

➙ log3 5 = u/v , where u and v are positive integers and prime to each other. 

∴ 3u/v = 5 

i.e., 3
u 

= 5
v 

= n, say. 

This means that the integer n > 1 is expressed as a product (or power) of prime numbers (or a 

prime number) in two ways. 

This contradicts the fundamental theorem arithmetic. 

∴ log3 5 is irrational number. 

Example: Prove that√ 5 is irrational number. 

Solution: If possible, let√ 5 is rational number. 

⇒√5 = u/v, where u and v are positive integers and prime to each other. 

⇒ u2  = 5v2  .............................................. (1) 

⇒ u2 is divisible by 5 

⇒ u is divisible by 5 i.e., u = 5m ......... (2) 

∴  From (1), we have 5v2  = 25m2  or v2  = 5m2 

i.e., v2  and hence v is divisible by 5 

i.e., v = 5n ........ (3) 

From (2) and (3), we see that u and v have a common factor 5, which contradicts the 

assumption. 

∴ √5 is irrational number. 
 

Testing of Prime Numbers 

Theorem: If n > 1 is a composite integer, then there exists a prime number p such 

that p/n and p ≤√n. 

Proof: Since n > 1 is a composite integer, n can be expressed as n = ab, where 

1 < a ≤ b < n. Then a ≤√n. 

If a >√n, then b ≥ a >√n. 

∴ n = ab >√n.√n = n, i.e. n > n, which is a contradiction. 

Thus n has a positive divisor (= a) not exceeding√n. 

a > 1, is either prime or by the Fundamental theorem of arithmetic, has a primefactor. In ither 

ase, n has a prime factor≤√n. 

 

Algorithm to test whether an integer n > 1 is prime: 
 

Step 1: Verify whether n is 2. If n is 2, then n is prime. If not goto step 2. 

Step 2: Verify whether 2 divides n. If 2 divides n, then n is not a prime. If 2 does not divides 

n, then goto step (3). 

Step 3: Find all odd primes p ≤ √n.If there is no such odd prime, then n is prime otherwise, 

goto step (4). 

Step 4: Verify whether p divides n, where p is a prime obtained in step (3). If p divides n, 

then n is not a prime. If p does not divide n for any odd prime p obtained in step (3), 

then n is prime. 
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Example: Determine whether the integer 113 is prime or not. 

Solution: Note that 2 does not divide 113. We now find all odd primes p such that p
2 

≤ 113. 

These primes are 3, 5 and 7, since 7
2 

< 113 < 11
2
. 

None of these primes divide 113. 

Hence, 113 is a prime. 
 

Example: Determine whether the integer 287 is prime or not. 

Solution: Note that 2 does not divide 287. We now find all odd primes p such that p
2 

≤ 287. 

These primes are 3, 5, 7, 11 and 13, since 13
2 

< 287 < 17
2
. 

7 divides 287. 

Hence, 287 is a composite integer. 

Modular Arithmetic 

Congruence Relation 

If a and b are integers and m is positive integer, then a is said to be congruent to b modulo m, 

if m divides a − b or a − b is multiple of m. This is denoted as 
 

a≡ b(mod m) 
 

m is called the modulus of the congruence, b is called the residue of a(mod m). If a is not 

congruent to b modulo m, then it is denoted by a ̸≡b(mod m). 

Example: 

(i). 89 ≡ 25(mod 4), since 89-25=64 is divisible by 4. Consequently 25 is the residue of 

89(mod 4) and 4 is the modulus of the congruent. 
 

(ii). 153 ≡ −7(mod 8), since 153-(-7)=160 is divisible by 8. Thus -7 is the residue of 

153(mod 8) and 8 is the modulus of the congruent. 
 

(iii). 24 ̸≡3(mod 5), since 24-3=21 is not divisible by 5. Thus 24 and 3 are incon-gruent 

modulo 5 

Note: If a ≡ b(mod m) ⇔ a − b = mk, for some integer k 

- a = b + mk, for some integer k. 

Properties of Congruence 

Property 1: The relation ‖Congruence modulo m‖ is an equivalence relation. i.e., for all 

integers a, b and c, the relation is 
 

(i) Reflexive: For any integer a, we have a ≡ a(mod m) 

 

(ii) Symmetric: If a ≡ b(mod m), then b ≡ a(mod m) 

 

(iii) Transitive: If a ≡ b(mod m) and b ≡ c(mod m), then a ≡ c(mod 

m). 

 

Proof: (i). Let a be any integer. Then a − a = 0 is divisible by any fixed positive integer m. 

Thus a ≡ a(mod m). 
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∴ The congruence relation is reflexive. 

(ii). Given a ≡ b(mod m) 

➙ a − b is divisible by m ➙ −(a − b) is 

divisible by m ➙ b − a is divisible by 

m 

i.e., b ≡ a(mod m). 
Hence the congruence relation is symmetric. 

(iii). Given a ≡ b(mod m) and b ≡ c(mod m) 

➙ a − b is divisible of m and b − c is divisible by m. Hence (a − 

b) + (b − c) = a − c is divisible by m 

i.e., a ≡ c(mod m) 

➙ The congruence relation is transitive. 

Hence, the congruence relation is an equivalence relation. 

Property 2: If a ≡ b(mod m) and c is any integer, then 

(i). a ± c ≡ b ± c(mod m) 

(ii). ac ≡ bc(mod m). 

Proof: 

(i). Since a ≡ b(mod m) ➙ a − b is divisible by m. 

Now (a ± c) − (b ± c) = a − b is divisible by m. 

∴ a ± c ≡ b ± c(mod m). 

(ii). Since a ≡ b(mod m) ➙ a − b is divisible by m. 

Now, (a − b)c = ac − bc is also divisible by m. 

∴ ac ≡ bc(mod m). 

Note: The converse of property (2) (ii) is not true always. 

Property 3: If ac ≡ bc(mod m), then a ≡ b(mod m) only if gcd(c,m) = 1. In fact, if c is an 

integer which divides m, and if ac ≡ bc(mod m), then a ≡ b mod[ 

Proof: Since ac ≡ bc(mod m) ⇒ ac − bc is divisible by m. 

i.e., ac − bc = pm, where p is an integer. 

➙ a − b= p( 
m 

) 
c 

m 
]
 

gcd(c, m) 

∴ a ≡ b[ mod ( 
m 

)] , provided that 
c 

Since c divides m, gcd(c, m) = c. 

m 
is an integer. 

c 

Hence, a ≡ b mod [ 
m 

]
 

gcd(c, m) 

But, if gcd(c, m) = 1, then a ≡ b(mod m). 
 

Property 4: If a, b, c, d are integers and m is a positive integer such that a ≡ b(mod m) and c 

≡ d(mod m), then 

(i). a ± c ≡ b ± d(mod m) 

(ii). ac ≡ bd(mod m) 

(iii). a
n 

≡ b
n
(mod m), where n is a positive integer. 
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Proof: (i). Since a ≡ b(mod m) ➙ a − b is divisible by m. 

Also c ≡ d(mod m) ➙ c − d is divisible by m. 

∴ (a − b) ± (c − d) is divisible by m. i.e., (a ± c) − 

(b ± d) is divisible by m. i.e., a ± c ≡ b ± d(mod 

m). 

(ii). Since a ≡ b(mod m) ➙ a − b is divisible by m. 

∴ (a − b)c is also divisible by m. 

∴ (c − d)b is also divisible by m. 

∴ (a − b)c + (c − d)b = ac − bd is divisible by m. i.e., ac − bd is divisible by m. 

i.e., ac ≡ bd(mod m). ........................ (1) 

(iii). In (1), put c = a and d = b. Then, we get 
a2  ≡ b2(mod m).  .............. (2) 
Also a ≡ b(mod m). .............. (3) 

Using the property (ii) in equations (2) and (3), we have a
3 

≡ b
3
(mod 

m) 
Proceeding the above process we get 

a
n 

≡ b
n
(mod m), where n is a positive integer. 

Fermat’s Theorem 

If p is a prime and (a, p) = 1 then a
p−1 

− 1 is divisible by p i.e., a
p−1 

≡ 1 (mod p). 
 

Proof 

We offer several proofs using different techniques to prove the statement . 

If , then we can cancel a factor of from both sides and retrieve the first version 

of the theorem. 

Proof by Induction 

The most straightforward way to prove this theorem is by by applying the induction principle. We 

fix as a prime number. The base case, , is obviously true. Suppose the 

statement is true. Then, by the binomial theorem, 

Note that divides into any binomial coefficient of the form for . This 

follows by the definition of the binomial coefficient as ; since is prime, 

then divides the numerator, but not the denominator. 
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Example: Using Fermat‘s theorem, compute the values of 

(i) 3
302

(mod 5), 

(ii) 3
302

(mod 7) and 

(iii) 3
302

(mod 11). 

Solution: By Fermat‘ s theorem, 5 is a prime number and 5 does not divide 3, we have 

 

35−1≡ 1 (mod 5) 

3
4
≡ 1 (mod 5) 

(34)75≡ 1
75 

(mod 5) 

3300≡ 1 (mod 5) 

3302≡ 3
2 

= 9 (mod 5) 

3302≡ 4 (mod 5) ............ (1) 
Similarly, 7 is a prime number and 7 does not divide 3, we have 

3
6 

≡ 1 (mod 7) 

(3
6
)
50 

≡ 1
50 

(mod 7) 

3
300 

≡ 1 (mod 7) 

3
302 

≡ 3
2 

= 9 (mod 7) 

3
302 

≡ 2 (mod 7) ........... (2) 

and 11 is a prime number and 11 does not divide 3, we have 

3
10 

≡ 1 (mod 11) 

(3
10

)
30 

≡ 1
30 

(mod 11) 

3
300 

≡ 1 (mod 11) 

3
302 

≡ 3
2 

= 9 (mod 11) ............ (3) 

Example: Using Fermat‘s theorem, find 3
201

(mod 11). 

Example: Using Fermat‘s theorem, prove that 4
13332 

≡ 16 (mod 13331). Also, give an 

example to show that the Fermat theorem is true for a composite integer. Solution: 

(i). Since 13331 is a prime number and 13331 does not divide 4. 
By Fermat‘s theorem, we have 

4
13331−1 

≡ 1 (mod 13, 331) 

4
13330 

≡ 1 (mod 13, 331) 

4
13331 

≡ 4 (mod 13, 331) 

4
13332 

≡ 16 (mod 13, 331) 

(ii). Since 11 is prime and 11 does not divide 2. 

Taken 

with 

then 

, all of the middle terms disappear, and we end up 

. Since we also know that 

, as desired. 

, 
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Also, 

By Fermat‘s theorem, we have 

2
11−1 

≡ 1 (mod 11) 

i.e., 2
10 

≡ 1 (mod 11) 

(2
10

)
34 

≡ 1
34 

(mod 11) 

2
340 

≡ 1 (mod 11) ............(1) 

2
5 

≡ 1 (mod 31) 

(2
5
)
68 

≡ 1
68 

(mod 31) 

2
340 

≡ 1 (mod 31) ............(2) 
 

From (1) and (2), we get 

2
340 

− 1 is divisible by 11 × 31 = 341, since gcd(11, 31) = 1. 

i.e., 2
340 

≡ 1 (mod 341). 

Thus, even though 341 is not prime, Fermat theorem is satisfied. 
 

Euler’s totient Function: 
Euler's totient function counts the positive integers up to a given integer n that are 

relatively prime to n. It is written using the Greek letter phi as ϕ(n), and may also be called  

Euler's phi function. It can be defined more formally as the number of integers k in the range 

1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this 

form are sometimes referred to as totatives of n. 

Computing Euler's totient function: 

 

where the product is over the distinct prime numbers dividing 

 

Example: Find ϕ(21), ϕ(35), ϕ(240) 

Solution: 

ϕ(21) = ϕ(3 × 7) 

= 21 (1  
1
)(1  

1
) 

3 7 

= 12 
 

ϕ(35) = ϕ(5 × 7) 

= 35 (1  
1
)(1  

1
) 

5 7 
= 24 

 

ϕ(240) = ϕ(15 × 16) 

=ϕ(3×5× 2
4
) 

=240 (1  
1
)(1  

1
)(1  

1
) 

3 5 2 

= 64 
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Euler’s Theorem: If a and n > 0 are integers such that (a, n) = 1 then a
ϕ(n) 

≡ 1(mod n). 

Proof: 

Consider the elements 

are relatively prime to n. 

r1 , r2 ,…, r  (n) of (Z/n) the congruence classes of integers that 

For a(Z/n) the claim is that multiplication by a is a permutation of this set; that is, 

the set { ar1 , ar2 ,…, ar ( n) } equals (Z/n). The claim is true because multiplication by a is a 

function from the finite set (Z/n) to itself that has an inverse, namely multiplication by 1/a (mod n) 

Now, given the claim, consider the product of all the elements of (Z/n), on one hand, it 

is r1 r2 ,…r ( n) . On the other hand, it is ar1 ar2 …ar ( n) . So these products are congruent 

mod n  
r1 r2 …r ( n)  ar1 ar2 …ar ( n) 

r1 r2 …r ( n)  a
 (n) r1 r2 …r ( n) 

1  a (n) 

where, cancellation of the ri is allowed because they all have multiplicative inverses(mod n) 

Example: Find the remainder 29202 when divided by 13. 

Solution: We first note that (29,13)=1. 

Hence we can apply Euler's Theorem to get that 29ϕ(13) ≡1(mod13). 

Since 13 is prime, it follows that ϕ(13)=12, hence 2912≡1(mod13). 

We can now apply the division algorithm between 202 and 12 as follows: 

202=12(16)+10 

Hence it follows that 29202=(2912)26⋅2910≡(1)26⋅2910≡2910(mod13). 
Also we note that 29 can be reduced to 3 (mod 13), and hence: 

2910≡310=59049≡3(mod13)2 
Hence when 29202 is divided by 13, the remainder leftover is 3. 

 

Example: Find the remainder of 99999999 when divided by 23. 

Solution: Once again we note that (99,23)=1, hence it follows that 99ϕ(23) ≡1(mod23). 
Once again, since 23 is prime, it goes that ϕ(23)=22, and more 

appropriately 9922≡1(mod23). 

We will now use the division algorithm between 999999 and 22 to get that: 

999999=22(45454)+11 

Hence it follows that 

99999999=(9922)45454⋅9911≡145454⋅9911≡711=1977326743≡22(mod23). 

Hence the remainder of 99999999 when divided by 23 is 22. 

Note that we can solve the final congruence a little differently as: 

9911≡711=(72)5⋅7=(49)5⋅7≡35⋅7=1701≡22(mod23). 

There are many ways to evaluate these sort of congruences, some easier than others. 
Example: What is the remainder when 1318 is divided by 19? 

Solution: If yϕ (z) is divided by z, the remainder will always be 1; if y, z are co-prime 

In this case the Euler number of 19 is 18 

(The Euler number of a prime number is always 1 less than the number). 

As 13 and 19 are co-prime to each other, the remainder will be 1. 
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Example: Now, let us solve the question given at the beginning of the article using the 

concept of Euler Number: What is the remainder of 192200002/23? 

Solution: The Euler Number of the divisor i.e. 23 is 22, where 19 and 23 are co-prime. 

Hence, the remainder will be 1 for any power which is of the form of 220000. 

The given power is 2200002. 

Dividing that power by 22, the remaining power will be 2. 

Your job remains to find the remainder of 192/23. 

As you know the square of 19, just divide 361 by 23 and get the remainder as 16. 

 

Example: Find the last digit of 555. 

Sol: We first note that finding the last digit of 555 can be obtained by reducing 555 (mod 10), 

that is evaluating 555(mod10). 

We note that (10, 55) = 5, and hence this pair is not relatively prime, 

however, we know that 55 has a prime power decomposition of 

55 = 5 x 11. (11, 10) = 1, 

hence it follows that 11ϕ(10) ≡1(mod10). 

We note that ϕ(10)=4. Hence 114≡1(mod10), and more appropriately: 

555=55⋅115=55⋅114⋅11≡512⋅(1)4⋅11≡34375≡5(mod10) 

Hence the last digit of 555 is 5. 
 

Example: Find the last two digits of 33334444. 
Sol: 

We first note that finding the last two digits of 33334444 can be obtained by reducing 

33334444 (mod 100). 

Since (3333, 100) = 1, we can apply this theorem. 

We first calculate that ϕ(100)=ϕ(22)ϕ(52)=(2)(5)(4)=40. 

Hence it follows from Euler's theorem that 333340≡1(mod100). 

Now let's apply the division algorithm on 4444 and 40 as follows: 

4444=40(111)+4 

Hence it follows that: 

33334444≡(333340)111⋅33334≡(1)111⋅33334(mod100)≡334=1185921≡21(mod100) 

Hence the last two digits of 33334444 are 2 and 1. 



120  

Previous questions 
1. a) Prove that a group consisting of three elements is an abelian group? 

b) Prove that G={-1,1,i,-i} is an abelian group under multiplication? 

2. a) Let G= {-1,0,1} . Verify that G forms an abelian group under addition? 

b) Prove that the Cancellation laws holds good in a group G.? 

3. Prove that the order of a-1  is same as the order of a.? 

4. a) Explain in brief about fermats theorem? 
b) Explain in brief about Division theorem? 

c) Explain in brief about GCD with example? 
5. Explain in brief about Euler’s theorem with examples? 
6. Explain in brief about Principle of Mathematical Induction with examples? 
7. Define Prime number? Explain in brief about the procedure for testing of prime numbers? 
8. Prove that the sum of two odd integers is an even integer? 
9. State Division algorithm and apply it for a dividend of 170 and divisor of 11. 
10. Using Fermat’s theorem, find 3201 mod 11. 
11. Use Euler’s theorem to find a number between 0 and 9 such that a is congruent to 71000 (mod 10) 
12. Find the integers x such that i) 5x≡4 (mod 3) ii) 7x≡6 (mod 5) iii) 9x≡8 (mod 7) 
13. Determine GCD (1970, 1066) using Euclidean algorithm. 
14. If a=1820 and b=231, find GCD (a, b). Express GCD as a linear combination of a and b. 
15. Find 117 mod 13 using modular arithmetic. 

 
Multiple choice questions 

 

1. If a|b and b|c, then a|c. 
a) True b) False 

Answer: a 

2. GCD(a,b) is the same as GCD(|a|,|b|). 

a) True b) False 

Answer: a 

3. Calculate the GCD of 1160718174 and 316258250 using Euclidean algorithm. 

a) 882 

Answer: c 

b) 770 c) 1078 d) 1225 

4. Calculate the GCD of 102947526 and 239821932 using Euclidean algorithm. 

a) 11 b) 12 c) 8 d) 6 

Answer: d 

5. Calculate the GCD of 8376238 and 1921023 using Euclidean algorithm. 

a) 13 b) 12 c) 17 d) 7 

Answer: a 

6. What is 11 mod 7 and -11 mod 7? 

a) 4 and 5 

Answer: d 

b) 4 and 4 c) 5 and 3 d) 4 and -4 

7. Which of the following is a valid property for concurrency? 

a) a = b (mod n) if n|(a-b) b) a = b (mod n) implies b = a (mod n) 

c) a = b (mod n) and b = c (mod n) implies a = c (mod n) 

d) All of the mentioned 

Answer: d 

8. [(a mod n) + (b mod n)] mod n = (a+b) mod n 

a) True b) False 

9. [(a mod n) – (b mod n)] mod n = (b – a) mod n 

a) True b) False 

Answer:b 
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if the largest prime divisor of m is the same as the largest prime divisor of n. The number 
of equivalence classes of R is 

(a) 8 (b) 10 (c) 9 (d) 11 (e) 7 

Ans:a 

16. The set of all nth roots of unity under multiplication of complex numbers form a/an 

A.semi group with identity B.commutative semigroups with identity 

C.group D.abelian group 

Option: D 

17. Which of the following statements is FALSE ? 

A. The set of rational numbers is an abelian group under addition 

B. The set of rational integers is an abelian group under addition 

C. The set of rational numbers form an abelian group under multiplication 

D. None of these 

Option: D 

18. In the group G = {2, 4, 6, 8) under multiplication modulo 10, the identity element is 

A.6 B.8 C.4 D.2 

Option: A 

19. Match the following 

A. Groups I. Associativity 

B. Semi groups II. Identity 

C. Monoids III. Commutative 

D. Abelian Groups IV Left inverse 

A. A B C D B. A B C  D C. A  B C  D D. A B C D 

IV I II III III I IV II II III I IV I II III IV 

Option: A 

20. Let (Z,*) be an algebraic structure, where Z is the set of integers and the operation * is 

defined by n*m = maximum(n,m). Which of the following statements is TRUE for (Z,*)? 

A.(Z, *) is a monoid B.(Z, *) is an abelian group C.(Z, *) is a group D.None 

Option: D 

21. Some group (G,0) is known to be abelian. Then which of the following is TRUE for G ? 

A.g = g-1 for every g ∈ G B.g = g2 for every g ∈ G 

C.(g o h) 2 = g2o h2 for every g,h ∈ G D.G is of finite order 

Option: C 
22. If the binary operation * is deined on a set of ordered pairs of real numbers as (a, b)*(c, d) 

10. 117 mod 13 = 

a) 3 b) 7 c) 5 d) 15 

Answer: d 

11. The multiplicative Inverse of 1234 mod 4321 is 

a) 3239 
Answer: a 

b) 3213 c) 3242 d) Does not exist 

12. The multiplicative Inverse of 550 mod 1769 is 

a) 434 

Answer: a 

b) 224 c) 550 d) Does not exist 

13. The multiplicative Inverse of 24140 mod 40902 is 

a) 2355 
Answer: d 

b) 5343 c) 3534 d) Does not exist 

14. GCD(a,b) = GCD(b,a mod b) 
a) True b) False 

Answer: a 

15. Define an equivalence relation R on the positive integers A = {2, 3, 4, . . . , 20} by m R n 
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= (ad + bc, bd) and is associative, then (1, 2) * (3, 5) * (3, 4) equals 

A.(74,40) B.(32,40) C.(23,11) D.(7,11) 

Option: A 

 

23. The linear combination of gcd(252, 198) = 18 is 

a) 252*4 – 198*5 
Answer:a 

b) 252*5 – 198*4 c) 252*5 – 198*2 d) 252*4 – 198*4 

24. The inverse of 3 modulo 7 is 

a) -1 b) -2 c) -3 d) -4 

Answer:b 

25. The integer 561 is a Carmichael number. 

a) True b) False 

Answer:a 

26. The linear combination of gcd(117, 213) = 3 can be written as 

a) 11*213 + (-20)*117 b) 10*213 + (-20)*117 

c) 11*117 + (-20)*213 d) 20*213 + (-25)*117 

Answer:a 

27. The inverse of 7 modulo 26 is 

a) 12 

Answer:c 

b) 14 c) 15 d) 20 

28. The inverse of 19 modulo 141 is 

a) 50 b) 51 c) 54 d) 52 

Answer:d 

29. The value of 52003 mod 7 is 

a) 3 

Answer:a 

b) 4 c) 8 d) 9 

30. The solution of the linear congruence 4x = 5(mod 9) is 

a) 6(mod 9) 

Answer:b 

b) 8(mod 9) c) 9(mod 9) d) 10(mod 9) 

31. The linear combination of gcd(10 ,11) = 1 can be written as 

a) (-1)*10 + 1*11 b) (-2)*10 + 2*11 

c) 1*10 + (-1)*11 d) (-1)*10 + 2*11 

Answer:a 
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