

UNIT 1
UNIT - I Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of

Abstraction in a DBMS, Data Independence, Structure of a DBMS Introduction to Database Design: Database Design and

ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER

Model, Conceptual Design With the ER Model

- Applications of Database System

The applications of database systems are wide and it never ends up. Some of the application areas include

1. University 2. Banking 3. Hospital 4. Telecommunication 5. Finance

6. Sales and marketing

- History of database

The database system has a long history over the period the technology for database storage and access method

has been changed.

1. During 1950’s, during this period, magnetic tapes are used as storage media. Data will be stored and

processed on the magnetic tapes by using sequential access. Therefore, processing speed is less during

1960’s to 1970’s.

2. During this period, the usage of hard disk has changed the scenario of data storage and data processing.

The hard disk will provide direct access of the data. Therefore, process will become faster.

3. During 1970’s, E.F. Codd introduced the relational model and therefore many relational DB has been

started.

4. During 1980’s, during this period, many relational DB such as oracle, SQL server, IBM DML has been

introduced in the market and many researchers start working on disturbed databases during 1990’s many

database vendors provided many distributed databases into market and the usage of SQL has provided a

convenient environment for the user to work with database system.

- File System vs Database system

In early days, before database systems were introduced, users had to store their data in files and

retrieve the data from the files by writing different application programs this technique is known as File

Processing System (FPS).

File Processing System is suitable with the collection of files is less in number and data is limited.

When the file size increases, it becomes difficult to maintain such data with FPS.

* Drawbacks of File Processing System

a. Data Redundancy b. Data inconsistency c. Data Integrity

d. Data Isolation e. Data Security f. Difficulty in accessing the data

a. Data Redundancy:

It means duplication of the data. It leads to the wastage of storage space. This happens because no

validation methods available in File Processing System.

b. Data Inconsistency:

Data Redundancy leads to a problem known as Data Inconsistency i.e. multiple copies of the same

data may no longer agree with each other.

c. Data Integrity:

It refers to correctness. Integrity problem will arise due to the lack of integrity checks such as student

age should not be less than 18 etc.

d. Data Isolation:

In File System, data is distributed in different locations and to retrieve the data from these isolated

files, large application programs need to be written.

e. Data Security:

In File System, the files can be password protected sometimes we want to give the access to few

records from a file then security becomes difficult.

f. Difficulty in accessing the data:

In File System, efficient data access methods are not available hence accessing the data is difficult.

- View of Data

Database is a collection of large volumes of data the user does not always require the entire data from the

database. Therefore, it is the responsibility of the database to provide the required data to the user.

- Data abstraction

Data abstraction refers to the way of representing the essential features and hiding background details or

complexities from the user.

- Need for the data abstraction

Data abstraction is necessary because user is not computer trained or expert. To make user job simpler

different levels of data abstraction are provided so that user will feel convenient to work with the database.

- Levels of abstraction

There are 3 levels of data abstraction

1. Physical Level 2. Logical Level 3. View Level

1. Physical Level

a. It is also known as internal level or lower level.

b. It describes about how the data is actually stored in the database (Implementation or storage

structure).

2. Logical Level

a. It is also known as conceptual level.

b. It describes what data is actually stored in the database and relationship among the data.

c. Logical design is taken by DBA (Data Base Administrator).

3. View Level

a. It is also known as external level.

b. It describes the part of entire database in the form of different views by different users.

- Instance

A database instance is a set of memory structure and background processes that access a set of database

files. The process can be shared by all users. The memory structure that are used to store most queried data

from database. This helps up to improve database performance by decreasing the amount of I/O performed

against data file.

- Schema/Scheme

The overall design of the database is known as the database schema. According to the levels of data

abstractions, there are 3 types of schemas available.

1. Physical Scheme 2. Logical Scheme 3. Sub Scheme

External View View View View

Conceptual
Level

Logical Level

Internal Level Physical Level

1. Physical Scheme: It describes the structure of data at physical level.

2. Logical Scheme: It describes the structure of data at logical level.

3. Sub Scheme: It describes different values of the users interacting with the database.

- Data independence

It is defined as the ability to modify data at one level without effecting at the next level. Data independence is

of 2 types

1. Physical data independence 2. Logical data independence

1. Physical Data Independence:

The ability to modify the physical structure at the physical level without effecting the next level (Logical

level) is known as Physical Data Independence.

2. Logical Data Independence:

The ability to modify the data at the logical level without effecting the next level (View level/External level)

is known as Logical Data Independence.

Note: Logical Data Independence is more difficult to implement than Physical Data Independence.

- Data Models

Data model is the way to represent the data within the database. Data model is a collection of conceptual tools

for describing:

1. For describing data

2. The relationship among data

3. Data semantic

4. The consistency constraints

Different data models are available. The classification of data model is shown below

Data model is mainly classified into 3 categories:

1. Object based data model 2. Record based data model 3. Physical data model

1. Object based data model:

The object-based data model deals with the real-world object and relation among the objects. One of the

popular models to represent object-based model in E-R model.

E-R Model (Entity-Relationship):

The overall design of the database is represented graphically using entity-relationship diagram. The E-R

model shows entities, relations among entities in a diagrammatic fashion.

Ex: Entity: Student Entity: Class

Data
Model

Object based

data model

E-R Model

Record based

Data Model

Hierarchical
Network
Relational

Physical

data

model

Unifying
Frame
Memory

Attributes: Roll no. Attributes: Room no.

Name No. of seats

Address Location

Section

2. Record based data model:

The record-based data model stores the data in the form of fixed format record where each record

maybe having fixed length. Record-based data model contains 3 models

a. Hierarchical model b. Network model c. Relational model

a. Hierarchical Model:

In this model, the data and relationship among data is represented by using records and link or

pointer. This model is generally in the form of tree like structure.

b. Network Model:

In this model, data and relation among data is represented using records and pointers. This model is

generally represented in graph like structure.

c. Relational Model:

i. It is the most popular data model used nowadays.

ii. It was developed in year 1970 by EF Codd.

iii. The main constraint is to represent the relational model is in the form of relation (Table).

iv. A relation is a combination of rows and columns.

v. Each relation represents a relational schema and relational instance.

- Database system structure:

Roll No. Name Room No.

Location

Student Enroll Class

Section Address No. of seats

Cod
e

Engine

File
Manager

Buffer
Manager

Authorizatio
n

and Integrity

Manager

Transition

Manager

- Database User & Database Administrator:

The people who work with the database is categorised into 2 types:

1. Database User 2. Database Administrator

1. Database User

The database users are categorised into 4 types according to the way they are expected to interact with

Native Users

(Tellers, Agents

etc.)

Application

Programmers

Sophisticate
d

Users

Database

Administrator

s

Applicatio
n

Interfaces

Applicatio
n

Programs

Query Tools
Administratio

n

Tools

Compiler
and

Linker

DML
Queries

DDL Interpreter

Query

Processo

r Application

Program

Object

Queries

Evaluatio

n

DML Compiler

Storage

Manage

r

Disk Storage

Data Files

Data Dictionary

Indices

Statistical Data

database:

a. Native User (Unsophisticated) b. Application Programmers

c. Sophisticated User (Analyst) d. Specialized User

a. Native User (Unsophisticated):

* Native user also known as unsophisticated user or unskilled user.

* They interact with the database by using an API (Application Program Interface).

Ex: The users of ATM i.e. Automatic Telling Machine are categories as native user, teller, agents.

b. Application Programmers:

Application programmers are the skilled users who write certain application programs to interact with

the database. They use RAD (Rapid Application Development) tools to write the application programs.

They use the interface such as forms reports.

c. Sophisticated User:

* Sophisticated users also known as analyst.

* They interact with the database by using DML queries.

* These DML queries will be compiled using DML compiler and evaluated using query evaluation

engine.

d. Specialized User:

The specialized user are the sophisticated users who write some complex application programs such

as Computer Aided Design (CAD), Artificial Intelligence (AI), expert system & some graphics-based

application.

2. Database Administrator (DBA):

DBA is a person who has the centralised control over the entire database.

* Functions of DBA

a. Scheme definition:

The DBA is responsible for defining the schema (overall design) of the database.

b. Storage structure of access method definition:

The DBA is responsible to define the storage structure (logical design) and access method

(Retrieval Technology).

c. Physical organisation modification:

The DBA is responsible for the modification of the physical organisation of the database.

d. Granting authorization for data access:

The DBA will provide the access permissions to the user so that only the authorised users will

access the database.

e. Regular Maintenance:

i. Taking backup:

The DBA will take the backup of the database at regular intervals of time to be used for

recovery purpose.

ii. Monitoring the jobs:

The DBA will monitor the running jobs in order to maintain the performance of the system.

iii. Monitoring the disk space:

The DBA will monitor the file space allocation so that the new jobs will get the needed space

in the disk.

- Database Architecture:

The functional components of database architecture are categorised into 2 types:

1. Query processor 2. Storage manager

1. Query processor:

Query processor is a major component of database architecture. It includes the following components:

a. DML Compiler:

The DML compiler is used to compile the DML queries submitted by the user and generate low level

instruction understood by query evaluation engine.

b. DDL Interpreter:

The DDL interpreter will execute the DDL statements given by the user and store the result in a special

file called Data Dictionary.

c. Query evaluation engine:

The query evaluation will execute or evaluate low level instructions by DML compiler.

2. Storage manager:

The storage manager is a program module that acts as an interface between the query processor and low-

level data stored in the disk storage. It includes the following components:

a. Buffer manager:

The buffer manager is responsible for allocating temporary storage for the files.

b. File manager:

The file manager will take care of the files being stored in the database.

c. Authorization & Integrity manager:

This component is responsible for giving the authorization DAP (Data Access Permission) and

maintaining integrity of the database.

d. Transaction Manager:

It is responsible for managing the transaction within the database system. A transaction is a logical

unit of work done by the user.

Ex: Credit & debit operation in bank transaction.

The storage will maintain several data structures as part of physical storage implementation.

a. Indices (indexes): for faster retrieval of data.

b. Data files: It is a collection of data stored in the files.

c. Data Dictionary: It is a container for meta data.

d. Statistical data: It maintain the statistical information of database users.

- Database Design

The database design process consistence of the following steps:

1. Requirement Analysis (Data Gathering)

2. Conceptual Design (ER Model)

3. Logical Design (Relational Model)

4. Schema Refinement (Normalization Techniques)

5. Physical Database Design (index, clusters etc)

6. Database Tuning

7. Security Design (Authorization)

- ER Model beyond ER Design

The ER model consistence of various entity objects, attributes of entity properties and relationship among the

entities are represented in a diagrammatic fashion is known as entity relationship model.

Ex: The company database wants to maintain the following information about their emp and department.

The emp (E_ID, E_Name, E_Sal, Desig, Ph_No), Dept (D_No, D_Name, Budget). Identify the key attributes

and the relationship among the entity is as follows

There are 2 conditions

1. Emp works in department

2. Each department is managed by the employee

Draw a neat sketch diagram for the above information

- Additional features of ER model

The ER model consist of the following features

1. Key constrains 2. Participation constrains 3. Weak entities 4. Class hierarchy

5. Aggregation 6. Key constraint for ternary relationship

1. Key Constraints:

Consider the following ER – diagram given below

E_ID E_Name D_No D_Nam
e Works

Emp Dep
t

Manage
d

E_Sal Desig Ph_No Budge
t

Dependen
t

In the above ER diagram, there is a restriction that each department is managed by an employee

(Manager). This restriction is an example for the key constraints. The key constraints are represented

with an arrow in the diagram.

2. Participation constraints:

The participation is of 2 types

a. Total participation

b. Partial participation

Consider the ER diagram given above, in the ER diagram, the dept entity is totally participating

with the managers relationship. This participation is known as total participation.

If the participation is not total, then it is said to be partial. In the above ER diagram, the emp entity

is partially participating with the manages relationship. Hence, it is called as partial participation.

3. Weak Entities:

A weak entity is an entity that does not contain a primary key. It is represented with double rectangle box

Consider the given ER diagram

In the given example, dependent is a weak entity.

4. Class Hierarchy:

Sometimes it is common to represent entity into subclass using ‘IS A’ relationship. This concept is known

as a class hierarchy. The class hierarchy represents the inheritance concept where a super class may have

some sub classes. The class hierarchy is represented in 2 ways

a. Generalization b. Specialization

E_ID E_Name D_No D_Nam
e

Emp Manage
d

Dep
t

E_Sal Desig Budge
t

Partial key or

discriminated

key E_ID E_Name Nam
e

Ag
e

Emp Policie
s

E_Sal

a. Generalization:

Generalization is the process of finding some common properties of two sub classes having a

super class entity. In the above example, hourly emp, contract emp are generalized in emp.

b. Specialization:

The process of sub-dividing a super class entity into sub class entity is known as specialization.

In the above example, the super class entity emp is having sub class entities – hourly employee and

contract employee.

There are 2 constrains w.r.t generalization & specialization

i. Overlap Constraint:

The overlap constraint determines whether two subclass entities are allowed to have

common attributes of superclass.

ii. Covering Constraint:

Covering constraint determines whether the subclass entities include all the attributes of

super class.

5. Aggregation

In ER diagram, we represent relationship as an association among 2 entities. Sometimes we want

to represent relationship among relationships. This will be done using a concept known as Aggregation.

In the above example, the relationship set sponsors is associated with the relationship monitors.

The aggregation is represented by considering the relationship set sponsored among 2 entities,

Wage
s

Is

A
ID

Hourly_Emps Contract_Emps

Hourly_worked Wage
s

e_nam
e e_n

o e_sa
l

Emp

Sp
ec

ia
liz

at
io

n

(O
ve

rl
ap

 c
o

n
st

ra
in

s)

G
en

er
al

iz
at

io
n

(C
o

ve
ri

n
g

co
n

st
ra

in
s)

E_No E_Name E_Desig

Emp

Monitor
s

until

D_No D_Nam
e

since
P_ID

Sponsors Project
s

Start
data

budge
t

Dept

departments, projects as an entity set. It is shown with a dotted box in the diagram.

- Features of Aggregation

Aggregation is used to express relationship among relationship

6. Key constraints for ternary relationship

In the given ER diagram, an employee works in a department and in a single location. This

restriction for ternary relationship is represented with the key constraints using an arrow from employees

to work in relationship.

- Conceptual design with the ER Model

Conceptual design is the process of defining a high-level description of the data using ER model. There are

different design issues while designing conceptual design with ER model.

1. Entity vs Attribute

Sometimes an attribute of an entity set can be better represented as entities. Consider the ER diagram.

2. Entity vs Relationship

Sometimes an object will be better expressed as an entity rather than a relation.

E_No E_Name D_No D_Nam
e

Emp Works in Dep
t

E_Desig Budge
t

from Duration to

E_No E_Name D_No D_Nam
e

Emp Works in Dep
t

E_Sal Budge
t

from Location to

E_No E_Name from to D_No D_Nam
e

Emp Works in Dep
t

E_Desig Budge
t

E_No E_Name since budge
t

D_No D_Nam
e

Emp Manage
s

Dep
t

E_Desig Location

3. Binary vs Ternary

Sometimes a non - binary relationship can be expressed using distinct binary relations. Consider the

given ER diagram policies with ternary relation.

4. Aggregation vs Ternary

Sometimes an ER diagram with aggregation can be best expressed as ternary relation.

Entity

E_No E_Name D_Nam
e Age

Emp Covers Dependen
t

E_Desig P_ID Policie
s

Amoun
t

E_Name E_Desig D_No
D_Nam
e

E_No Emp Manage
s

Dep
t

Is

A

Location

since Manage
r

budge
t

E_No E_Name
D_Nam
e Age

Emp Dependen
t

E_Desig Purchas
e

Beneficiar
y

P_ID Policie
s

Amoun
t

E_Name
E_No

D_No
D_Nam
e

Emp
E_Sal

P_ID
Amoun
t

Dependen
t

Monitor
s

Project
s

Budge
t

Any thing that has an independent existence and about which we collect data. It is also known as entity type.

In ER modeling, notation for entity is given below.

Entity instance

Entity instance is a particular member of the entity type.

Example for entity instance : A particular employee

Regular Entity

An entity which has its own key attribute is a regular entity.

Example for regular entity : Employee.

Weak entity

An entity which depends on other entity for its existence and doesn't have any key attribute of its own is a weak

entity.

Example for a weak entity : In a parent/child relationship, a parent is considered as a strong entity and the child
is a weak entity.

In ER modeling, notation for weak entity is given below.

Attributes

Properties/characteristics which describe entities are called attributes.

In ER modeling, notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the attribute. For example, the
attribute day may take any value from the set {Monday, Tuesday ... Friday}. Hence this set can be termed as the
domain of the attribute day.

Key attribute

The attribute (or combination of attributes) which is unique for every entity instance is called key attribute.

E.g the employee_id of an employee, pan_card_number of a person etc.If the key attribute consists of two or
more attributes in combination, it is called a composite key.

In ER modeling, notation for key attribute is given below.

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple attribute.

Example for simple attribute : employee_id of an employee.

Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split into First_name, Middle_name, and
Last_name.

Single valued Attributes

If an attribute can take only a single value for each entity instance, it is a single valued attribute.

example for single valued attribute : age of a student. It can take only one value for a particular student.

Multi-valued Attributes

If an attribute can take more than one value for each entity instance, it is a multi-valued attribute. Multi-valued

example for multi valued attribute : telephone number of an employee, a particular employee may have multiple
telephone numbers.

In ER modeling, notation for multi-valued attribute is given below.

Stored Attribute

An attribute which need to be stored permanently is a stored attribute

Example for stored attribute : name of a student

Derived Attribute

An attribute which can be calculated or derived based on other attributes is a derived attribute.

Example for derived attribute : age of employee which can be calculated from date of birth and current date.

In ER modeling, notation for derived attribute is given below.

Relationships

Associations between entities are called relationships

Example : An employee works for an organization. Here "works for" is a relation between the entities employee
and organization.

In ER modeling, notation for relationship is given below.

However in ER Modeling, To connect a weak Entity with others, you should use a weak relationship notation as
given below

Degree of a Relationship

Degree of a relationship is the number of entity types involved. The n-ary relationship is the general form for
degree n. Special cases are unary, binary, and ternary ,where the degree is 1, 2, and 3, respectively.

Example for unary relationship : An employee ia a manager of another employee

Example for binary relationship : An employee works-for department.

Example for ternary relationship : customer purchase item from a shop keeper

Cardinality of a Relationship

Relationship cardinalities specify how many of each entity type is allowed. Relationships can have four possible
connectivities as given below.

1. One to one (1:1) relationship

2. One to many (1:N) relationship

3. Many to one (M:1) relationship

4. Many to many (M:N) relationship

The minimum and maximum values of this connectivity is called the cardinality of the relationship

Example for Cardinality – One-to-One (1:1)

Employee is assigned with a parking space.

One employee is assigned with only one parking space and one parking space is assigned to only one
employee. Hence it is a 1:1 relationship and cardinality is One-To-One (1:1)

In ER modeling, this can be mentioned using notations as given below

Example for Cardinality – One-to-Many (1:N)

Organization has employees

One organization can have many employees , but one employee works in only one organization. Hence it is a
1:N relationship and cardinality is One-To-Many (1:N)

In ER modeling, this can be mentioned using notations as given below

Example for Cardinality – Many-to-One (M :1)

It is the reverse of the One to Many relationship. employee works in organization

One employee works in only one organization But one organization can have many employees. Hence it is a
M:1 relationship and cardinality is Many-to-One (M :1)

In ER modeling, this can be mentioned using notations as given below.

Cardinality – Many-to-Many (M:N)

Students enrolls for courses

One student can enroll for many courses and one course can be enrolled by many students. Hence it is a M:N
relationship and cardinality is Many-to-Many (M:N)

In ER modeling, this can be mentioned using notations as given below

Relationship Participation

1. Total

In total participation, every entity instance will be connected through the relationship to another instance of the
other participating entity types

2. Partial

Example for relationship participation

Consider the relationship - Employee is head of the department.

Here all employees will not be the head of the department. Only one employee will be the head of the
department. In other words, only few instances of employee entity participate in the above relationship. So
employee entity's participation is partial in the said relationship.

However each department will be headed by some employee. So department entity's participation is total in the
said relationship.

Advantages and Disadvantages of ER Modeling (Merits and Demerits of ER

Modeling) Advantages

1. ER Modeling is simple and easily understandable. It is represented in business users language and
it can be understood by non-technical specialist.

2. Intuitive and helps in Physical Database creation.

3. Can be generalized and specialized based on needs.

4. Can help in database design.

5. Gives a higher level description of the system.

Disadvantages

1. Physical design derived from E-R Model may have some amount of ambiguities or inconsistency.

2. Sometime diagrams may lead to misinterpretations

UNIT2
UNIT - II Introduction to

the Relational Model:

Integrity constraint over

relations, enforcing

integrity constraints,

querying relational data,

logical data base design,

introduction to views,

destroying/altering tables

and views. Relational

Algebra, Tuple relational

Calculus, Domain

relational calculus.

- Relational Model

The relational model is the popular data model used in logical design of the database. The main construct for

relational model is “Relations”. Each relation is represented in 2 ways:

1. Relational Schema 2. Relational Instance

Consider a relation student

Student Table

1. The relational schema for the given relation is student (R_No, Name, Age, Course)

2. The relational instance for the given relation is 3 rows/tuples.

- Basic terminology

1. Relation:

A relation is also known as a table.

2. Attribute

The column of a reaction is known as attributes or fields.

3. Domain

The type of values allowed for an attribute is known as domain.

4. Degree of relation

The no. of attributes of a relation is known as degree of relation.

5. Cardinality of a relation

The no. of records of a relation is known as cardinality of a relation

In given table, cardinality of students = 3

Fields/Attributes/Columns

R_No Name Age Course

1. a 20 CSE

2. b 20 ECE

3. c 19 Civil

Rows/

Tuple
Domain

- Integrity constraints over relations

Integrity constraints (IC) is a condition specify on the database schema that restrict certain data to be stored

in the database instance. The integrity constraints are specified and enforced in that it allows only legal

instance to be stored in the database.

- Legal instance

A legal instance is an instance that satisfies all the IC’s specified on the database schema.

- Key constrains

A key constraint is a statement that a minimal set of attributes uniquely identify a record in a relation.

- Types of key constraints:

1. Candidate key 2. Primary key 3. Super key 4. Alternate key or secondary key

5. Foreign key 6. Composite key

1. Candidate key:

Candidate key is a minimal set of attributes that uniquely identifies a record in a relation. Consider a

following relation

Student Student_Course

From student relation, the candidate key may be

a) (S_No, Phone) - CK

b) (S_No, S_Name, Phone) - CK

A relation may contain any no. of candidate key. A candidate key is simply called as ‘Key’.

2. Primary key

A primary key is a column or combination of columns that uniquely identifies a record in a relation

Condition for primary key

i) It will not allow duplicate values.

ii) It will not accept null values.

A relation may contain any no. of candidate keys out of which one is primary key. Therefore, a relation

contains a single primary key.

Ex: Student - S_No - PK

Student_Course - S_No, C_No)

3. Composite key

When a primary key is defines using a combination of columns. It is known as composite primary key

Ex: Student S_No, Phone

Student_Course S_No, C_No

4. Super key

The set of attributes which uniquely identifies a record in a relation is known as a super key. Adding 0

or more attributes to candidate key will generate a super key.

Ex: Student (S_No, S_Name)

 (S_No, S_Name, Age)

5. Alternate Key (Secondary key)

The candidate key other than primary key is known as alternate key.

Ex:

i) Student (S_No, S_Name) - candidate key

Alternate: S_Name

ii) (S_No, S_Name, Phone) - CK

Alternate (S_Name, Phone)

6. Foreign key (Referential key)

S_N0 C_No Course

1 10 IT

2 20 CSE

S_No S_Name Phone Age

1 a 9999 20

2 b 9881 19

Sometimes, the information in one table is related to the information in another table. To establish the

relation among the tables, we use a constraint known as foreign key. It is also known as “The referential

key”. It establishes the parent - child relationship among the tables.

Ex: In the above relations, Student is an original & Student_Course is a referential relation.

- General constraints

1. Table constraints 2. Assertions

1. Table constraints

These constraints are related to a single table. This constraint is defined in the table definition.

2. Assertion

These are the constraints related to multiple tables, the definition of assertions constraints is separated

from table constraints

Relation among keys

- Enforcing integrity constraints

Intensity constraints are the rules or conditions specified on the tables and it will restrict incorrect data to be

inserted into the table. The integrity constraints are specified and enforced at different times

1. During defining the database schema (Table definition), the integrity constraints are specified.

2. While the database application is running different integrity constraints will be enforced which causes

due to the violations.

The operations such as insertion, deletion and updation must be rejected if they found to be violating the

constraints specified under table.

Consider the following relation employee, department

E_No E_Name E_Sal Age D_No

1

2

Ravi

Mohan

1000

2000

25

26

10

20

D_No D_Name Location

10 IT Hyd1

20 CSE Hyd2

Ex1: Consider insertion of new record into employee table

a. insert into emp values (3, ‘aa’, 3000, 25, 20);

The insertion of this record is accepted as it satisfies the constraints specified on the table.

Super key

CK

PK
Composit
e

key

E_No E_Name E_Sal Age D_No

1 Ravi 1000 25 10

2 Mohan 2000 26 20

3 aa 3000 25 20

Ex2:

b. insert into emp values (2, ‘bb’, 4000, 21, 10);

This insertion will be rejected because the primary key is violated.

a. insert into dept values (30, ‘Civil’, ‘Hyd3’);

The insertion of this record into dept table is accepted as it satisfies the constraints specified on the

table.

D_No D_Name Location

10 IT Hyd1

20 CSE Hyd2

b. insert into dept values (40, 2000, ‘Hyd3’);

The insertion of second record into dept is rejected because it generates the violation of domain

constraint.

Ex3: insert into emp values (4, ‘bb’, 4000, 21, 50);

The insertion of this record into emp table is rejected because it causes violation of foreign key constraint.

Ex4: delete from dept where D_N0=20;

The delete operation under dept table is rejected because it violates foreign key constraints.

- Logical Database Design

Logical database design is the process of mapping or translating the conceptual design (ER diagrams) into

relational model (relation or table). The logical database design has several concepts which include

1. Mapping of entity set into tables

2. Mapping relational sets (without constraints) into table

3. Mapping relational sets with participation constraints into table

4. Mapping relational sets with key constraints into table

5. Mapping weak entity into table

6. Mapping weak class into table

7. Mapping ER diagram with aggregation into table

1. Mapping of entity set into tables

Consider an entity set emp

Procedure to map entity set into table

a. Create table for an entity

b. The attribute of an entity will become attributes of a table

E_No E_Name

Emp

E_Sal E_Desig

c. Key attribute of entity will become primary key for the table

EMP Relation

E_No E_Name E_Sal E_Desig

create table Emp (E_No int, E_Name char (25), E_Sal int, E_Desig char (25), primary key (E_No));

2. Mapping the relationship set (without constraints) into table

Consider the ER diagram given

Mapping procedure

a. Create a table for relationship set (Works_in).

b. Add all primary key of entity set as attributes of the table (E_No, D_No).

c. Add the own attributes of relationship as the attribute of the table (Since).

d. Declare a primary key using all the key fields of entity set.

e. Declare a foreign key for all the field of entity set.

3. Mapping relationship set with key constraint into table

Consider the ER diagram

Mapping procedure

a. Create a table for the relationship set (manages).

b. Add all the key attributes of entity set to attributes of table

c. Add own attributes of relationship set to the table

d. Declare a primary key using the key field from source entity (D_No).

e. Declare a foreign key for key fields of source & target entity (D_No, E_No).

4. Mapping relationship set with participation of constraints

Mapping procedure

a. Create tables from source and target entity as usual

E_No E_Name Since D_No D_Nam
e

Emp Works_in Dep
t

E_Sal E_Desig
budge
t

E_No E_Name D_No D_Nam
e

Emp Manage
s

Dep

E_Sal E_Desig budge
t

E_No E_Name Partial Total D_No D_Nam
e

Emp Manage
s

Dep
t

E_Sal E_Desig
budge
t

Is

A

b. Add every key field of target entity in the source entity.

c. Declare these field as not null.

d. Declare these keys as foreign key.

create table Dept_Manager (D_No int, E_No int not null, primary key (D_No), foreign key (E_No)

references Emp (E_No)).

5. Translation weak entity into tables

Mapping procedure

a. Create a table for policy relationship (Dependent_policy) total participation.

b. Include the key attribute of employee and partial key of the dependent entity set along with its own

attributes.

c. Declare a primary key using key attribute and partial key combination.

d. Declare a foreign key for target entity set.

6. Translating class hierarchies into table

Translating class hierarchy to tables follows 2 approaches

Method I

a. Emp (E_No, E_Name, E_Sal)

b. Hourly_emp (Hourly_wages, Hourly_worked)

c. Contract_emp (Contract_ID)

Method II

a. Hourly_emp (E_No, E_Name, E_Sal, Hourly_wages, Hourly_worked)

b. Contract_emp (E_No, E_Name, E_Sal, Contract_ID)

7. Translating ER Diagram with aggregation into table

E_No E_Name Nam
e

Ag
e

Emp Policy Dependen
t

ag
e

E_Name

E_No E_Sal

Emp

Hourly_wage
s

Contract_ID

Hourly_Emp Contract_Emp

Hourly_worked

create table monitors (E_No int, D_No int, P_ID int, primary key (E_No, D_No, P_ID), foreign key (E_No)

references Emp (E_No), foreign key (D_No) references Dept (D_No), foreign key

(P_ID) references Project (P_ID));

- Introduction to views

Sometimes, the users of the database are interested to work with only part of the data from the

database. This is provided by a concept known as views.

A view is an alternate way of representing data present in one or more tables. A view is a virtual table

or logical table or derived table whose data is derived from the original table. A view can include some columns

or all columns from one or more tables.

- Working with views

- Syntax for creating views
> create view viewname (field1, field2, …, fieldn)

> as

> select

> from table1, table2, …, tablen

> where condition;

Ex: Create an Emp_DeptV using the relation employee, department

create table Emp (E_No int, E_Name char (25), E_Sal int, D_No int, primary key (E_No), foreign key

(D_No) references Dept (D_No));

create table Dept (D_No int, D_Name char (25), Location char (25), primary key (D_No));

insert into Dept values (10, ‘IT’, ‘Hyd1’), (20, ‘CSE’, ‘Hyd2’), (10, ‘EE’, ‘Hyd3’);

insert into Emp values (1, ‘aa’, 1000, 10), (2, ‘bb’, 2000, 20), (3, ‘cc’, 3000, 10);

i. Creating view: Emp_DeptV

> create view Emp_DeptV

> as

E_No E_Name E_Desig

Emp

Monitor
s

until

D_No D_Nam
e

since
P_ID

Dep
t

Works_in Project
s

Start
data

budge
t

E_No E_Name E_Sal D_No

1 aa 1000 10

2 bb 2000 20

3 cc 3000 10

D_No D_Name Location

10 IT Hyd1

20 CSE Hyd2

30 EE Hyd3

> select e1. E_No, e1. E_Name, d1. D_No, d1. D_Name

> from Emp e1, Dept d1

> where e1. D_No=d1.D_No;

> desc Emp_DeptV;

Field Type Null Key Default Extra

E_No int (11) NO NULL

E_Name char (25) YES NULL

D_No int (11) NO NULL

D_Name char (25) YES NULL

> select * from Emp_DeptV

E_No E_Name D_No D_Name

1 aa 10 IT

2 bb 20 CSE

3 cc 30 EE

View are dynamic in nature that mean the modifications performed on views is reflected back on original

table and vice versa

ii. Updating view

> update Emp_DeptV set E_Name = ‘Ankit’ where D_No = 20;

> select * from Emp_DeptV;

E_No E_Name D_No D_Name

1 aa 10 IT

2 Ankit 20 CSE

3 cc 30 EE

> select * from Emp;

E_No E_Name E_Sal D_No

1 aa 1000 10

2 Ankit 2000 20

3 cc 3000 10

> update Dept set D_Name = ‘Mech’ where D_No = 30;

> select * from Dept;

D_No D_Name Location

10 IT Hyd1

20 CSE Hyd2

30 Mech Hyd3

> select * from Emp_DeptV;

E_No E_Name D_No D_Name

1 aa 10 IT

2 Ankit 20 CSE

3 cc 30 Mech

iii. Altering view (adding a column) - E_Sal

> alter view Emp_DeptV

> as

> select e1. E_No, e1. E_Name, e1. E_Sal, d1. D_No, d1. D_Name

> from Emp e1, Dept d1

> where e1. D_No = d1. D_No;

> desc Emp_DeptV;

Field Type Null Key Default Extra

E_No int (11) NO NULL

E_Name char (25) YES NULL

E_Sal int (11) YES NULL

D_No int (11) NO NULL

D_Name char (25) YES NULL

> select * from Emp_DeptV;

E_No E_Name E_Sal D_No D_Name

1 aa 1000 10 IT

2 Ankit 2000 20 CSE

3 cc 3000 30 Mech

iv. Drop view

Syntax: drop view viewname;

- Advantages of Views:

1. Views provide security that means the users are working with the past of the database rather than using

the entire database. Therefore, the original table will not be disturbed and hence secure from unauthorized

users.

2. View provide logical data independence in which data and relationship among the data is maintained even

though modification at the external schema has been done

- Updateable views:

Whenever a view is updated, the result should be reflected in the original table and vice versa but all updation

are not allowed on views.

An updatable view is a view which is derived from a single table and it should hold the following conditions:

1. Aggregate functions should not be used in query.

2. Distinct keyword should not be allowed.

3. Group by and having clause will not be allowed.

- Relational Model

Relational model is a popular data model used for logical database design. There are 2 formal query language

associated with the relational model.

1. Relational Algebra 2. Relational Calculus

1. Relational Algebra

Relational algebra is a procedural query language which uses collection of operators to write different

queries.

2. Relational Calculus

Relational Calculus is a non – procedural query language which is based on predicate calculus.

- Relational Algebra

1. It is a procedural query language (the user has to specify what data he require along with the procedure).

2. The relational algebra queries are a combination of operators.

3. Each operator takes one or more relations as arguments and returns a relation as result or output.

4. It uses the operation like relational operators (<, >, <=, >=, =, !=) and logical connectives (and, or, not)

to write various composite and complex queries.

- Fundamental operations of relational algebra

1. Selection (𝝈) 2. Projection (𝝅) 3. Set operations (Union, Intersection, Difference)

4. Rename 5. Division 6. Joins

1. Selection (𝝈)

a. It is a unary operator.

b. It is represented with the symbol 𝜎.

c. It is used to select the subset of tuples from a relation that matches a given condition.

Syntax: 𝜎<Condition_Statement>relation_name

Condition statement has 2 formats

a. Operand operator constant

b. Operand operator operand

Consider the 2 relation Emp, Manager to demonstrate relation algebra operator.

//display Emp where Sal is greater than

2000 Ex: 𝜎E_Sal>2000Emp

2 bb 25000

3 cc 45000

4 dd 6000

2. Projection (𝝅)

E_No E_Name E_Sal

1 aa 1000

2 bb 2500

3 cc 4500

4 dd 6000

ID Name D_No

1 Raj 10

2 bb 20

3 aa 30

a. It is a unary operator.

b. It is represented by symbol 𝜋.

c. It is used to select the subset of attributes from the given relation.

Syntax: 𝜋colname 1, 2, …Table_Name

//display the names and salaries of employee from Emp

relation Ex1: 𝜋E_Name, E_Sal Emp

E_Name E_Sal

aa 1000

bb 25000

cc 45000

dd 6000

//Display names of all employees where salary is greater than

2000 Ex1: 𝜋E_Name (𝜎E_Sal>2000) Emp

E_Name E_Sal

aa 1000

bb 25000

cc 45000

dd 6000

3. Set operations (Union, Intersection, Difference)

a. Union (∪)

𝜋E_Name Emp ∪ 𝜋Name Manager

Union Union All

b. Intersection (∩)

𝜋E_Name Emp ∩ 𝜋Name Manager

c. Difference (-)

aa

bb

cc

dd

Raj

E_Name

aa

bb

cc

dd

Raj

bb

aa

cc

E_Name

aa

b

b

cc

E_Name

𝜋E_Name Emp – 𝜋Name Manager

dd

E_Name

4. Rename

Rename operator is used to give the alias name or temporary name to a relation as well as to the attributes

of a relation. It is denoted with the symbol 𝜌-rho which is a Greek letter.

Syntax: 𝜌X ® R – Relation

x – Alias/temporary name

𝜌X (A1A2A3 … An) ® R – Relation

A1A2A3 … An: New name of attribute

x – Alias name for relation

5. Division

The division operator is used in special kind of queries that include the phase for all. It is denoted with the

symbol (/).

Consider 2 relations R, S. R contains attributes (a, b) and S contains attribute (b).

R

is given as
(a,b)

= a

S b

For all values of A in relation R and for each value of B in relation S there is a tuple (A, B) in R.

Ex: Consider Relation table

A =

A/B1 = S_No A/B2 = S_No A/B3 = S_No

s1

s2

 s1

s4

 s1

s3

s4

6. Joins

Join operation is used to combine 2 relations like cross product but finally remove the duplicates. There

are 3 types of joins

a. Conditional Joins (⋈C) b. Equi Joins (⋈=) c. Natural Joins (⋈)

Consider the relations Dept, Project to demonstrate joins

D_No P_No P_Name

10 1 Sales

20 2 HR

Project

Dept

Raj

S_No P_No

s1 p1

s1 p2

s1 p3

s1 p4

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

D_Name D_No

IT 10

CSE 20

Mech 30

B1 = P_No B2 = P_No B3 = P_No

p2 p2

p4

 p1

p2

 p4

a. Conditional Joins (⋈C)

It returns a relation that contain a set of rows from cross product (X) such that each row satisfies a

given condition. It is denoted by ⋈C.

Consider 2 relations R1, R2. The conditional join of R1, R2 is given below

R1 ⋈C R2 = 𝜎C (R1 X R2)

Ex: Find the conditional join of relation dept, projects where Dept. D_No < Project. D_No

Dept ⋈C Project = 𝜎C (Dept x Project)

Step 1: Dept x Projects

D_Name D_No D_No P_No P_Name

IT 10 10 1 Sales

IT 10 10 2 HR

CSE 20 20 1 Sales

CSE 20 20 2 HR

Mech 30 30 1 Sales

Mech 30 30 2 HR

Step 2: 𝜎C (Dept x Project)

𝜎Dept. D_No<Project. D_No (Dept x Project)

D_Name D_No D_No P_No P_Name

IT 10 20 2 HR

b. Equi Joins (⋈=)

It is similar to conditional join except the condition used to select the record. Here we use equality

operator to join 2 relations. The result of equi join contain the attributes of relation A followed by

relation B excluding duplicate attributes.

R1 ⋈= R2 = 𝜎= (R1 X R2)

Ex: Consider same Dept and Project relation

Then, Dept ⋈= Project = 𝜎= (Dept x Project)

Step 1: Dept x Project

D_Name D_No D_No P_No P_Name

IT 10 10 1 Sales

IT 10 10 2 HR

CSE 20 20 1 Sales

CSE 20 20 2 HR

Mech 30 30 1 Sales

Mech 30 30 2 HR

Step 2: 𝜎= (Dept x Project)

𝜎Dept. D_No=Project. D_No (Dept x Project)

D_Name D_No D_No P_No P_Name

IT

CSE

10

20

10

20

1

2

Sales

HR

c. Natural Joins (⋈)

It is a special case of equi join in which the equality conditions are specified on all columns. It doesn’t

have 2 columns with the same name.

Ex: Consider the relations Boats, Sailors & Reserve table to demonstrate relational algebra.

S_ID B_ID Day

10 101 10/09/18

20 102 10/09/18

30 102 09/09/18

Reserves

Q1: Find names of Sailors who have reserved boat 102

𝜋 S_Name ((𝜎 B_ID = 102 Reserves) ⋈ Sailors)

S_Name S_ID B_ID Days

bb

cc

 20

30

102

102

10/09/18

09/09/18

Q2: Find name of Sailors who have reserved a red boat

𝜋 S_Name ((𝜎 Colour = ‘Red’ Boats) ⋈ Reserves ⋈ Sailors)

Empty Set Empty set

Q3: Find the colour of the Boat reserved by bb

𝜋 Colour ((𝜎 S_Name = ‘bb’ Sailors) ⋈ Reserves ⋈ Boats)

Q4: Find names of Sailors who have reserved a red or a green boat

𝜋 S_Name ((𝜎 Colour = ‘Red’ Boats 𝜎 Colour = ‘Green’ Boats) ⋈ Reserves ⋈ Sailors)

Q5: Find names of Sailors who have reserved at least one boat

𝜋 S_Name (Sailors ⋈ Reserves)

S_ID B_ID Day

20 102 10/09/18

30 102 09/09/18

B_ID B_Name Colour

102 Duster Green

103 Interlake Red

bb

S_Name

S_ID B_ID Day

20 102 10/09/18

S_ID S_Name S_Age Rating

20 bb 21 2

Green

Colour

B_ID B_Name Colour

103 Interlake Red

S_ID S_Name S_Age Rating

10 aa 20 1

20 bb 21 2

30 cc 23 4

Sailors

B_ID B_Name Colour

101 Interlake Blue

102 Duster Green

103 Interlake Red

Boats

- Relational Calculus

Relational calculus is a non-procedural query language or declarative language where the user has to specify

what he require without worrying about the procedure. Relational calculus is of 2 types.

1. Tuple Relational Calculus (TRC) 2. Domain Relational Calculus (DRC)

1. Tuple Relational Calculus

Tuple Relational calculus uses tuples as the values to the variables. Each tuple in TRC is expressed by a

TRC expression. A TRC expression has the following form.

Syntax:

a. {t1A1, t2A2, …, tnAn| Q}

t1, t2, …, tn – tuple variable

A1, A2, …, An – Attribute of tuple variable

Q – Condition/Formula

b. t| f(t)

t – Tuple variable

f(t) – Formula involving Tuple variable t

A TRC uses tuples from relational database by writing/using predicate calculus expression.

Note: TRC is shortly influenced by SQL.

Consider a student relation given below

S_No S_Name D_No Gender

1 aa 10 Male

2 bb 20 Female

3 cc 20 Female

Student

Q1: Find S_No, S_Name from D_No = 20

{t. S_No, t. S_Name| Student(t) t. D_No = 20}

S_No S_Name

2 bb

3 cc

Q2: Find the names of male students in D_No = 20

{t. S_Name| Student(t) t. D_No = 20 t. Gender = ‘Male’}

Consider the following relation: Depositor, Borrower, Loans, Customer, Account, Branch to demolish TRC

queries

C_Name Account_No

Ravi 1001

Raju 1002

Depositor

Borrower

Loan Customer

C_Name Loan_No

Ravi 100

Raju 101

Anil 102

Loan_No B_Name Amount

100 Kompali 1000

101 Kachiguda 2000

102 Nagole 3000

103 Dilshuknagar 4500

C_Name Address

Ravi Kompali

Ramu Kachiguda

Anil Nagole

Ankit Dilshuknagar

cc

S_Name

Account Branch

Q1: Find loan details of loan amount > 2000

{t.| Loan(t) t. Amount>2000}

Loan_No B_Name Amount

102 Nagole 3000

103 Dilshuknagar 4500

Q2: Find the names of all customers who have a loan from the branch ‘Kachiguda’

{b. C_Name| Borrower(t) L(Loan(L) L. Loan_No = b. Loan_No L. B_Name = ‘Kachiguda’}

Q3: Find the customers who have account or loan or both

{t| Customer(t) d(Depositor(d) d. C_Name = t. C_Name) b(Borrower(d) b. C_Name = t.

C_Name)

2. Domain Relational Calculus

A DRC will operate at the domain of a variable. It uses the domain values for the variables that DRC is

strongly influenced by QBE (Query By Example).

A DRC query will have the following form

Syntax: {x1, x2, x3, …, xn| Q (x1, x2, x3, …, xn)}

Domain Variable Formula or condition

Consider the relation Emp, Dept as given

A B C D E F

F_Name L_Name E_ID Salary D_No Address

Raj Kumar 1 1000 10 Kotapet

Anil M 2 2000 20 Abids

Ravi Verma 3 4000 10 Dilshuknagar

X Y Z

D_No D_Name M_ID

10 IT 1

20 HR 4

40 CSE 2

Q1: Find the name and address of employees whose E_Name = ‘Raj Kumar’

{ABF| C D E Emp (ABCDEF) (A = ‘Raj’) (B = ‘Kumar’)}

Or

{ABF| Emp (ABCDEF) (A = ‘Raj’) (B = ‘Kumar’)}

Or

{ABF| Emp (‘Raj’, ‘Kumar’, C, D, E, F)}

Q2: Find names of employees working in D_No = 10

{AB| Emp (ABCDEF) E = 10}

Q3: Find names of employees who are not managers

B_Name City

Kompali

Kachiguda

Nagole

Hyderabad

Hyderabad

Hyderabad

Account_No B_Name Balance

1001 Kompali 1000

1002 Kachiguda 2500

1003 Nagole 4000

{AB| C Emp (ABCDEF) ~ (Z (Dept (XYZ) C = Z))}

Q4: Find names of employees working in HR department

{AB| E Emp (ABCDEF) X (Dept (XYZ) E = Z Y = ‘HR’)}

 UNIT 3
- UNIT - III SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION,

INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values,

complex integrity constraints in SQL, triggers and active data bases. Schema

Refinement: Problems caused by redundancy, decompositions, problems related to

decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD

normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH

normal form, FIFTH normal form

-

-
- Forms of basic SQL Query

- Query:

A query is a question which will retrieve data from the tables or database. The result of a query is a

relation or tables.

The relational database consists of many relations where each relation has a unique name. To

interact with the database, we are a query language known as SQL (Structured Query Language). The SQL

enables to write different queries and retrieve data from the tables.

The basic SQL query consists of the following 3 clauses:

b

E_Name

1. Select Clause 2. From Clause 3. Where Clause

1. Select clause

The select clause will provide the attributes to be displayed in the resultant table.

2. From clause

The from clause indicates the table or tables from which attributes are selected

3. Where clause

The where clause indicates the condition based on which data is selected from the table.

- Examples of basic SQL queries

1. Consider the following schema Employee (E_ID, E_Name, E_Sal, E_Age, Ph_No, D_No)

Department (D_No, D_Name, Location, M_ID)

Query 1: Find the names of all the employees who are working in the HR department.

Query 2: Find E_ID, E_Name, D_Name from Employee, Department where D_No = 20.

Query 3: List all the information about employees whose E_Sal >= 1500.

Employee Table

E_ID E_Name E_Sal E_Age Ph_No D_No

1 a 1000 20 9599 10

2 b 1600 21 8658 20

3 c 3000 19 9988 30

Department Table

D_No D_Name Location M_ID

10 IT Hyd1 1001

20 HR Hyd2 1002

30 CSE Hyd3 1003

40 EE Hyd4 1004

Query 1: select e1. E_Name from Employee e1 Department d1 where e1. D_No = e2. D_No and d1. D_Name

= ‘HR’;

Query 2: select E_ID, E_Name, D_Name, from Employee e1 Department d1 where e1. D_No = d1. D_No

and d1. D_No = 20;

E_ID E_Name D_Name

2 b HR

Query 3: select * from Employee where E_Sal >= 1500;

E_ID E_Name E_Sal Age Ph_No D_No

2

3

B

c

2000

3000

21

19

8658

9988

20

30

- Aggregate operators (Function)

Aggregate operators are the operators which work on set of values and return a single value as the output.

The most commonly used aggregate operators include:

1. count () 2. max () 3. min () 4. sum () 5. avg ()

F.K

Count

5

Count

2

E_Sal

3500

19

Age

Consider a sample relation emp to demonstrate the aggregate functions.

E_No E_Name E_Sal Age Desig

1 Ravi 1000 20 IT

2 Raj 2000 19 CSE

3 Arun 2500 21 IT

4 Venkat 3000 20 ME

5 Raj 3500 19 HR

1. count (): This function will return the no. of records from a table matching the condition.

Syntax: select count (colname) from Table_Name;

Ex:

> select count (*) from Emp;

> select count (distinct E_Name) from Emp;

> select count (*) from Emp where E_Sal>2500;

> select count (*) as No_of_Records from Emp

2. max (): This function returns max values.

Syntax: select max (colname) from Table_Name;

Ex:

> select max (E_Sal) from Emp;

> select max (E_Sal) from Emp where age>19;

3. min (): This function returns min values.

Syntax: select min (colname) from Table_Name;

Ex:

> select min (Age) from Emp;

> select min (E_Sal) from Emp where age<20;

4. sum (): This function returns sum values.

E_Sal

2000

E_Sal

3000

5

No_of_Records

Count

4

12000

E_Sal

E_Sal

2400

Syntax: select sum (colname) from Table_Name;

Ex:

> select sum (E_Sal) from Emp;

> select sum (E_Sal) from Emp where age>19;

5. Avg (): This function returns average of a value of a column.

Syntax: select Avg (colname) from Table_Name;

Ex:

> select Avg (E_Sal) from Emp;

> select Avg (E_Sal) from Emp where age>19;

- Null Values:

A null value is a value which is unknown or unavailable. Sometimes, the users are in such cases, DBMS

will treat those unknown value or unavailable. A null value is not equal to zero or space.

Consider a sample relation employee to demonstrate null value.

E_No E_Name E_Sal D_No

1 aa 1000 10

2 bb 2000 20

1. insert into Emp values (3, ‘cc’, 30);

This insertion will be rejected because no. of columns not match

2. insert into Emp values (3, ‘cc’, NULL, 30);

insert into Emp values (4, NULL, 3500, 20);

E_No E_Name E_Sal D_No

1 aa 1000 10

2 bb 2000 20

3 cc NULL 30

4 NULL 3500 20

- Comparing null values

1. Generally, for comparison statements, we use two valued logic (true or false) as the result.

2. When comparing NULL values with the actual values, the two valued logic will not be used. Hence, we

require a three-value logic (true false and unknown) for the result.

- Logical connectives AND, OR, NOT with null values
The logical connectives AND, OR, NOT with null values must be used with a 3-valued logic i.e. True, false

unknown.

E_Sal

216

6

E_Sal

6500

C01

Co2

C_ID

- Disallowing/Restricting null values

There are 2 ways to disallow or restrict null values to be inserted in the table

1. Declare a column or columns as primary key.

2. Declare a column or columns as not NULL.

Ex: create table Emp (E_No int primary key, E_Name char (25) not null, E_Sal int not null);

Nested Queries & Co - related Nested Queries

1. Nested Query

A query inside another query is known as a sub-query. A collection of sub-queries will form Nested sub-

query. In nested sub-queries, the inner query will be evaluated.

Syntax: select colname from Table_Name

where colname operates Outer query/Main query

(select colname from Table_Name where condition); // Inner query/Sub query

C_ID C_Name

C01 ADS

C02 DBMS

C03 JAVA

Course

Student

S_ID C_ID

S01 C01

S02 C02

S03 C03

S04 C02

Student_Course

Q1: Find S_ID of students who enrolled course ADS or DBMS

Ans: Inner Query:

> select C_ID from Course where

> C_Name = ‘ADS’ or C_Name = ‘DBMS’;

S_ID S_Name S_Age

S01 aa 20

So2 bb 19

S03 cc 19

S04 dd 22

Main Query:
> select S_ID from Student_Course where C_ID in

> (select C_ID from Course where C_Name = ‘ADS’ or C_Name = ‘DBMS’);

Q2: Find the S_Name of students who enrolled the course DBMS or JAVA

Ans:

> select S_Name from Students where S_ID in (select S_ID from Student_Course where

C_ID in (select C_ID from Course where C_Name = ‘DBMS’ or C_Name = ‘JAVA’));

2. Co - related Nested Query

If the sub-query (inner query) is evaluated repeatedly based on the result of outer query such queries are

known as co - related sub - queries. Here, outer query will be executed first based on which the inner

query will be evaluated repeatedly. For co - related sub query, we use ‘exist’ comparison operator rather

than ‘in’ operator.

- Triggers and active database

1. Triggers

a. A trigger is a store procedure i.e. invoked or generated automatically by the DBMS whenever the

database is updated or modified. Triggers are generally automatically as a response to the change

made on the database.

b. Triggers are managed by database administrator. The general format of trigger consists of the

following

i. An event ii. A condition iii.An action

i. The event describes the operation performed on the database which leads to activation of trigger

Ex: insert, update, delete

ii. The condition specifies whether an action should be performed or not. If the condition is true, the

action part will be executed and if the condition is false, the action will not be performed.

iii. The action specifies the response to be taken for the activation of a trigger. Action is the collection

of statement executed as part of trigger activation.

- Types of triggers

a. Before triggers

Before triggers are invoked before an operation performed (insert, update, delete).

b. After triggers

These are invoked after an operation is performed (insert, update, delete).

c. Row-level triggers

It is invoked for each record inserted by the user

d. Statement level triggers

These triggers are invoked for each statement consist of multiple rows. Hence, it is called statement

level trigger.

S01

So2

S04

S_ID

- Creation of triggers

Syntax:

> create trigger trigger_name

> trigger_time trigger_event

> on Table_Name

> before/after

> insert/delete/update

> for each row

> begin

{

//Set of SQL statements

}

> end

- Working with triggers

Consider the following relation: User, User_History to demonstrate triggers

ID Name Age Weight Address

1 aa 20 65 Hyd1

2 bb 19 60 Hyd2

3 cc 22 55 Hyd3

4 dd 21 62 Hyd4

Command Type Keyword

Insert

Update

Delete

Before/After

Before/After

Before/After

New

New/Old

Old

Ex1: //Consider a trigger: update trigger

> delimiter $$

> create Alter_Update_trigger

> after update on Users

> for each row

> begin

> insert into User_History (ID, Name, Age, Weight, Address) values (old. ID, old. Name, old. Age, old.

Weight, old. Address);

> end $$

> delimiter;

> update users set Name = ‘Anil’ where ID = 1;

> select * from Users;

> select * from User_History;

ID Name Age Weight Address

1 Anil 20 65 Hyd1

User_History

Ex2: //Create a trigger After_Insert

> delimiter $$

> create After_Insert_trigger

> after insert on Users

> for each row

> begin

> insert into User_History values (new. ID, new. Name, new. Age, new. Weight, new. Address);

> end $$

> delimiter;

> insert into Users values (5, ‘Ravi’, 20, 65, ‘Hyd5’);

> select * from Users;

> select * from User_History;

ID Name Age Weight Address

5 Ravi 20 65 Hyd5

User_History

Ex3: //Create a trigger Before_Delete

> Delimiter $$

> Create Before_Delete_trigger

> Before delete on Users

> for each row

> begin

> insert into User_History values (old. ID, old. Name, old. Age, old. Weight, old. Address);

> end $$

> delimiter;

> delete from Users from ID = 2;

> select * from Users;

> select * from User_History;

ID Name Age Weight Address

2 bb 19 60 Hyd2

- Applications of triggers

User_History

a. Triggers will alert the users about unusual events.

b. It helps to enforce some business rules.

c. It validates the data even before updation or deletion or insertion.

d. Triggers will generate a log of events to support auditing and security checks.

- Limitation of triggers

a. Triggers increase overhead under system because it is called for every event like insert, update & delete

this causes makes the system to run slow.

b. It is difficult to give triggers compared to other database objects such as indexes.

2. Active database

a. A database that contain a set of associated triggers is known as an active database.

b. A database that has an ability to immediately react to the events occurring inside as well as outside of

the system is called an active database.

c. The ability to

respond
external events

is called active
behaviour.

d. The active

behaviour is

based on the
rules known as

ECA (Event
Condition

Action) rules.

- Designing active
database

Designing an active

database is very

difficult task because

sometimes it

contains recursive

triggers. The

activation of such

long chain of triggers

and the predictable

order in which DBMS

will process the

activated triggers

which is very

difficult to

understand.

- Complex Integrity
Constraints (IC’s)

in SQL

The complex integrity
constraints in SQL is

represented in 3 ways.

1. IC’s over a single

relation (table

constraint) 2. Domain constraint

3. IC’s over multiple

relations (Assertion)

1. IC’s over a single
relation (table

constraint)

The table constraint

is a constraint i.e.

defined for a single relation it uses check constraint.

Ex:

> create table Sailors (S_ID int not null primary

key, S_Name char (15), S_Age int, check (S_ID

>= 1 and S_ID <= 10));

> insert into Sailors values (11, ‘aa’, 20);

This insertion will be rejected because check constraint is

violated.

Note: Table constraints (check constraint) cannot be
implemented in MySQL.

2. Domain constraint

By using domain constraint, we can create our own
domain rather than using default domain.

Ex:

> create domain ratingval integer default 1

> check (ratingval >= 1 and ratingval <= 10);

In the above statement, a domain is created with the

name ‘ratingval’ where its source type is integer and

default value are 1. The values of ‘ratingval’ are further

restricted by using check constraint.

Ex:

> create table Sailors (S_ID int, S_Name char (15),
S_Age int, Rating ratingval);

3. IC’s over multiple relations (Assertion)

i. The table constraints which are associated with a

single table and it will work only if the associated

table is non-empty.

ii. When a constraint involves 2 or more relation, the

table constraints will not work. To overcome this,

situation, SQL provide a constraint known as

assertion (constraints over multiple relation).

To enforce the constraint that no. of boats and no. of
sailors all together should be less than 100.

> create assertion smallcuts

> check ((select count (S. Sal) from Sailors S) + (select

count (B.ID) from Boats B) < 100);

Note: Assertion cannot be implemented in MySQL.

1. Set operations (Union, Intersection, Difference)

a. Union (∪)

𝜋E_Name Emp ∪ 𝜋Name Manager

aa

bb

cc

dd

Raj

E_Name

aa

bb

cc

dd

Raj

bb

aa

cc

E_Name

aa

b

b

cc

E_Name

dd

E_Name

U

ni

o

n Union All

b. Intersection

(∩)

𝜋E_Name Emp ∩

𝜋Name Manager

c. Difference (-)

𝜋E_Name Emp –

𝜋Name Manager

- Schema refinement

Schema refinement is one of the steps in DB design process. It is the process of refining the schema so that

we remove redundancy from the database.

- Schema

The overall design of the database is known as the database scheme.

- Redundancy

When the same data is stored multiple times unnecessarily in the database, it leads to redundancy problem.

Redundancy means duplication of the data stored at multiple location in the database.

- Problems caused by redundancy

1. Wastage of storage space 2. Inconsistency of data 3. Anomalies (Insert, update & delete)

1. Wastage of storage space

When the same information is stored multiple times in the database, it leads to wastage of storage space

and accessing data from such database is time consuming

2. Anomalies

Anomalies are the problems i.e. caused due to partially planned unstructured database. There are 3 types

of anomalies:

a. Insert Anomalies b. Delete Anomalies c. Update Anomalies

Consider the student info relation to demonstrate Anomalies.

S_No S_Name Age D_No Branch HOD

1 A 20 10 CSE Anil

2 B 19 10 CSE xx

3 C 18 20 EE yy

4 D 19 20 EE yy

5 E 21 30 IT zz

a. Insert Anomalies

Certain data cannot be inserted into database without the presence of other data.

Ex: Suppose we want to store information of civil department where no student enrolled into civil.

b. Delete Anomalies

If we want to delete some unwanted data, it causes deletion of some useful data.

Ex: If we want to delete student info of IT branch, then it causes deletion of branch info of IT.

c. Update Anomalies

If we want to update a single record of data then it must be done for all the copies of data

Ex: Suppose if we want to update HOD name for CSE department, then this updation must be reflected

for all the copies of CSE HOD.

3. Inconsistency

Redundancy leads to a problem known as inconsistency which occur whenever multiple copies are not

updated simultaneously.

Functional Dependencies (FD)

Let us consider a relation R with a set of attributes x, y where x, y 𝜖 R, then an FD is given as

ED: x y

determinant dependent

The FD’s are used to represent the relation among attributes

- Types of FD’s

1. Trivial FD 2. Non-trivial FD

1. Trivial FD

Suppose we have an FD x y where y x, such FD’s are known as trivial FD.

Ex: AB A

The above FD is trivial but not useful as it does not determine anything new.

2. Non-trivial FD

Suppose we have a FD x y where y ⊈ x such FDs are known as non-trivial FDs

Ex: AB ABC

The above FD is non-trivial as it determines a new attribute C

Note: The non-trivial FDs are mostly used to solve different normalization problems

- Reasoning about FD’s

If a set of FDs are given over the relation R then several additional FD’s can be derived over R only when the

set of FDs given over R is satisfied.

Ex: Consider a sample relation Emp as given:

Emp (E_No, E_Name, Sal, D_No, D_Name)

FDs F: E_No D_No

D_No D_Name E_No D_Name

In the above example, we can derive a new FD i.e. E_No D_Name from above 2 FDs.

- Closure of set of FDs

The closure of set of FDs F is given as F+ computing closure of set of FDs to find the closure of set of FDs, we

use a set of rules known ‘Armstrong Axioms’.

1. Reflexivity

An FD: x y holds where y x.

2. Augmentation

An FD: x y then xz yz holds for an attribute z.

3. Transitivity

An FD x y, y z holds then x z also holds.

- Additional rules to find closure of set of FDs

1. Union

FD: x y, x z then x yz.

2. Decomposition

FD: x yz, then x y, x z also holds.

Ex 1: R (A, B, C) A B, B C

A+: ABC

B+: BC

C+: C

- Normalization

It is a systematic approach of reducing or removing redundancy from the database tables. To perform

normalization, we use functional dependencies.

- Normal form

A normal form is a rule or condition that is applied sequentially on the database table to remove redundancy

from the tables.

- Types of normal form

1. First Normal Form (1NF) 2. Second Normal Form (2NF) 3. Third Normal Form (3NF)

4. Forth Normal Form (4NF) 5. Fifth Normal Form (5NF)

6. Boyce-Codd Normal Form (BCNF or 3.5NF)

1. First Normal Form (1NF):

A relation R is said to be in 1NF if every attribute contains only atomic values means multiple values are

not allowed for any column of a relation.

Consider a relation Student as given:

S_No S_Name Course

1 A DBMS, COA

2 B OS, CN

In the above relation, the course column contains multiple values. Hence, the relation is not in 1NF.

* Converting a relation to be in 1NF

S_No S_Name Course

1 A DBMS

1 A COA

2 B OS

2 B CN

The relation satisfies the condition of 1NF. Therefore, this relation is in 1NF.

2. Second Normal Form (2NF):

A relation is said to be in 2NF iff

a. It must be 1NF

b. Partial dependency should not exist.

Second Normal Form is based on the concept of partial dependency & full functional dependencies.

i. Partial dependency

When a non-prime attribute is depending part of the key, such dependencies is known as partial

dependency

Consider a relation R(ABCD) holding the following FDs

AB B, B C

Candidate key (AB)+ = ABCD

ii. Prime attribute

The attribute which are part of key are known as prime attributes.

Ex: A, B in above

iii. Non - prime attributes

The attributes which are not the part of the key are known as non - prime attributes.

In above relation, the FD: B C indicates the partial dependency because the non – prime attribute

C is depending on part of the key i.e. B. Therefore, the above relation is not in 2NF.

iv. Decomposing a relation to be in 2NF

I. The first decomposition must be with candidate key combination

i.e. R1(ABD) AB D

II. The second decomposition is

R2(BC) B C

The decomposed relations are not having any partial dependency. Hence, we can conclude that these

relations are in 2NF.

3. Third Normal Form (3NF):

A relation R is said to be in 3NF iff

a. It must be 1NF & 2NF

b. No transitive dependency should exist in a relation R.

Transition Dependency

If a non-prime attribute is determined by another non-prime attribute such dependency is known as

transitive dependency. According to 3NF, a relation should not contain transitive dependency.

Ex: Consider a relation R with attributes ABCD holding the following FDs

AB C, C D

Finding candidate key

(AB)+ ABCD

(C)+ CD

AB is the key for R

AB C is a transitive dependency C

 D is not transitive dependency

R is not in 3NF

Decompose R to be in 3NF

Decompose R in R1 & R2

R1: ABC R2: CD

R1(ABC) AB C not transitive dependency

R2(CD) C D not transitive dependency

The relation R is in 3NF

4. BCNF (Boyce-Codd Normal Form):

a. A relation R is said to be in BCNF iff:

i. It should be in 1NF, 2NF, 3NF.

ii. Every determinant must be a key for R.

If a FD x y where y x, x must be a key for R.

b. BCNF is an extension to 3NF so sometimes it is called as 3.5 normal form.

c. BCNF is a strict version of 3NF.

Ex: Consider a relation R with R(ABC) & FDs

AB C

C B

Finding candidate key (AB)+: ABC  is in BCNF

(C)+: CD  not in BCNF

R is not in BCNF

Now decompose R to be in BCNF

Name Computer

Aman

Aman

Anil

Apple

Window

Linux

Name Language

Aman

Aman

Anil

Hindi

English

Hindi

Anil English

R to R1 & R2

R1(ABC): AB C AB is a key

R2(CB): C B C is a key

R is in BCNF

5. Multi Valued Dependencies (MVD) & Forth Normal Form (4NF):

A relation R is said to be in 4NF iff:

a. It should be in 1NF, 2NF, 3NF & BCNF.

b. No multi valued dependencies should be existing in R.

4NF is based on the concept known as Multi Valued Dependencies (MVD).

MVD

MVD is the dependency in which an attribute represents multi-valued facts about another. To determine

MVD, a relation should contain 3 or more attributes and the attributes are independent to each other.

Ex: Consider a relation given

Convert to 1NF

MVD to R

x y y

 z

4NF: A relation is said to be in 4NF if it doesn’t contain multi valued dependencies

Ex: Consider a relation given

Convert to 1NF

The given Relation R has 2 - MVD

MVD: 1) Name Computer

2) Name Language

R is not in 4NF

Decompose R into 2 relations

* Composite key (Name, Computer)

* Composite key (Name, Language)

R is in 4NF.

Ex: Consider R(ABCD) which hold FDs

A BC

CD E

B D E

 A

Person Mobile Food

p1

p2

m1 m2

m3

f1 f2

f3

Person Mobile Food

p1 m1 f1

p1 m1 f2

p1 m2 f1

p1 m2 f2

p2 m3 f3

Name Computer Language

Aman

Anil

Apple Window

Linux

Hindi English

Hindi English

Name Computer Language

Aman

Aman

Apple

Apple

Hindi

English

Aman

Aman

Anil

Anil

Window

Window

Linux

Linux

Hindi

English

Hindi

English

Name Skill Job

Aman DBA J1

Anil Programmer J2

Rohan Analyst J3

Ajay Tester J4

Name Skill Job

Aman DBA J1

Anil Programmer J2

Rohan Analyst J3

Ajay Tester J4

Find candidate key of R

Sol: (A)+: ABCDE

(CD)+: CDEAB

(B)+: BDEAC

(E)+: EABCD

All are candidate key.

6. Join Dependencies & Fifth Normal Form (5NF):

A relation R is said to be in fifth normal form iff

a. It should be in 1NF, 2NF, 3NF, BCNF & 4NF.

b. It should not be further decomposed or non-join dependency.

5NF is also called as Projection Join NF (PJNF). It is based on the concept known as join dependencies.

JD: A relation R which can be decomposed into R1, R2, R3 …, Ri is said to be join dependencies.

 R1 (R) ⋈ R2 (R) ⋈ … ⋈ Ri (R) = R

Consider a relation R given

Name Skill Job

Aman DBA J1

Anil Programmer J2

Rohan Analyst J3

Ajay Tester J4

R is decomposed into three relation:

R1 R2 R3

JD: R1 ⋈ R2 ⋈ R3 (R) = R

a. R1 ⋈ R2 b. R1 ⋈ R2 ⋈ R3

The relation R is a lossless decomposition. Hence, the JD is satisfied.

The relation R is not in 5NF

* Summary

Name Skill

Aman DBA

Anil Programmer

Rohan Analyst

Ajay Tester

Name Job

Aman J1

Anil J2

Rohan J3

Ajay J4

Skill Job

DBA J1

Programmer J2

Analyst J3

Tester J4

1NF: Only atomic values

2NF: No partial dependency

3NF: No transitive dependency

BCNF: Every determinant must be a key

4NF: No Multi Valued Dependencies

5NF: R should be lossless decomposition

- Decomposition

One of the possible solutions for redundancy is decomposition. Decomposition is a process of converting a

larger relation into smaller relation. Whenever a relation is decomposed into smaller relations, care must be

taken otherwise it leads to 2 problems:

1. Lossless join decomposition 2. Dependency preventing decomposition

- Problems related to decomposition

1. Lossless join decomposition 2. Dependency preserving decomposition

1. Lossless join decomposition

The lossless join decomposition property says that when we have a relation ‘R’ decomposed into several

relations (R1, R2, …, Ri), then we can recover the original relation ‘R’ by joining the decomposed relations

together.

R = {R1, R2, R3, …, Ri)

R1 ⋈ R2 ⋈ … ⋈ Ri = R

v. Rules to check whether a relation is lossless or not:

a. attr(R1) ∪ attr(R2) ∪ … ∪ attr (Ri) = attr(R)

The first rule says that we can recover all the attributes of R from the union of attributes of

decomposed relations.

b. attr(R1) ∩ attr(R2) ≠ 0

This rule says that the intersection of attributes of R1 & attributes of R2 should not be empty.

c. attr(R1) ∩ attr(R2) = attr(R1) or attr(R2)

The intersection of attributes of R1 & attributes of R2 should result either attributes of R1 or

attributes of R2

d. Finally, we have to find the closure of intersection attributes.

Ex 1: Consider a relation R (ABCDE) which is decomposed into R1(ABC) & R2(ADE) having the

following FDs over R

R: A BC CD E B D E A

Find whether this decomposition of R is lossless or not

Sol:

i. (R1 ∪ R2) = R

5NF

4NF

BCNF

3NF

2NF

1NF

(ABC) ∪ (ADE) = (ABCDE) R

ii. R1 ∩ R2 ≠ 0

(ABC) ∩ (ADE) = A ≠ 0

iii. R1 ∩ R2 = R1, R1 ∩ R2 = R2

(ABC) ∩ (ADE) = A R1, R2

iv. Closure of A

(A)+ = (ABCDE) R

 The Relation is lossless

2. Dependency preserving decomposition

A relation R is decomposed into R1, R2, …, Ri with the set of FDs given then R is said to be having

dependency preserving iff

(F)+ = {F1 ∪ F2 ∪ F3 ∪ … ∪ Fn}

Ex1: Consider a relation R with attributes ABC is decomposed into 2 relation AB, BC holding following

FDs

A B

B C

C A

Find whether R is dependency preserving or not

AB BC

A B B

 A
B C

C B

(F)+ = {F1 ∪ F2 ∪ F3} +

=

C B B C C A

C A B A C B

B A C A A B

R is dependency preserving

A B

B C

C A

A B B C

∪

B A C B

 UNIT 4
- UNIT - IV Transaction Concept, Transaction State, Implementation of Atomicity and

Durability, Concurrent Executions, Serializability, Recoverability, Implementation of

Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols,

Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log–Based

Recovery, Recovery with Concurrent Transactions.

-

- Transaction concept

A transaction is an execution of user program that is seen by Database Management System as a series of

operations.

(OR)
A transaction is a logical unit of work done by the user.

- Transaction operations

The common operations that can be performed on a transaction include:

1. Read

2. Write

Ex: Consider a bank transaction where the operations debit credit is collectively known as transactions.

- Transaction properties

To maintain consistency of a database, every transaction must satisfy a set of properties known as “ACID”

properties. ACID - Atomicity Isolation Consistency Durability

1. Atomicity

It ensures that either the transaction operations are executed successfully or not. That means incomplete

transactions are not allowed. Atomicity is taken by “Transaction Management Component”.

2. Consistency

A transaction that is performed on a consistent state of the database should result to another

consistent of database. It is taken care by application layer.

3. Isolation

The transactions executing in the system must have logical isolations. This property ensures

that the transactions that are executing in parallel will not interfere with each other. It is taken

care by concurrency control component.

4. Durability

It ensures that when a transaction is performed on a database the modification done on the

database should remain persistent even though the system failure occurs. Durability is taken

care by “Recovery Management Concept”.

- Transaction state

Partially

Committed
Committed

Terminated

Active

Kill

Failed Abort

Restart

A transaction executing in the system will enter into different states during lifetime.

1. Active state 2. Partially committed state 3. Failed state 4. Committed state

5. Abort State 6. Terminated state

1. Active state

A transaction is in active state while it is in execution.

2. Partially committed state

A transaction is in partially committed state when it is executing its last statement even after the execution,

the transaction may either be committed state or failed state.

3. Failed state

A transaction is in failed state when it no longer continues its normal execution.

4. Committed state

A transaction is in committed state when it completes its execution successfully.

5. Abort state

When a transaction fails all its operation, it must be role back & the transaction enters into abort state. An

aborted transaction will be either killed or restarted.

6. Terminated

It is the end of the transaction.

- Schedule

A schedule is a list of operations from a set of transactions.

- Types of schedules

1. Serial schedule 2. Non-serial schedule

Consider 2 transactions T1, T2 where transaction T1 will transfer the amount of 50 from A to B & transaction

T2 transfers the amount of 500 from A to B.

Initial amount of A = 1000

Initial amount of B = 1000

T1: read (A)

A = A - 50

write (A)

T2: read (B)

B = B + 50

write (B)

1. Serial schedule

Debit

Credit

T2: read (A)

A = A - 500

write (A)

T2: read (B)

B = B + 500

write (B)

Debit

Credit

It is a schedule in which the transaction operations are executing in a serial fashion i.e. T1 T2 or T2

T1.

Ex: Consider a schedule S1 with 2 transaction T1 & T2

S1 T1 T2

 read (A) 1000 450

 A = A - 50 950 1550

 write (A)

read (B)

950

1000

 2000 (Consistent)

 B = B + 50 1050

 write (B) 1050

read (A) 950

A = A - 500 450

write (A) 450

read (B) 1050

B = B + 500 1550

write (B) 1550

The above schedule S1 will give consistent result. Hence, it is a serial schedule.

2. Non - Serial schedule (Concurrent or Interleaved)

It is a schedule in which the transaction operations are executing by interleaving each other.

Consider a schedule S2 as given

S1

(Inconsistent)

The above schedule S2 is inconsistent because the transactions are operating concurrently.

Note: Non-serial schedule may give consistent or inconsistent result.

- Serializability

A schedule S is said to be serializable if the interleaved execution of transactions is similar to that of some

serial schedule.

- Types of serializability

There are 2 types of serializability:

1. Conflict Serializability 2. View Serializability

1. Conflict Serializability

Two schedules S1, S2 are said to be conflict serializability if it is conflict equivalent to some serial schedule.

* Conflict equivalent

Two schedules S1, S2 are said to be conflict equivalent if the conflict operations are executing in the

same order.

T1

read (A)

A = A - 50

T2

1000

950

read (A)

A = A - 500

write (A)

read (B)

1000

500

5000

1000
write (A)

read (B)

B = B + 50

write (B)

950

1000

1050

1050

500

1550

2050

B = B + 50
 155
0

write (B)

 155

0

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

R(B)

W(B)

* To check conflict equivalent of schedules:

a. There must be 2 or more different transactions.

b. The transactions will work on the same data item.

c. Atleast one should be ‘write’ operation.

Consider 2 schedules S1, S2 given
S1 S2

Checking conflict equivalence on S1, S2

S1 T1 T2 S2 T1 T2

R(A) W(A) R(A) W(B)

W(A) R(A) W(A) R(A)

R(A) W(A) W(A) W(A)

R(B) W(B) R(B) W(B)

W(B) R(B) W(B) R(B)

W(B) W(B) W(B) W(B)

Since, S1 & S2 are conflict equivalent hence, S1 S2

2. View Serializability

Two schedules S1, S2 are said to be view serializable if it is view equivalent to some serial schedule.

* View equivalent

Two schedules S1, S2 are said to be view equivalent if the conflicting operations are executing in the

same order.

* Conditions to check view equivalent

a. Check the transaction which reads initial value of data items.

b. Check the transaction which writes final value of data item.

c. Check for write read conflicts.

Consider 2 schedules S1, S2 given:

T1 T2

R(A)

W(A)

R(B)

W(B)

R(A)

W(A)

R(B)

W(B)

T1 T2

R(A)

A = A + 10

W(A)

R(B)

B = B + 20

W(B)

R(A)

A = A + 30

W(A)

R(B)

B = B + 30

W(B)

S1 S2

Checking of view equivalent

A

B

W R

R(A)

R(B)
Since S1 & S2 are view equivalent hence, S1 & S2 are view serializable.

- Testing of serializability

In order to test serializability (Conflict serializability) of a given schedule, we use precedence graph. A

precedence graph is a directed graph where G = (V, E).

i. Algorithm for creating a precedence graph:

Step 1: Create a node for each transaction.

Step 2: Draw a directed edge from Ti to Tj (Ti Tj) for the following cases

i. Ti(w) Tj(r)

ii. Ti(r) Tj(w)

iii. Ti(w) Tj(w)

Ex1: Consider a given schedule S1. Check whether S1 is conflict serializable or not

S1

T1 T2

R(A)

A = A + 10

W(A)

R(A)

A = A + 20

W(A)

R(B)

B = B + 30

W(B)

R(B)

B = B + 30

W(B)

S1 S2

T1 T2 T1 T2

T1 T2 T1 T2

W(A) R(A) W(A)

W(B) R(B) W(B)

T1 T2 T3

r(x)

r(z)

r(z)

r(x)

r(y)

w(x)

r(x)

w(z)

w(y)

No cycle in graph hence, S1 is conflict serializable

Ex2:

S2

Ex3:

It has cycle in graph so S1 is not conflict serializable

S3

There is a cycle in the graph hence, it is not conflict serializable.

- Recoverability

T3

T1
r(y) w(y)

T2

T2
z y

T1 T3
x

T1 T2 T3

r(x)

r(x)

w(x)

w(x)

r(x)

T1 T2 T3

r(x)

r(z)

w(z)

r(y)

r(y)

w(y)

w(x)

w(z)

w(x)

x
T2

x

x

T1 T3
x

A transaction may not execute completely due to failure such as hardware or software failure. In that case we

have to roll back the failed transaction but some other transactions are using the values written by failed

transaction. So, we have to roll back those transactions as well.

Ex: Consider a given schedule S1

S1

In the above schedule, transaction T1 fails due to some reason so we roll back T1. In such case, T2 must

also be rolled back because T2 reads the value written by T1 but in the above schedule, T2 commits before

T1. Hence it cannot be rolled back. This phenomenon is known as irrecoverable schedules.

* Recoverable schedule

A schedule is recoverable where each transaction commits only after all transaction from which it has

read as committed.

Ex:

S2

In the above schedule, transaction T2 commits after T1 commits. If T1 fails then we can roll back T1 as

well as T2. Therefore, the schedule S2 is said to be recoverable schedule.

- Cascading roll back

Consider a schedule S3 given

S3

In the above schedule, if transaction T1 fails then we have to roll back T1. In such case, T2 & T3 must be rolled

T1 T2

r(A)

A = A + 50

w(A)
r(A)

A = A + 100

w(A)

Commit Failure point

commit

T1

r(A)

A = A + 50

w(A)

T2

r(A)

A = A + 100

w(A)
Commit

Commit

T1

r(A)

w(A)

T2 T3

r(A)

w(A)
r(A)

Failure point

back because T2 depends on T1 & T3 depends on T2. This concept is known as cascading rollback.

- Cascade less schedule

A cascade less schedule is a schedule where for each pair of transaction Ti, Tj such that Tj reads a data item

return Ti only after Ti commits.

S4

Note: Cascade less schedule are always recoverable.

- Concurrency control protocol

Concurrency control is one of the methods which guarantees the consistency of the database even with

interleaved execution of transactions. To deal with interleaved execution of transactions, different

concurrency protocols are available

1. Lock based protocol 2. Timestamp based protocol 3. Validation based protocol

4. Multiple granularity protocol

1. Lock based protocol

* Lock: A lock is a variable that is assigned to a data item which gives the status of data item with respect

to the operations allowed on it

* Types of locks

Locks are basically categorized into 2 types.

a. Shared lock(s) b. Exclusive lock(x)

a. Shared lock(s)

It is also known as read only lock. It is denoted with s. Any no of transactions can have a shared

lock on a data item.

b. Exclusive lock(x)

It is also known as read – write lock. Only 1 transaction at a time can have exclusive lock on a data

item.

* 2 Phase Locking (2PL)

2PL is a concurrency control protocol available under lock-based protocol. 2PL ensures conflict

serializable schedules. 2PL works in 2 different phases

a. Growing phase b. Shrinking phase

a. In growing phase, a transaction obtains locks but may not release any locks.

b. In shrinking phase, a transaction may release lock but cannot obtain any locks.

* Types of 2 Phase Locking of lock-based protocols

a. Simple 2 phase locking b. Strict 2 phase locking c. Rigorous 2 phase locking

d. Conservative 2 phase locking

a. Simple 2 phase locking:

Consider 2 schedules S1, S2 as given

T1

r(x)

w(x)

T2

r(y)

Commit

r(x)

S1:

Schedule S1(T1, T2) is not in 2PL. It does not obey the properties of 2PL because in T1 lock(x(B)) is

executed after unlock(A) & similar in T2.

S2:

Schedule S2(T1, T2) obey the properties of 2PL so S2 is in 2 Phase locking

• Advantages

It ensures conflict serializability.

• Disadvantages

i. It does not ensure freedom from deadlocks

ii. There is a possibility of cascading rollback to occur

b. Strict 2 phase locking

It is compatible with 2PL. It does not release x lock (exclusive lock) until the transaction commits.

It guarantees conflict serializability.

Consider a schedule S3 as given:

T1

lock - s(A)

r(A)

unlock(A)

lock - x(B)

r(b)

w(b)

unlock(B)

T2 Lock Manager

Grant lock - S(A)

Grant lock - x(B)

lock - s(A)

r(A)

unlock(A)

lock - x(B)

r(b)

w(b)

unlock(B)

Grant lock - S(A)

Grant lock - x(B)

T1

lock - s(A)

r(A)

lock - x(B)

unlock(A)

r(b)

w(b)

unlock(B)

T2 Lock Manager

Grant lock - S(A)

Grant lock - x(B)

lock - s(A)

r(A)

lock - x(B)

unlock(A)

r(b)

w(b)

unlock(B)

Grant lock - S(A)

Grant lock - x(B)

S3:

The S3(T1, T2) obeys strict 2PL

c. Rigorous 2 phase locking

It is compatible with 2PL. The shared locks & exclusive locks must be released only after

transaction commit or abort. It is a strict version of strict 2PL.

Consider a schedule S4 as given:

S4:

The S4(T1, T2) obeys rigorous 2PL.

Note: Strict 2PL, rigorous 2PL does not ensure freedom from deadlock.

d. Conservative 2 phase locking

The conservative 2PL says that a transaction should obtain all the required locks (shared or

exclusive) before it starts its execution & release all the locks after it commits. It ensures freedom

from deadlock.

Consider a schedule S5 as given:

T1

lock - x(P)

r(P)

w(P)

lock - x(Q)

r(Q)

w(Q)

Commit

T2

lock - x(P)

r(P)

w(P)

lock - x(Q)

r(Q)

w(Q)

Commit

T1

lock - s(P)

r(P)

lock - x(Q)

r(Q)

w(Q)

Commit

T2

lock - s(P)

r(P)

lock - x(Q)

r(Q)

w(Q)

Commit

S5:

The S5(T1, T2) obeys conservative 2PL.

* Lock conversions

Lock conversion is a concept in which we can either upgrade or degrade the locks assigned to a

transaction. The lock conversion is necessary to overcome deadlock situation occurred in a

schedule. Ex: Consider a transaction T1 holding a shared lock on ‘A’.

T1: lock - s(A)

If T1 wants to perform ‘write’ operation on data item ‘A’, then it should request for exclusive lock

on A. This will be done by upgrading lock

T1: lock - s(A)

 upgrading

lock - x(A)

Consider T2: lock - x(B). Suppose T2 does not require the x lock on B anymore, then we degrade

the lock to shared lock.

T2: lock - x(B)

 degrading

lock - s(B)

* Graph-based protocol (Tree locking protocol)

a. It is a simple locking protocol i.e. not 2 phase locking.

b. This protocol is basically designed for exclusive locks.

c. This protocol requires a prior knowledge regarding the order in which data items can be accessed.

d. This knowledge can be acquired by using partial ordering on the given data items.

e. This protocol ensures conflict serializability.

* Working of graph-based protocol

In tree locking protocol, every transaction should consider the following conditions

a. The transaction Ti can lock any data item initially.

b. The Ti can lock a data item ‘X’ only if it has a lock on parent of X.

c. Once a transaction Ti lock and unlock a data item, then it cannot request for a lock on the same

data item.

Ex: Consider the given set of data item in a tree like structure

T1

lock - s(A)

lock - x(B)

r(A)

r(B)

w(B)

Commit

T2

lock - s(A)

lock - x(B)

r(A)

r(B)

w(B)

Commit

Consider a schedule S1(T1, T2, T3)

S1:

2. Timestamp based protocol

The timestamp ordering is a method that determine the serializability if different transaction in a

schedule.

* Timestamp

A

B

C D

F E

T1

lock - x(B)

r(B)

w(B)

T2 T3

lock - x(C)

r(C)

lock - x(F)

r(F)

unlock - C
lock - x(D)

r(D)

w(D)

lock - x(C)

r(C)

w(C)

unlock - B

unlock - D

lock - x(B)

r(B)

w(B)

lock - x(D)

r(D)

w(D)

unlock - F

lock - x(E)

r(E)

w(E)

unlock - C
unlock - D

unlock - B
unlock - E

A timestamp is an identifier that specifies the starting time of transaction & it is generated by database

system. Each transaction will have a unique timestamp. It is denoted by TS (Ti).

The time stamps are generated by using 2 methods

a. System clock b. Logical counter

a. System clock

When a transaction enters into a system, it is assigned with a timestamp value equal to system

clock.

b. Logical counter

Each transaction is assigned with a counter value & it is incremented for every new transaction

that enters into the system

* Types of timestamps

a. Read Timestamp (RTS) b. Write Timestamp (WTS)

a. RTS

It indicates the highest value of timestamp generated by the transaction for reading a data item.

b. WTS

It indicates the highest value of timestamp generated by the transaction for writing a data item.

In timestamp ordering protocol, the timestamp of an old transaction is always less than the timestamp

of new transaction i.e. TS (Ti) < TS (Tj)

where Ti - Old transaction

Tj – New transaction

* Working of timestamp ordering protocol

I: When a transaction (Ti) issue a read operation on X

i. TS (Ti) < WTS (X) //read is rejected

ii. TS (Ti) WTS (X) //read is executed & update WTS value with TS (Ti).

II: When a transaction (Ti) issue a write operation on X

i. TS (Ti) < RTS (X) //write is rejected

ii. TS (Ti) < WTS (X) //write is rejected

iii. TS (Ti) WTS (X) //write is executed & WTS is updated.

S1:

Schedule S1 obeys timestamp ordering by TS (T1) < TS (T2).

- Validation based protocol:

1. It is an optimistic concurrency control protocol.

2. It is based on timestamp ordering technique. Each transaction is executed in 3 phases

T1

r(A)

T2

r(A)

A = A + 10

w(A)
r(B)

r(B)

show (A + B)

show (A + B)

a. Read - Read b. Validation - Validation c. Write - Write

a. Read phase (Ti)

In Read - Read transaction Ti, x is executed by reading various data items and storing them in local

variable.

b. Validation phase (Ti)

In this phase, the validation test conducted for transaction Ti against serializability order.

c. Write phase (Ti)

In this phase, the transaction Ti will update the data items in the database.

Time stamps are associated with 3 – phases

1. Start (Ti) 2. Validate (Ti) 3. Finish (Ti)

1. Start (Ti)

It indicates the time when Ti started its execution.

2. Validate (Ti)

It indicates the time when Ti started its validation test.

3. Finish (Ti)

It indicated the time when it finishes the write phase.

- Working with timestamp-based protocol

- Validation test

Consider 2 transaction T1, T2 is executing in the system with timestamp ordering TS (T1) < TS (T2) then

Validation test for T1, T2:

1. finish (T1) < start (T2)

2. writes of T1 & T2 do not overlap

Ex: Consider a schedule S1 with T1, T2

S1

 S1 satisfy validate test

- Multiple granularity

1. In earlier concurrency control protocol, locking can be applied to a single data item. Sometimes we need

to lock a collection of data items by a transaction i.e. possible by using granularity process. Granularity

indicates the size of data item allowed to lock.

2. Multiple granularity can be define as a hierarchy that will breakup the database into different blocks which

can be locked by the transaction.

Consider a granularity hierarchy as given below:

T1 T2

R(A)

W(A)

R(B)

<validate>

show(A+B)
R(A)

R(B)

<validate>

show(A+B)

- Working of granularity hierarchy

1. Each node can be locked individually.

2. When a node is locked using either shared or exclusive lock explicitly by a transaction, then all the

descends of that node get the same lock explicitly.

3. When a transaction wants to lock the entire database, which effects the concurrency of the system, it

requires a new locking mechanism known as intension lock nodes which are

a. IS (Intention Shared) b. IX (Intention Exclusion)

Compatibility matrix:

 IS IX S SIX X

IS     

IX     

S     

SIX     

X     

- Implementation of locking (processing lock and unlock requests by lock manager)

A lock manager is implemented as a process that will receive lock request, messages from transactions

and give the response to the transaction.

The lock manager after receiving the lock request from a transaction process and grant the lock of the

data item if it is available free. To process the lock request, the lock manager uses the following data structure.

Data structure used by lock manager

Lock

table

(Hash

table)

H(k) = h(k) ≠ 10

The lock table maintained the information about the data items that are locked and unlocked by transactions.

It uses a separate chaining technique to maintain a linked list of data items for each entry in the lock table.

The transactions which are waiting for the locks are added to the linked list once a transaction released a lock,

it is granted to one of the transactions in linked list.

DB Level 1:
Database

A
1

Ai 2: Areas

F1 F2 F3 Fi 3: Files

R1 R2 R3 Ri 4: Records

10

T1 T2 T3

50 T4

80 T5 T6

Separate

chaining (LL)

- Recovering techniques

- Failure with loss of non-volatile storage:

The information present in a volatile storage gets lost whenever a system crash

occurs. But the loss of information in a non-volatile storage is very rear to avoid such failure,

some certain techniques need to be considered.

One of the techniques is dump. In this technique, the entire database is dump to a

stable storage at regular intervals of time. When a system crashes, in order to bring the

database back to consistent state, we use the recent dump to restore.

* Dump process:

1. During dump process, no transaction should be processed.

2. All the log records in the memory must be stored to a stable storage.

3. The entire database is copied to stable storage.

Drawbacks of dump process

The dump process is considered as an expensive task due to following reasons.

1. The huge amount of data transfer is needed.

2. No transaction is in process during dump, hence CPU cycle is waste.

- Remote backup system

The traditional transaction processing system is more suspected to failure due to natural

disaster. Hence there is a need for designing a system which will continue its processing

even if the system fails due to natural disaster. Such a system is known as remote backup

system. The main goal of remote backup system is to provide high degree of availability.

Fig: Remote backup system

- Working of remote backup system

1. When a primary site is updated, this updation should be reflected in the remote site.

This can be done by synchronization between primary site and remote site.

2. When primary site fails, the remote site immediately takes the responsibility of

transaction processing.

Primary

site

Networ
k

Logs

Remote
site

Logs

- Design issues of remote backup system

1. Failure detection 2. Control of transfer 3. Recovery time 4. Time of commit

-

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	- Applications of Database System
	1. University 2. Banking 3. Hospital 4. Telecommunication 5. Finance

	- History of database
	- File System vs Database system
	* Drawbacks of File Processing System
	d. Data Isolation e. Data Security f. Difficulty in accessing the data
	b. Data Inconsistency:
	c. Data Integrity:
	d. Data Isolation:
	e. Data Security:
	f. Difficulty in accessing the data:

	- View of Data
	- Data abstraction
	- Need for the data abstraction
	- Levels of abstraction
	1. Physical Level 2. Logical Level 3. View Level
	2. Logical Level
	3. View Level

	- Instance
	- Schema/Scheme
	1. Physical Scheme 2. Logical Scheme 3. Sub Scheme

	- Data independence
	1. Physical data independence 2. Logical data independence
	2. Logical Data Independence:

	- Data Models
	1. Object based data model 2. Record based data model 3. Physical data model
	E-R Model (Entity-Relationship):
	2. Record based data model:
	a. Hierarchical model b. Network model c. Relational model
	b. Network Model:
	c. Relational Model:

	- Database system structure:
	1. Database User 2. Database Administrator
	a. Native User (Unsophisticated) b. Application Programmers
	a. Native User (Unsophisticated):
	b. Application Programmers:
	c. Sophisticated User:
	d. Specialized User:
	2. Database Administrator (DBA):
	* Functions of DBA
	b. Storage structure of access method definition:
	c. Physical organisation modification:
	d. Granting authorization for data access:
	e. Regular Maintenance:
	ii. Monitoring the jobs:
	iii. Monitoring the disk space:

	- Database Architecture:
	1. Query processor 2. Storage manager
	a. DML Compiler:
	b. DDL Interpreter:
	c. Query evaluation engine:
	2. Storage manager:
	a. Buffer manager:
	b. File manager:
	c. Authorization & Integrity manager:
	d. Transaction Manager:

	- Database Design
	1. Requirement Analysis (Data Gathering)
	3. Logical Design (Relational Model)
	5. Physical Database Design (index, clusters etc)

	- ER Model beyond ER Design
	- Additional features of ER model
	1. Key constrains 2. Participation constrains 3. Weak entities 4. Class hierarchy
	1. Key Constraints:
	2. Participation constraints:
	3. Weak Entities:
	4. Class Hierarchy:
	a. Generalization b. Specialization
	b. Specialization:
	i. Overlap Constraint:
	ii. Covering Constraint:
	5. Aggregation
	- Features of Aggregation
	6. Key constraints for ternary relationship

	- Conceptual design with the ER Model
	1. Entity vs Attribute

	
	2. Entity vs Relationship

	 (1)
	3. Binary vs Ternary

	 (2)
	4. Aggregation vs Ternary

	1. Relational Schema 2. Relational Instance
	- Basic terminology
	1. Relation:
	2. Attribute
	3. Domain
	4. Degree of relation
	5. Cardinality of a relation

	- Integrity constraints over relations
	- Legal instance
	- Key constrains
	- Types of key constraints:
	5. Foreign key 6. Composite key
	2. Primary key
	Condition for primary key
	3. Composite key
	4. Super key
	5. Alternate Key (Secondary key)
	6. Foreign key (Referential key)

	- General constraints
	1. Table constraints 2. Assertions
	2. Assertion

	- Enforcing integrity constraints
	- Logical Database Design
	1. Mapping of entity set into tables
	3. Mapping relational sets with participation constraints into table
	5. Mapping weak entity into table
	7. Mapping ER diagram with aggregation into table
	Procedure to map entity set into table

	2. Mapping the relationship set (without constraints) into table
	Mapping procedure

	3. Mapping relationship set with key constraint into table
	Mapping procedure

	4. Mapping relationship set with participation of constraints
	Mapping procedure

	5. Translation weak entity into tables
	Mapping procedure

	6. Translating class hierarchies into table
	Method I
	Method II

	7. Translating ER Diagram with aggregation into table

	- Introduction to views
	- Working with views
	- Syntax for creating views
	i. Creating view: Emp_DeptV
	ii. Updating view
	iii. Altering view (adding a column) - E_Sal
	iv. Drop view

	- Advantages of Views:
	- Updateable views:
	- Relational Model
	1. Relational Algebra 2. Relational Calculus
	2. Relational Calculus

	- Relational Algebra
	- Fundamental operations of relational algebra
	1. Selection (𝝈) 2. Projection (𝝅) 3. Set operations (Union, Intersection, Difference)
	1. Selection (𝝈)
	2. Projection (𝝅)
	3. Set operations (Union, Intersection, Difference)
	𝜋E_Name Emp ∩ 𝜋Name Manager
	𝜋E_Name Emp – 𝜋Name Manager
	4. Rename
	5. Division
	6. Joins
	a. Conditional Joins (⋈C) b. Equi Joins (⋈=) c. Natural Joins (⋈)
	a. Conditional Joins (⋈C)
	b. Equi Joins (⋈=)
	c. Natural Joins (⋈)

	𝜋 S_Name ((𝜎 B_ID = 102 Reserves) ⋈ Sailors)
	𝜋 S_Name ((𝜎 Colour = ‘Red’ Boats) ⋈ Reserves ⋈ Sailors)
	𝜋 Colour ((𝜎 S_Name = ‘bb’ Sailors) ⋈ Reserves ⋈ Boats)
	𝜋 S_Name ((𝜎 Colour = ‘Red’ Boats  𝜎 Colour = ‘Green’ Boats) ⋈ Reserves ⋈ Sailors)

	- Relational Calculus
	1. Tuple Relational Calculus (TRC) 2. Domain Relational Calculus (DRC)
	Syntax:
	Q1: Find S_No, S_Name from D_No = 20
	Q2: Find the names of male students in D_No = 20
	Q1: Find loan details of loan amount > 2000
	Q2: Find the names of all customers who have a loan from the branch ‘Kachiguda’
	Q3: Find the customers who have account or loan or both

	2. Domain Relational Calculus
	Q1: Find the name and address of employees whose E_Name = ‘Raj Kumar’
	Q2: Find names of employees working in D_No = 10
	Q3: Find names of employees who are not managers
	Q4: Find names of employees working in HR department

	- UNIT - III SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases. Schema Refinement: Prob...
	-
	- (1)
	- Forms of basic SQL Query
	- Query:
	1. Select Clause 2. From Clause 3. Where Clause
	2. From clause
	3. Where clause

	- Examples of basic SQL queries
	- Aggregate operators (Function)
	1. count () 2. max () 3. min () 4. sum () 5. avg ()
	Consider a sample relation emp to demonstrate the aggregate functions.
	Ex:
	Ex: (1)
	Ex: (2)

	- Null Values:
	- Comparing null values
	- Logical connectives AND, OR, NOT with null values
	- Disallowing/Restricting null values
	Nested Queries & Co - related Nested Queries
	1. Nested Query
	Q1: Find S_ID of students who enrolled course ADS or DBMS
	Ans: Inner Query:
	Main Query:

	Q2: Find the S_Name of students who enrolled the course DBMS or JAVA
	Ans:

	2. Co - related Nested Query

	- Triggers and active database
	1. Triggers
	i. An event ii. A condition iii.An action

	- Types of triggers
	a. Before triggers
	b. After triggers
	c. Row-level triggers
	d. Statement level triggers

	- Creation of triggers
	- Working with triggers
	Ex1: //Consider a trigger: update trigger
	Ex2: //Create a trigger After_Insert
	Ex3: //Create a trigger Before_Delete

	- Applications of triggers
	- Limitation of triggers
	2. Active database

	- Designing active database
	- Complex Integrity Constraints (IC’s) in SQL
	1. IC’s over a single relation (table constraint) 2. Domain constraint
	1. IC’s over a single relation (table constraint)
	Ex:

	2. Domain constraint
	Ex:
	Ex: (1)

	3. IC’s over multiple relations (Assertion)
	1. Set operations (Union, Intersection, Difference)
	𝜋E_Name Emp ∩ 𝜋Name Manager
	𝜋E_Name Emp – 𝜋Name Manager

	- Schema
	- Redundancy
	- Problems caused by redundancy
	1. Wastage of storage space 2. Inconsistency of data 3. Anomalies (Insert, update & delete)
	2. Anomalies
	a. Insert Anomalies b. Delete Anomalies c. Update Anomalies
	a. Insert Anomalies
	b. Delete Anomalies
	c. Update Anomalies
	3. Inconsistency

	Functional Dependencies (FD)
	- Types of FD’s
	1. Trivial FD 2. Non-trivial FD
	2. Non-trivial FD

	- Reasoning about FD’s
	- Closure of set of FDs
	1. Reflexivity
	2. Augmentation
	3. Transitivity

	- Additional rules to find closure of set of FDs
	1. Union
	2. Decomposition
	Ex 1: R (A, B, C) A  B, B  C A+: ABC
	C+: C

	- Normalization
	- Normal form
	- Types of normal form
	1. First Normal Form (1NF) 2. Second Normal Form (2NF) 3. Third Normal Form (3NF)
	6. Boyce-Codd Normal Form (BCNF or 3.5NF)
	2. Second Normal Form (2NF):
	i. Partial dependency
	ii. Prime attribute
	iii. Non - prime attributes
	iv. Decomposing a relation to be in 2NF

	3. Third Normal Form (3NF):
	Transition Dependency
	Ex: Consider a relation R with attributes ABCD holding the following FDs AB  C, C  D

	4. BCNF (Boyce-Codd Normal Form):
	Ex: Consider a relation R with R(ABC) & FDs

	5. Multi Valued Dependencies (MVD) & Forth Normal Form (4NF):
	MVD
	Ex: Consider a relation given
	Ex: Consider a relation given (1)
	Ex: Consider R(ABCD) which hold FDs A  BC

	6. Join Dependencies & Fifth Normal Form (5NF):

	- Decomposition
	- Problems related to decomposition
	1. Lossless join decomposition 2. Dependency preserving decomposition
	v. Rules to check whether a relation is lossless or not:
	a. attr(R1) ∪ attr(R2) ∪ … ∪ attr (Ri) = attr(R)
	b. attr(R1) ∩ attr(R2) ≠ 0
	c. attr(R1) ∩ attr(R2) = attr(R1) or attr(R2)
	Ex 1: Consider a relation R (ABCDE) which is decomposed into R1(ABC) & R2(ADE) having the following FDs over R
	Find whether this decomposition of R is lossless or not

	2. Dependency preserving decomposition

	- UNIT - IV Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Pro...
	-
	- Transaction concept
	- Transaction operations
	- Transaction properties
	1. Atomicity
	2. Consistency
	3. Isolation
	4. Durability

	- Transaction state
	1. Active state 2. Partially committed state 3. Failed state 4. Committed state
	1. Active state
	2. Partially committed state
	3. Failed state
	4. Committed state
	5. Abort state
	6. Terminated

	- Schedule
	- Types of schedules
	1. Serial schedule 2. Non-serial schedule
	1. Serial schedule
	Ex: Consider a schedule S1 with 2 transaction T1 & T2

	2. Non - Serial schedule (Concurrent or Interleaved)
	Consider a schedule S2 as given

	- Serializability
	- Types of serializability
	1. Conflict Serializability 2. View Serializability
	* Conflict equivalent
	* To check conflict equivalent of schedules:
	Consider 2 schedules S1, S2 given
	2. View Serializability
	* View equivalent
	* Conditions to check view equivalent

	- Testing of serializability
	i. Algorithm for creating a precedence graph:
	Ex1: Consider a given schedule S1. Check whether S1 is conflict serializable or not
	Ex2:
	Ex3:

	- Recoverability
	Ex: Consider a given schedule S1
	Ex:

	- Cascading roll back
	- Cascade less schedule
	- Concurrency control protocol
	1. Lock based protocol 2. Timestamp based protocol 3. Validation based protocol
	1. Lock based protocol
	* Types of locks
	a. Shared lock(s) b. Exclusive lock(x)
	b. Exclusive lock(x)
	* 2 Phase Locking (2PL)
	a. Growing phase b. Shrinking phase
	* Types of 2 Phase Locking of lock-based protocols
	d. Conservative 2 phase locking
	• Advantages
	• Disadvantages
	b. Strict 2 phase locking
	c. Rigorous 2 phase locking
	d. Conservative 2 phase locking (1)
	* Lock conversions
	* Graph-based protocol (Tree locking protocol)
	* Working of graph-based protocol
	2. Timestamp based protocol
	* Timestamp
	a. System clock b. Logical counter
	b. Logical counter
	* Types of timestamps
	a. RTS
	b. WTS
	* Working of timestamp ordering protocol
	II: When a transaction (Ti) issue a write operation on X

	- Validation based protocol:
	a. Read - Read b. Validation - Validation c. Write - Write
	b. Validation phase (Ti)
	c. Write phase (Ti)
	1. Start (Ti) 2. Validate (Ti) 3. Finish (Ti)
	2. Validate (Ti)
	3. Finish (Ti)

	- Working with timestamp-based protocol
	- Validation test
	Validation test for T1, T2:
	Ex: Consider a schedule S1 with T1, T2

	- Multiple granularity
	- Working of granularity hierarchy
	- Implementation of locking (processing lock and unlock requests by lock manager)
	Lock table (Hash table)

	- Recovering techniques
	- Failure with loss of non-volatile storage:
	* Dump process:
	Drawbacks of dump process
	- Remote backup system
	Fig: Remote backup system
	- Design issues of remote backup system

	- (1)

