UNIT 1

UNIT - | Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of

Abstraction in a DBMS, Data Independence, Structure of a DBMS Introduction to Database Design: Database Design and

ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER
Model, Conceptual Design With the ER Model

- Applications of Database System

The applications of database systems are wide and it never ends up. Some of the application areas include

1.

University 2. Banking 3. Hospital 4. Telecommunication 5. Finance

6. Sales and marketing

- History of database

The database system has a long history over the period the technology for database storage and access method

has been changed.

1.

During 1950’s, during this period, magnetic tapes are used as storage media. Data will be stored and
processed on the magnetic tapes by using sequential access. Therefore, processing speed is less during
1960’s to 1970’s.

During this period, the usage of hard disk has changed the scenario of data storage and data processing.
The hard disk will provide direct access of the data. Therefore, process will become faster.

During 1970’s, E.F. Codd introduced the relational model and therefore many relational DB has been
started.

During 1980’s, during this period, many relational DB such as oracle, SQL server, IBM DML has been
introduced in the market and many researchers start working on disturbed databases during 1990’s many
database vendors provided many distributed databases into market and the usage of SQL has provided a

convenient environment for the user to work with database system.

- File System vs Database system

In early days, before database systems were introduced, users had to store their data in files and

retrieve the data from the files by writing different application programs this technique is known as File

Processing System (FPS).

File Processing System is suitable with the collection of files is less in number and data is limited.

When the file size increases, it becomes difficult to maintain such data with FPS.

*

Drawbacks of File Processing System
a. Data Redundancy b. Datainconsistency c¢. Data Integrity
d. Data Isolation e. Data Security f. Difficulty in accessing the data
a. Data Redundancy:
It means duplication of the data. It leads to the wastage of storage space. This happens because no

validation methods available in File Processing System.

b. Data Inconsistency:
Data Redundancy leads to a problem known as Data Inconsistency i.e. multiple copies of the same
data may no longer agree with each other.

c. Data Integrity:
It refers to correctness. Integrity problem will arise due to the lack of integrity checks such as student

age should not be less than 18 etc.

d. Data Isolation:
In File System, data is distributed in different locations and to retrieve the data from these isolated

files, large application programs need to be written.

e. Data Security:
In File System, the files can be password protected sometimes we want to give the access to few

records from a file then security becomes difficult.

f. Difficulty in accessing the data:

In File System, efficient data access methods are not available hence accessing the data is difficult.

- View of Data

Database is a collection of large volumes of data the user does not always require the entire data from the

database. Therefore, it is the responsibility of the database to provide the required data to the user.

- Data abstraction

Data abstraction refers to the way of representing the essential features and hiding background details or
complexities from the user.

- Need for the data abstraction
Data abstraction is necessary because user is not computer trained or expert. To make user job simpler
different levels of data abstraction are provided so that user will feel convenient to work with the database.

- Levels of abstraction

Conceptual Logical Level

Internal Level Physical Level

There are 3 levels of data abstraction

1. Physical Level 2. Logical Level 3. View Level
1. Physical Level

a. Itisalso known as internal level or lower level.
b. It describes about how the data is actually stored in the database (Implementation or storage
structure).

2. Logical Level
a. Itis also known as conceptual level.
b. It describes what data is actually stored in the database and relationship among the data.
c. Logical design is taken by DBA (Data Base Administrator).

3. View Level
a. Itis also known as external level.

b. It describes the part of entire database in the form of different views by different users.

- Instance
A database instance is a set of memory structure and background processes that access a set of database
files. The process can be shared by all users. The memory structure that are used to store most queried data
from database. This helps up to improve database performance by decreasing the amount of I/O performed
against data file.

- Schema/Scheme

The overall design of the database is known as the database schema. According to the levels of data
abstractions, there are 3 types of schemas available.

1. Physical Scheme 2. Logical Scheme 3. Sub Scheme

1. Physical Scheme: It describes the structure of data at physical level.
2. Logical Scheme: It describes the structure of data at logical level.
3. Sub Scheme: It describes different values of the users interacting with the database.

- Data independence
It is defined as the ability to modify data at one level without effecting at the next level. Data independence is
of 2 types
1. Physical data independence 2. Logical data independence

1. Physical Data Independence:
The ability to modify the physical structure at the physical level without effecting the next level (Logical

level) is known as Physical Data Independence.

2. Logical Data Independence:
The ability to modify the data at the logical level without effecting the next level (View level/External level)
is known as Logical Data Independence.

Note: Logical Data Independence is more difficult to implement than Physical Data Independence.

- Data Models
Data model is the way to represent the data within the database. Data model is a collection of conceptual tools
for describing:
1. For describing data
2. The relationship among data
3. Data semantic

4. The consistency constraints

Different data models are available. The classification of data model is shown below

Object based | Record based

Hierarchical

Network

Data model is mainly classified into 3 categories:

1. Object based data model 2. Record based data model 3. Physical data model

1. Object based data model:
The object-based data model deals with the real-world object and relation among the objects. One of the
popular models to represent object-based model in E-R model.

E-R Model (Entity-Relationship):

The overall design of the database is represented graphically using entity-relationship diagram. The E-R
model shows entities, relations among entities in a diagrammatic fashion.

Ex: Entity: Student Entity: Class

Attributes: Roll no. Attributes: Room no.

Name No. of seats
Address Location
Section
::A_-——*’ﬂ—"‘y_ . ﬁ“"—a\\
S "_F "'—" [
i o

P
v TN

—— ~ " o= \—__‘_‘_\- .)
F b

2. Record based data model:
The record-based data model stores the data in the form of fixed format record where each record
maybe having fixed length. Record-based data model contains 3 models
a. Hierarchical model b. Network model c. Relational model

a. Hierarchical Model:
In this model, the data and relationship among data is represented by using records and link or

pointer. This model is generally in the form of tree like structure.

b. Network Model:
In this model, data and relation among data is represented using records and pointers. This model is

generally represented in graph like structure.

I s N

c. Relational Model:
i. Itis the most popular data model used nowadays.
ii. It was developed in year 1970 by EF Codd.
iii. The main constraint is to represent the relational model is in the form of relation (Table).
iv. A relation is a combination of rows and columns.

v. Each relation represents a relational schema and relational instance.

- Database system structure:

Native Users Application Sophisticate Database
d
Y Y \ 4 A
Applicatio Applicatio Administratio
npp npp Query Tools n
A Y. Y
Compiler -
and > DML DDL Interpreter
Query
Y_ VY Y \ 4 -
Application ueries
PP > Q DML Compiler
I
\\
A\ Storage
\ N\
Indices Statistical Data
Disk Storage
Data Files Data Dictionary
— I

- Database User & Database Administrator:
The people who work with the database is categorised into 2 types:

1. Database User 2. Database Administrator

1. Database User

The database users are categorised into 4 types according to the way they are expected to interact with

database:
a. Native User (Unsophisticated) b. Application Programmers
c. Sophisticated User (Analyst) d. Specialized User

a. Native User (Unsophisticated):

* Native user also known as unsophisticated user or unskilled user.

* They interact with the database by using an API (Application Program Interface).

Ex: The users of ATM i.e. Automatic Telling Machine are categories as native user, teller, agents.

b. Application Programmers:
Application programmers are the skilled users who write certain application programs to interact with
the database. They use RAD (Rapid Application Development) tools to write the application programs.
They use the interface such as forms reports.

c. Sophisticated User:

* Sophisticated users also known as analyst.

* They interact with the database by using DML queries.

* These DML queries will be compiled using DML compiler and evaluated using query evaluation
engine.
d. Specialized User:
The specialized user are the sophisticated users who write some complex application programs such
as Computer Aided Design (CAD), Artificial Intelligence (AI), expert system & some graphics-based

application.

. Database Administrator (DBA):
DBA is a person who has the centralised control over the entire database.
* Functions of DBA
a. Scheme definition:
The DBA is responsible for defining the schema (overall design) of the database.

b. Storage structure of access method definition:
The DBA is responsible to define the storage structure (logical design) and access method
(Retrieval Technology).

c. Physical organisation modification:
The DBA is responsible for the modification of the physical organisation of the database.

d. Granting authorization for data access:
The DBA will provide the access permissions to the user so that only the authorised users will

access the database.

e. Regular Maintenance:
i. Taking backup:
The DBA will take the backup of the database at regular intervals of time to be used for
recovery purpose.
ii. Monitoring the jobs:

The DBA will monitor the running jobs in order to maintain the performance of the system.

iii. Monitoring the disk space:

The DBA will monitor the file space allocation so that the new jobs will get the needed space
in the disk.

- Database Architecture:

The functional components of database architecture are categorised into 2 types:

1. Query processor 2. Storage manager

1. Query processor:

Query processor is a major component of database architecture. It includes the following components:

a.

DML Compiler:
The DML compiler is used to compile the DML queries submitted by the user and generate low level
instruction understood by query evaluation engine.

DDL Interpreter:
The DDL interpreter will execute the DDL statements given by the user and store the result in a special

file called Data Dictionary.

Query evaluation engine:

The query evaluation will execute or evaluate low level instructions by DML compiler.

2. Storage manager:

The storage manager is a program module that acts as an interface between the query processor and low-

level data stored in the disk storage. It includes the following components:

a.

Buffer manager:

The buffer manager is responsible for allocating temporary storage for the files.

File manager:

The file manager will take care of the files being stored in the database.

Authorization & Integrity manager:
This component is responsible for giving the authorization DAP (Data Access Permission) and

maintaining integrity of the database.

Transaction Manager:
It is responsible for managing the transaction within the database system. A transaction is a logical
unit of work done by the user.

Ex: Credit & debit operation in bank transaction.

The storage will maintain several data structures as part of physical storage implementation.

a.

b
c.
d

Indices (indexes): for faster retrieval of data.

. Data files: It is a collection of data stored in the files.

Data Dictionary: It is a container for meta data.

. Statistical data: It maintain the statistical information of database users.

- Database Design

The database design process consistence of the following steps:

1. Requirement Analysis (Data Gathering)
2. Conceptual Design (ER Model)
3. Logical Design (Relational Model)

Schema Refinement (Normalization Techniques)
Physical Database Design (index, clusters etc)

Database Tuning

SRR

Security Design (Authorization)

- ER Model beyond ER Design

The ER model consistence of various entity objects, attributes of entity properties and relationship among the

entities are represented in a diagrammatic fashion is known as entity relationship model.

Ex: The company database wants to maintain the following information about their emp and department.
The emp (E_ID, E_Name, E_Sal, Desig, Ph_No), Dept (D_No, D_Name, Budget). Identify the key attributes

and the relationship among the entity is as follows
There are 2 conditions

1. Emp works in department

2. Fach department is managed by the employee

Draw a neat sketch diagram for the above information

E_ID E_Name @ D_No

Dep

- Additional features of ER model
The ER model consist of the following features

D_Nam

1. Key constrains 2. Participation constrains 3. Weak entities 4. Class hierarchy

5. Aggregation 6. Key constraint for ternary relationship

1. Key Constraints:

Consider the following ER - diagram given below

E_ID E_Name D_No D_Nam

Emp Dep

In the above ER diagram, there is a restriction that each department is managed by an employee

(Manager). This restriction is an example for the key constraints. The key constraints are represented

with an arrow in the diagram.

Participation constraints:
The participation is of 2 types
a. Total participation
b. Partial participation

Consider the ER diagram given above, in the ER diagram, the dept entity is totally participating
with the managers relationship. This participation is known as total participation.

If the participation is not total, then it is said to be partial. In the above ER diagram, the emp entity
is partially participating with the manages relationship. Hence, it is called as partial participation.

. Weak Entities:

A weak entity is an entity that does not contain a primary key. It is represented with double rectangle box

/’

E_Name
Emp Dependent ||

@

In the given example, dependent is a weak entity.

Consider the given ER diagram

Partial key or

m
o

. Class Hierarchy:

Sometimes it is common to represent entity into subclass using ‘IS A’ relationship. This concept is known
as a class hierarchy. The class hierarchy represents the inheritance concept where a super class may have
some sub classes. The class hierarchy is represented in 2 ways

a. Generalization b. Specialization

Hourly_Emps Contract_Emps

BN [V TIPS SO |
U TR SO |

[o YR

Specialization
Generalization

lr~_. . _ .t

a. Generalization:
Generalization is the process of finding some common properties of two sub classes having a
super class entity. In the above example, hourly emp, contract emp are generalized in emp.
b. Specialization:
The process of sub-dividing a super class entity into sub class entity is known as specialization.
In the above example, the super class entity emp is having sub class entities - hourly employee and
contract employee.
There are 2 constrains w.r.t generalization & specialization
i. Overlap Constraint:
The overlap constraint determines whether two subclass entities are allowed to have

common attributes of superclass.

ii. Covering Constraint:
Covering constraint determines whether the subclass entities include all the attributes of

super class.

5. Aggregation

|
|
|
|
Project !
|
|
|
|

In ER diagram, we represent relationship as an association among 2 entities. Sometimes we want
to represent relationship among relationships. This will be done using a concept known as Aggregation.
In the above example, the relationship set sponsors is associated with the relationship monitors.

The aggregation is represented by considering the relationship set sponsored among 2 entities,

departments, projects as an entity set. It is shown with a dotted box in the diagram.

- Features of Aggregation

Aggregation is used to express relationship among relationship

6. Key constraints for ternary relationship

Emp

Dep

Location

In the given ER diagram, an employee works in a department and in a single location. This

restriction for ternary relationship is represented with the key constraints using an arrow from employees

to work in relationship.

- Conceptual design with the ER Model

Conceptual design is the process of defining a high-level description of the data using ER model. There are

different design issues while designing conceptual design with ER model.

1. Entity vs Attribute

Sometimes an attribute of an entity set can be better represented as entities. Consider the ER diagram.

R &

Emp

2. Entity vs Relationship

Gy CEhame
Q’

Budge

Duration

Sometimes an object will be better expressed as an entity rather than a relation.

N
Cocation)

3. Binary vs Ternary
Sometimes a non - binary relationship can be expressed using distinct binary relations. Consider the

givenER diagram policies with ternary relation.

==

Emp Covers Dependen

=

Dependen

Emp

@ Beneficiar

- Policie

4. Aggregation vs Ternary

Sometimes an ER diagram with aggregation can be best expressed as ternary relation.

-

Dependen Monitor Project

@
&

Entity

Any thing that has an independent existence and about which we collect data. It is also known as entity type.

In ER modeling, notation for entity is given below.

Entity instance

Entity instance is a particular member of the entity type.
Example for entity instance : A particular employee
Regular Entity

An entity which has its own key attribute is a regular entity.
Example for regular entity : Employee.

Weak entity

An entity which depends on other entity for its existence and doesn't have any key attribute of its own is a weak

entity.

Example for a weak entity : In a parent/child relationship, a parent is considered as a strong entity and the child
is a weak entity.

In ER modeling, notation for weak entity is given below.

Attributes

Properties/characteristics which describe entities are called attributes.
In ER modeling, notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the attribute. For example, the
attribute day may take any value from the set {Monday, Tuesday ... Friday}. Hence this set can be termed as the
domain of the attribute day.

Key attribute

The attribute (or combination of attributes) which is unique for every entity instance is called key attribute.

E.g the employee_id of an employee, pan_card_number of a person etc.If the key attribute consists of two or
more attributes in combination, it is called a composite key.

In ER modeling, notation for key attribute is given below.

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple attribute.
Example for simple attribute : employee_id of an employee.
Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split into First_name, Middle_name, and
Last_name.

Single valued Attributes

If an attribute can take only a single value for each entity instance, it is a single valued attribute.

example for single valued attribute : age of a student. It can take only one value for a particular student.
Multi-valued Attributes

If an attribute can take more than one value for each entity instance, it is a multi-valued attribute. Multi-valued

example for multi valued attribute : telephone number of an employee, a particular employee may have multiple
telephone numbers.

In ER modeling, notation for multi-valued attribute is given below.

Stored Attribute

An attribute which need to be stored permanently is a stored attribute
Example for stored attribute : name of a student
Derived Attribute

An attribute which can be calculated or derived based on other attributes is a derived attribute.
Example for derived attribute : age of employee which can be calculated from date of birth and current date.

In ER modeling, notation for derived attribute is given below.

Attribute

Relationships

Associations between entities are called relationships

Example : An employee works for an organization. Here "works for" is a relation between the entities employee
and organization.

In ER modeling, notation for relationship is given below.

Relationship

However in ER Modeling, To connect a weak Entity with others, you should use a weak relationship notation as
given below

Degree of a Relationship

Degree of a relationship is the number of entity types involved. The n-ary relationship is the general form for
degree n. Special cases are unary, binary, and ternary ,where the degree is 1, 2, and 3, respectively.
Example for unary relationship : An employee ia a manager of another employee

Example for binary relationship : An employee works-for department.

Example for ternary relationship : customer purchase item from a shop keeper

Cardinality of a Relationship

Relationship cardinalities specify how many of each entity type is allowed. Relationships can have four possible
connectivities as given below.

1. One to one (1:1) relationship

2. One to many (1:N) relationship

3. Many to one (M:1) relationship

4. Many to many (M:N) relationship

The minimum and maximum values of this connectivity is called the cardinality of the relationship

Example for Cardinality = One-to-One (1:1)

Employee is assigned with a parking space.

Parking Space

Employee

One employee is assigned with only one parking space and one parking space is assigned to only one
employee. Hence itis a 1:1 relationship and cardinality is One-To-One (1:1)

In ER modeling, this can be mentioned using notations as given below

Assigned

With Parking Space

Example for Cardinality — One-to-Many (1:N)

Organization has employees

Organization Employee

One organization can have many employees , but one employee works in only one organization. Hence it is a
1:N relationship and cardinality is One-To-Many (1:N)

In ER modeling, this can be mentioned using notations as given below

Organization Employee

Example for Cardinality - Many-to-One (M :1)

Itis the reverse of the One to Many relationship. employee works in organization

Employee organization

One employee works in only one organization But one organization can have many employees. Hence it is a
M:1 relationship and cardinality is Many-to-One (M :1)

In ER modeling, this can be mentioned using notations as given below.

Cardinality - Many-to-Many (M:N)

Students enrolls for courses

Course

Student

One student can enroll for many courses and one course can be enrolled by many students. Hence it is a M:N
relationship and cardinality is Many-to-Many (M:N)

In ER modeling, this can be mentioned using notations as given below

Student Course
M N

Relationship Participation

1. Total

In total participation, every entity instance will be connected through the relationship to another instance of the
other participating entity types

2. Partial
Example for relationship participation
Consider the relationship - Employee is head of the department.

Here all employees will not be the head of the department. Only one employee will be the head of the
department. In other words, only few instances of employee entity participate in the above relationship. So
employee entity's participation is partial in the said relationship.

However each department will be headed by some employee. So department entity's participation is total in the
said relationship.

Advantages and Disadvantages of ER Modeling (Merits and Demerits of ER
Modeling)JAdvantages

1. ER Modeling is simple and easily understandable. It is represented in business users language and
it can be understood by non-technical specialist.

2. Intuitive and helps in Physical Database creation.

3. Can be generalized and specialized based on needs.
4. Can help in database design.

5. Gives a higher level description of the system.
Disadvantages

1. Physical design derived from E-R Model may have some amount of ambiguities or inconsistency.
2. Sometime diagrams may lead to misinterpretations

UNIT?2

UNIT - Il Introduction to
the Relational Model:
Integrity constraint over
relations, enforcing
integrity constraints,
querying relational data,
logical data base design,
introduction to views,
destroying/altering tables
and views. Relational
Algebra, Tuple relational
Calculus, Domain
relational calculus.

- Relational Model
The relational model is the popular data model used in logical design of the database. The main construct for

relational model is “Relations”. Each relation is represented in 2 ways:
1. Relational Schema 2. Relational Instance

Consider a relation student
Fields/Attributes/Columns

PAANN

R_No | Name | Age | Course
Rows/ L a 20 | LSES — Domain
Tuple 2. b 20 | ECE

3. c 19 | Civil

Student Table

1. The relational schema for the given relation is student (R_No, Name, Age, Course)

2. The relational instance for the given relation is 3 rows/tuples.

- Basic terminology

1. Relation:

A relation is also known as a table.

2. Attribute

The column of a reaction is known as attributes or fields.

3. Domain
The type of values allowed for an attribute is known as domain.

4. Degree of relation
The no. of attributes of a relation is known as degree of relation.

5. Cardinality of a relation
The no. of records of a relation is known as cardinality of a relation

In given table, cardinality of students = 3

- Integrity constraints over relations
Integrity constraints (IC) is a condition specify on the database schema that restrict certain data to be stored
in the database instance. The integrity constraints are specified and enforced in that it allows only legal
instance to be stored in the database.

- Legal instance

A legal instance is an instance that satisfies all the IC’s specified on the database schema.

- Key constrains
A key constraint is a statement that a minimal set of attributes uniquely identify a record in a relation.

- Types of key constraints:

Candidate key 2. Primary key 3. Super key 4. Alternate key or secondary key
. Foreign key 6. Composite key

Candidate key:
Candidate key is a minimal set of attributes that uniquely identifies a record in a relation. Consider a
following relation

S_No | S_Name | Phone | Age S_No | C_No | Course
1|a 9999 | 20 1 10 | IT
2|b 9881 | 19 2 20 | CSE

Student Student_Course

From student relation, the candidate key may be
a) (S_No, Phone) - CK
b) (S_No, S_Name, Phone) - CK

A relation may contain any no. of candidate key. A candidate key is simply called as ‘Key’.

. Primary key

A primary key is a column or combination of columns that uniquely identifies a record in a relation

Condition for primary key
i) It will not allow duplicate values.

ii) It will not accept null values.

A relation may contain any no. of candidate keys out of which one is primary key. Therefore, a relation
contains a single primary key.
Ex: Student - S_No - PK

Student_Course - S_No, C_No)

. Composite key
When a primary key is defines using a combination of columns. It is known as composite primary key
Ex: Student I S_No, Phone

Student_Course @ S_No, C_No

. Super key
The set of attributes which uniquely identifies a record in a relation is known as a super key. Adding O
or more attributes to candidate key will generate a super key.
Ex: Student P (S_No, S_Name)
(S_No, S_Name, Age)

. Alternate Key (Secondary key)
The candidate key other than primary key is known as alternate key.
Ex:
i) Student B (S_No, S_Name) - candidate key
Alternate: S_Name
ii) (S_No, S_Name, Phone) - CK
Alternate @ (S_Name, Phone)

. Foreign key (Referential key)

Sometimes, the information in one table is related to the information in another table. To establish the
relation among the tables, we use a constraint known as foreign key. It is also known as “The referential
key”. It establishes the parent - child relationship among the tables.

Ex: In the above relations, Student is an original & Student_Course is a referential relation.

- General constraints

1. Table constraints 2. Assertions

1. Table constraints

These constraints are related to a single table. This constraint is defined in the table definition.

2. Assertion

These are the constraints related to multiple tables, the definition of assertions constraints is separated

from table constraints

Super key

CK

Composit
e

Relation among keys

- Enforcing integrity constraints
Intensity constraints are the rules or conditions specified on the tables and it will restrict incorrect data to be
inserted into the table. The integrity constraints are specified and enforced at different times
1. During defining the database schema (Table definition), the integrity constraints are specified.
2. While the database application is running different integrity constraints will be enforced which causes
due to the violations.

The operations such as insertion, deletion and updation must be rejected if they found to be violating the
constraints specified under table.

Consider the following relation employee, department
E_No | E_Name | E_Sal | Age | D_No
1 | Ravi 1000 | 25 10

2 | Mohan 2000 | 26 20

D No | D Name | Location
10 | IT Hyd1
20 | CSE Hyd2

Ex1: Consider insertion of new record into employee table
a. insertinto emp values (3, ‘aa’, 3000, 25, 20);
The insertion of this record is accepted as it satisfies the constraints specified on the table.

E No | E_ Name | E_Sal | Age | D_No
1 | Ravi 1000 | 25 10
2 | Mohan 2000 | 26 20
3| aa 3000 | 25 20

b. insert into emp values (2, ‘bb’, 4000, 21, 10);

This insertion will be rejected because the primary key is violated.
Ex2:
a. insertinto dept values (30, ‘Civil’, ‘Hyd3’);

The insertion of this record into dept table is accepted as it satisfies the constraints specified on the

table.
D_No | D_Name | Location
10 | IT Hyd1
20 | CSE Hyd2

b. insert into dept values (40, 2000, ‘Hyd3’);
The insertion of second record into dept is rejected because it generates the violation of domain
constraint.
Ex3: insert into emp values (4, ‘bb’, 4000, 21, 50);
The insertion of this record into emp table is rejected because it causes violation of foreign key constraint.

Ex4: delete from dept where D_No=20;

The delete operation under dept table is rejected because it violates foreign key constraints.

Logical Database Design

Logical database design is the process of mapping or translating the conceptual design (ER diagrams) into
relational model (relation or table). The logical database design has several concepts which include
Mapping of entity set into tables

Mapping relational sets (without constraints) into table

Mapping relational sets with participation constraints into table

Mapping relational sets with key constraints into table

Mapping weak entity into table

Mapping weak class into table

DI L T

Mapping ER diagram with aggregation into table

Emp

Procedure to map entity set into table

=

Mapping of entity set into tables

Consider an entity set emp

a. Create table for an entity
b. The attribute of an entity will become attributes of a table

c. Key attribute of entity will become primary key for the table
EMP Relation
E _No | E_Name | E_Sal | E_Desig

create table Emp (E_No int, E_Name char (25), E_Sal int, E_Desig char (25), primary key (E_No));

Mapping the relationship set (without constraints) into table

Consider the ER diagram given

E_No Gince) D_No

Mapping procedure

a. Create a table for relationship set (Works_in).

b. Add all primary key of entity set as attributes of the table (E_No, D_No).

c. Add the own attributes of relationship as the attribute of the table (Since).
d. Declare a primary key using all the key fields of entity set.

e. Declare a foreign key for all the field of entity set.

Mapping relationship set with key constraint into table
Consider the ER diagram

am oo
Emp Dep

Mapping procedure

a. Create a table for the relationship set (manages).

b. Add all the key attributes of entity set to attributes of table

¢. Add own attributes of relationship set to the table

d. Declare a primary key using the key field from source entity (D_No).

e. Declare a foreign key for key fields of source & target entity (D_No, E_No).

Mapping relationship set with participation of constraints

I I
Emp —L@¢ Dep
E Sal O
= budge

Mapping procedure

a. Create tables from source and target entity as usual

b. Add every key field of target entity in the source entity.
Declare these field as not null.
Declare these keys as foreign key.
create table Dept_Manager (D_No int, E_No int not null, primary key (D_No), foreign key (E_No)
references Emp (E_No)).

Translation weak entity into tables
Emp Dependen

a. Create a table for policy relationship (Dependent_policy) total participation.

Mapping procedure

b. Include the key attribute of employee and partial key of the dependent entity set along with its own
attributes.
c. Declare a primary key using key attribute and partial key combination.

d. Declare a foreign key for target entity set.
Translating class hierarchies into table

@ e

Emp

Hourly wage

Hourly_Emp Contract_Emp

Hourly_worked

Translating class hierarchy to tables follows 2 approaches
Method I

a. Emp (E_No, E_Name, E_Sal)

b. Hourly_emp (Hourly_wages, Hourly_worked)

c. Contract_emp (Contract_ID)

Method II
a. Hourly emp (E_No, E_Name, E_Sal, Hourly_wages, Hourly_worked)
b. Contract_emp (E_No, E_Name, E_Sal, Contract_ID)

Translating ER Diagram with aggregation into table

1
1
1
1
1
1
i
| Project !
1
1
1
1
1
1

create table monitors (E_No int, D_No int, P_ID int, primary key (E_No, D_No, P_ID), foreign key (E_No)
references Emp (E_No), foreign key (D_No) references Dept (D_No), foreign key
(P_ID) references Project (P_ID));

- Introduction to views

Sometimes, the users of the database are interested to work with only part of the data from the

database. This is provided by a concept known as views.

A view is an alternate way of representing data present in one or more tables. A view is a virtual table

or logical table or derived table whose data is derived from the original table. A view can include some columns

or all columns from one or more tables.

- Working with views

- Syntax for creating views

>

V V V V

Ex:

create view viewname (fieldi, field2, ..., fieldn)
as

select

from tablei, table2, ..., tablen

where condition;

Create an Emp_DeptV using the relation employee, department

create table Emp (E_No int, E_Name char (25), E_Sal int, D_No int, primary key (E_No), foreign key
(D_No) references Dept (D_No));

create table Dept (D_No int, D_Name char (25), Location char (25), primary key (D_No));

insert into Dept values (10, ‘IT’, ‘Hyd?’), (20, ‘CSE’, ‘Hyd2"), (10, ‘EF’, ‘Hyd3");

insert into Emp values (1, ‘aa’, 1000, 10), (2, ‘bb’, 2000, 20), (3, ‘cc’, 3000, 10);

E_No | E_Name | E_Sal | D_No D_No | D_Name | Location
1] aa 1000 10 10 | IT Hyd1
2 | bb 2000 20 20 | CSE Hyd2
3|cc 3000 10 30 | EE Hyd3

Creating view: Emp_DeptV
> create view Emp_DeptV

> as

> select e1. E_No, e1. E_Name, d1. D_No, d1. D_Name
> from Emp e1, Dept d1
> where e1. D_No=d1.D_No;
> desc Emp_DeptV;
Field Type Null | Key | Default | Extra
E_No int(11) | NO NULL
E_Name | char (25) | YES NULL
D No |int(11) |NO NULL
D_Name | char (25) | YES NULL
> select * from Emp_DeptV
E_No | E_Name | D_No | D_Name

1| aa 10 | IT

2 | bb 20 | CSE

3| cc 30 | EE

View are dynamic in nature that mean the modifications performed on views is reflected back on original
table and vice versa
ii. Updating view

> update Emp_DeptV set E_Name = ‘Ankit’ where D_No = 20;

> select * from Emp_DeptV;

E_No | E_Name | D_No | D_Name
1| aa 10 | IT
2 | Ankit 20 | CSE
3| cc 30 | EE

> select * from Emp;

E_No | E_Name | E_Sal | D_No
1| aa 1000 10
2 | Ankit 2000 20
3| cc 3000 10

> update Dept set D_Name = ‘Mech’ where D_No = 30;

> select * from Dept;

D_No | D_Name | Location
10 | IT Hyd1
20 | CSE Hyd2
30 | Mech Hyd3

> select * from Emp_DeptV;

E_No | E_Name | D_No | D_Name
1| aa 10 | IT
2 | Ankit 20 | CSE
3| cc 30 | Mech

iii. Altering view (adding a column) - E_Sal

> alter view Emp_DeptV
> as
> select e1. E_No, e1. E_Name, e1. E_Sal, di1. D_No, d1. D_Name
> from Emp e1, Dept d1
> where e1. D_No = d1. D_No;
> desc Emp_DeptV;
Field Type Null | Key | Default | Extra
E_No int(11) | NO NULL
E_Name | char (25) | YES NULL
E_Sal int (11) YES NULL
D_No int (11) NO NULL
D_Name | char (25) | YES NULL
> select * from Emp_DeptV;
E_No | E_Name | E_Sal | D_No | D_Name
1| aa 1000 10 | IT
2 | Ankit 2000 20 | CSE
3| cc 3000 30 | Mech

iv. Drop view
Syntax: drop view viewname;

- Advantages of Views:

1.

Views provide security that means the users are working with the past of the database rather than using
the entire database. Therefore, the original table will not be disturbed and hence secure from unauthorized
users.

View provide logical data independence in which data and relationship among the data is maintained even
though modification at the external schema has been done

- Updateable views:

Whenever a view is updated, the result should be reflected in the original table and vice versa but all updation

are not allowed on views.

An updatable view is a view which is derived from a single table and it should hold the following conditions:

1.

Aggregate functions should not be used in query.

2. Distinct keyword should not be allowed.
3. Group by and having clause will not be allowed.
- Relational Model

Relational model is a popular data model used for logical database design. There are 2 formal query language

associated with the relational model.

1.

1.

Relational Algebra 2. Relational Calculus
Relational Algebra

Relational algebra is a procedural query language which uses collection of operators to write different
queries.

Relational Calculus

Relational Calculus is a non - procedural query language which is based on predicate calculus.

- Relational Algebra
1. Itisa procedural query language (the user has to specify what data he require along with the procedure).
2. The relational algebra queries are a combination of operators.
3. [Each operator takes one or more relations as arguments and returns a relation as result or output.
4. It uses the operation like relational operators (<, >, <=, >=, =, I=) and logical connectives (and, or, not)

to write various composite and complex queries.

- Fundamental operations of relational algebra

1. Selection (6) 2. Projection (1t) 3. Set operations (Union, Intersection, Difference)
4. Rename 5. Division 6. Joins

1. Selection (o)
a. Itisa unary operator.
b. It is represented with the symbol o.
c. Itisused to select the subset of tuples from a relation that matches a given condition.

Syntax: O<condition_statement>relation_name

Condition statement has 2 formats
a. Operand operator constant
b. Operand operator operand

Consider the 2 relation Emp, Manager to demonstrate relation algebra operator.

E_No | E_Name | E_Sal ID | Name | D_No
1] aa 1000 1| Raj 10
2 | bb 2500 2| bb 20
3| cc 4500 3| aa 30
4| dd 6000

//display Emp where Sal is greater than
2000Ex: O€_sal>2000EMp

2 | bb | 25000
3 | cc | 45000

4 |dd| 6000

2. Projection (1)

a. [tisa unary operator.
b. It is represented by symbol 7.

c. Itis used to select the subset of attributes from the given relation.

Syntax: Tcolname 1, 2,..Table_Name

//display the names and salaries of employee from Emp

relationEx1: TT_Name, £_sal EMp

E_Name | E_Sal

aa 1000
bb 25000
cc 45000
dd 6000

//Display names of all employees where salary is greater than

2000EX1: TTg_Name (O-E_Sa|>2000) Emp

E_Name | E_Sal

aa 1000
bb 25000
cc 45000
dd 6000

3. Setoperations (Union, Intersection, Difference)
a. Union (V)
TTE_Name EMP U TTname Manager

E_Name E_Name
aa aa
bb bb
cc cc
dd dd
Raj Raj
bb
aa
cc
Union Union All

b. Intersection (N)

TTE Name EMP N TTname Manager

E_Name

aa

c. Difference (-)

TTE_Name Emp — TTName Manager

E_Name

dd

Raj

4. Rename
Rename operator is used to give the alias name or temporary name to a relation as well as to the attributes
of a relation. It is denoted with the symbol p-rho which is a Greek letter.
Syntax: px® R - Relation
x — Alias/temporary name
Px (A1AzA; ... Ay) ® R - Relation
AiALA; ... An: New name of attribute

x - Alias name for relation

5. Division

The division operator is used in special kind of queries that include the phase for all. It is denoted with the

symbol (/).
Consider 2 relations R, S. R contains attributes (a, b) and S contains attribute (b).
R a,b
_isgivenas()=a
N b

For all values of A in relation R and for each value of B in relation S there is a tuple (A, B) in R.
Ex: Consider Relation table
A=1]S_No|P_No Bi1=| P_No B2= | P_No B3 = | P_No
s1| p1 p2 p2 p1
S1 | p2 P4 p2
s1| p3 P4

s1 | p4
s2 | p1

s2 | p2
s3 | p2
s4 | p2
S4 | p4

A/B1=| S_No A/B2= S_No A/B3=| S_No

S1 S1 S1

S2 sS4
S3
sS4

6. Joins
Join operation is used to combine 2 relations like cross product but finally remove the duplicates. There
are 3 types of joins
a. Conditional Joins (<c) b. EquiJoins (¥-) c. Natural Joins (x)

Consider the relations Dept, Project to demonstrate joins

D_Name | D_No D_No | P_No | P_Name
IT 10 10 1 | Sales
CSE 20 20 2 | HR
Mech 30 Project

Dept

a. Conditional Joins (X¢)
It returns a relation that contain a set of rows from cross product (X) such that each row satisfies a
given condition. It is denoted by Xc.
Consider 2 relations R1, R2. The conditional join of R1, R2 is given below
R1 ®¢cR2 = o¢ (R1 X R2)
Ex: Find the conditional join of relation dept, projects where Dept. D_No < Project. D_No
Dept X Project = a¢ (Dept x Project)
Step 1: Dept x Projects

D_Name | D_No | D_No | P_No | P_Name
IT 10 10 1| Sales

IT 10 10 2 | HR

CSE 20 20 1| Sales
CSE 20 20 2 | HR
Mech 30 30 1| Sales
Mech 30 30 2 | HR

Step 2: o¢ (Dept x Project)
O Dept. D_No<Project. D_No (Dept X PI"OjE‘Ct)

D Name | D_No | D_No | P_No | P_Name
IT 10 20 2 | HR

b. Equi Joins (x-)
It is similar to conditional join except the condition used to select the record. Here we use equality
operator to join 2 relations. The result of equi join contain the attributes of relation A followed by
relation B excluding duplicate attributes.
R1 M=R2 = 0= (R1 X R2)
Ex: Consider same Dept and Project relation
Then, Dept x_ Project = o= (Dept x Project)
Step 1: Dept x Project

D_Name | D_No | D_No | P_No | P_Name
IT 10 10 1| Sales

IT 10 10 2 | HR

CSE 20 20 1| Sales
CSE 20 20 2 | HR
Mech 30 30 1| Sales
Mech 30 30 2 | HR

Step 2: o= (Dept x Project)

O'Dept. D_No=Project. D_No (D€pt X Project)
D_Name | D_No | D_No | P_No | P_Name
IT 10 10 1 | Sales
CSE 20 20 2 | HR

¢. Natural Joins ()
It is a special case of equi join in which the equality conditions are specified on all columns. It doesn’t

have 2 columns with the same name.

Ex: Consider the relations Boats, Sailors & Reserve table to demonstrate relational algebra.

S_ID

S_Name

S_Age

Rating

10
20

30

aa
bb
cc

20
21

23

1
2

4

Sailors

S_ID

B_ID

Day

10
20

30

101

102

102

10/09/18
10/09/18
09/09/18

Reserves

Q1: Find names of Sailors who have reserved boat 102

7T s Name ((0 B 1D = 102 Reserves) X Sailors)

\

S_Name

S_ID | B_ID

Days

bb

cC

20
30

102
102

10/09/18
09/09/18

Q2: Find name of Sailors who have reserved a red boat

T s Name ((O colour = ‘Red’ BOAts) 4 Reserves X Sailors)

/

Empty Set

\

B_ID

B_Name

Colour

103

Interlake

Red

Empty set

Q3: Find the colour of the Boat reserved by bb

T colour ((O s Name = bb’ Sailors) X Reserves X Boats)

\

J

N

B_ID

B_Name

Colour

101
102

103

Interlake
Duster
Interlake

Blue
Green
Red

Boats

Colour

S_ID

S Name

S_Age

Rating

S_ID

B_ID

Day

Green

20 | bb

21

2 20

102

Q4: Find names of Sailors who have reserved a red or a green boat

10/09/18

T s Name ((O Colour = ‘Red’ BOAtS 0 0 colour = Gree’ BOAts) X4 Reserves ™ Sailors)

S_Name B _ID | B_Name | Colour S_ID | B_ID | Day
bb 102 | Duster Green 20| 102 | 10/09/18
103 | Interlake | Red 30| 102 | 09/09/18

Q5: Find names of Sailors who have reserved at least one boat

T s_name (Sailors X Reserves)

- Relational Calculus
Relational calculus is a non-procedural query language or declarative language where the user has to specify
what he require without worrying about the procedure. Relational calculus is of 2 types.
1. Tuple Relational Calculus (TRC) 2. Domain Relational Calculus (DRC)

1.

Tuple Relational Calculus

Tuple Relational calculus uses tuples as the values to the variables. Each tuple in TRC is expressed by a

TRC expression. A TRC expression has the following form.
Syntax:
a. {tiAy, tA,, ..., thAn| Q}
ty, ta, ..., tn — tuple variable
Ay, A, ..., An - Attribute of tuple variable
Q - Condition/Formula
b. t] f(t)
t — Tuple variable

f(t) - Formula involving Tuple variable t

A TRC uses tuples from relational database by writing/using predicate calculus expression.

Note: TRC is shortly influenced by SQL.

Consider a student relation given below

S_No | S_Name | D_No | Gender
1| aa 10 | Male
2 | bb 20 | Female
3| cc 20 | Female
Student

Q1: Find S_No, S_Name from D_No = 20
{t. S_No, t. S_Name| Student(t) @ t. D_No = 20}
S_No | S_Name
2| bb

3| cc

Q2: Find the names of male students in D_No = 20
{t. S_Name| Student(t) I t. D_No = 201 t. Gender = ‘Male’}
S_Name

ccC

Consider the following relation: Depositor, Borrower, Loans, Customer, Account, Branch to demolish TRC

queries
C_Name Account_No C_Name Loan_No
Ravi 1001 Ravi 100
Raju 1002 Raju 101
Depositor Anil 102
Borrower
Loan_No B_Name Amount C_Name | Address
100 | Kompali 1000 Ravi Kompali
101 | Kachiguda 2000 Ramu Kachiguda
102 | Nagole 3000 Anil Nagole
103 | Dilshuknagar 4500 Ankit Dilshuknagar

Loan Customer

Account_No | B_Name Balance B Name | City
1001 | Kompali 1000 Kompali | Hyderabad
1002 | Kachiguda 2500 Kachiguda | Hyderabad
1003 | Nagole 4000 Nagole Hyderabad
Account Branch

Q1: Find loan details of loan amount > 2000
{t.| Loan(t) # t. Amount>2000}

Loan_No | B_Name Amount
102 | Nagole 3000
103 | Dilshuknagar 4500

Q2: Find the names of all customers who have a loan from the branch ‘Kachiguda’
{b. C_Name| Borrower(t) I L(Loan(L)# L. Loan_No = b. Loan_No I L. B_Name = ‘Kachiguda’}
Q3: Find the customers who have account or loan or both
{t| Customer(t) d(Depositor(d) # d. C_Name = t. C_Name) b(Borrower(d) # b. C_Name = t.
C_Name)

. Domain Relational Calculus

A DRC will operate at the domain of a variable. It uses the domain values for the variables that DRC is
strongly influenced by QBE (Query By Example).
A DRC query will have the following form

Syntax: {X1, X2, X3, ..., Xn| Q (X1, X2, X3, ..., Xn)}
N J U J

Y

Formula or condition

Domain Variable

Consider the relation Emp, Dept as given

A B C D E F
F_Name | L_Name | E_ID | Salary | D_No Address
Raj Kumar 1 1000 10 | Kotapet
Anil M 2 2000 20 | Abids
Ravi Verma 3 4000 10 | Dilshuknagar

X Y Z
D _No | D_Name | M_ID
10 IT 1
20 HR 4
40 CSE 2

Q1: Find the name and address of employees whose E_Name = ‘Raj Kumar’
{ABF| I CIDIEEmp (ABCDEF)I (A =‘Raj’)l (B = ‘Kumar’)}
Or
{ABF| Emp (ABCDEF) I (A = ‘Raj’) I (B = ‘Kumar’)}
Or
{ABF| Emp (‘Raj’, ‘Kumar’, C, D, E, F)}

Q2: Find names of employees working in D_No = 10
{AB| Emp (ABCDEF) B E = 10}

Q3: Find names of employees who are not managers

{AB| I C Emp (ABCDEF) 1 ~ (1 Z (Dept (XYZ) @ C = Z))}

Q4: Find names of employees working in HR department
{AB| [E Emp (ABCDEF) I X (Dept (XYZ)[E =21 Y = ‘HR)}

UNIT 3

- UNIT - III SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION,
INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values,
complex integrity constraints in SQL, triggers and active data bases. Schema
Refinement: Problems caused by redundancy, decompositions, problems related to
decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD
normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH
normal form, FIFTH normal form

- Forms of basic SQL Query
- Query:

A query is a question which will retrieve data from the tables or database. The result of a query is a
relation or tables.

The relational database consists of many relations where each relation has a unique name. To
interact with the database, we are a query language known as SQL (Structured Query Language). The SQL
enables to write different queries and retrieve data from the tables.

The basic SQL query consists of the following 3 clauses:

Select Clause 2. From Clause 3. Where Clause

Select clause
The select clause will provide the attributes to be displayed in the resultant table.

. From clause

The from clause indicates the table or tables from which attributes are selected

. Where clause

The where clause indicates the condition based on which data is selected from the table.

- Examples of basic SQL queries

1.

Consider the following schema Employee (E_ID, E_Name, E_Sal, E_Age, Ph_No, D_No)
Department (D_No, D_Name, Location, M_ID)

Query 1: Find the names of all the employees who are working in the HR department.

Query 2: Find E_ID, E_Name, D_Name from Employee, Department where D_No = 2o0.

Query 3: List all the information about employees whose E_Sal >= 1500.

Employee Table ~FK
E_ID | E_Name | E_Sal | E_Age | Ph_No | D_No
1|a 1000 20| 9599 10
2|b 1600 21| 8658 20
3|c 3000 19| 9988 30
Department Table
D_No | D_Name | Location | M_ID
10 | IT Hyd1 1001
20 | HR Hyd2 1002
30 | CSE Hyd3 1003
40 | EE Hyd4 1004
Query 1: select e1. E_Name from Employee e1 Department d1 where e1. D_No = e2. D_No and d1. D_Name
= ‘HR’;
E_Name
b

Query 2: select E_ID, E_Name, D_Name, from Employee e1 Department d1 where e1. D_No = d1. D_No
and di1. D_No = 20;
E_ID | E_Name | D_Name
2|b HR

Query 3: select * from Employee where E_Sal >= 1500;
E ID | E_Name | E_Sal | Age | Ph_No | D_No
2| B 2000 | 21| 8658 20

3|c 3000 | 19 | 9988 30

- Aggregate operators (Function)

Aggregate operators are the operators which work on set of values and return a single value as the output.

The most commonly used aggregate operators include:

1.

count() 2. max() 3. min() 4. sum() 5. avg()

Consider a sample relation emp to demonstrate the aggregate functions.
E_No | E_ Name | E_Sal | Age | Desig

1| Ravi 1000 | 20 | IT

2 | Raj 2000 | 19 | CSE
3 | Arun 2500 | 21 |IT

4 | Venkat 3000 | 20 | ME

5 | Raj 3500 | 19 | HR

1. count (): This function will return the no. of records from a table matching the condition.
Syntax: select count (colname) from Table_Name;
Ex:
> select count (*) from Emp;

Count

C

> select count (distinct E_Name) from Emp;

Count

A
> select count (*) from Emp where E_Sal>2500;

Count

2
> select count (*) as No_of_Records from Emp

No_of Records
5

2. max (): This function returns max values.
Syntax: select max (colname) from Table_Name;
Ex:

> select max (E_Sal) from Emp;
E_Sal
3500

> select max (E_Sal) from Emp where age>19;
E_Sal
3000

3. min (): This function returns min values.
Syntax: select min (colname) from Table_Name;
Ex:

> select min (Age) from Emp;

Age
19

> select min (E_Sal) from Emp where age<2o0;
E_Sal
2000

4. sum (): This function returns sum values.

Syntax: select sum (colname) from Table_Name;
Ex:

> select sum (E_Sal) from Emp;
E_Sal
12000

> select sum (E_Sal) from Emp where age>19;
E_Sal
6500

5. Avg (): This function returns average of a value of a column.
Syntax: select Avg (colname) from Table_Name;
Ex:
> select Avg (E_Sal) from Emp;
E_Sal
2400
> select Avg (E_Sal) from Emp where age>19;
E_Sal
216

- Null Values:
A null value is a value which is unknown or unavailable. Sometimes, the users are in such cases, DBMS
will treat those unknown value or unavailable. A null value is not equal to zero or space.
Consider a sample relation employee to demonstrate null value.
E_No | E_Name | E_Sal | D_No

1| aa 1000 10

2| bb 2000 20

1. insert into Emp values (3, ‘cc’, 30);
This insertion will be rejected because no. of columns not match
2. insert into Emp values (3, ‘cc’, NULL, 30);
insert into Emp values (4, NULL, 3500, 20);
E_No | E_Name | E_Sal | D_No

1| aa 1000 10
bb 2000 20
cC NULL 30

W N

NULL 3500 20

- Comparing null values
1. Generally, for comparison statements, we use two valued logic (true or false) as the result.
2. When comparing NULL values with the actual values, the two valued logic will not be used. Hence, we

require a three-value logic (true false and unknown) for the result.

- Logical connectives AND, OR, NOT with null values
The logical connectives AND, OR, NOT with null values must be used with a 3-valued logic i.e. True, false

unknown.

- Disallowing/Restricting null values
There are 2 ways to disallow or restrict null values to be inserted in the table
1. Declare a column or columns as primary key.
2. Declare a column or columns as not NULL.
Ex: create table Emp (E_No int primary key, E_Name char (25) not null, E_Sal int not null);

Nested Queries & Co - related Nested Queries

1. Nested Query
A query inside another query is known as a sub-query. A collection of sub-queries will form Nested sub-
query. In nested sub-queries, the inner query will be evaluated.

Syntax: select colname from Table_Na me}

where colname operates Outer query/Main query

(select colname from Table_Name where condition); // Inner query/Sub query

S_ID | S_Name | S_Age C_ID | C_Name
So1 | aa 20 Co1 | ADS
So2 | bb 19 Coz2 | DBMS
So3 | cc 19 Co3 | JAVA
So4 | dd 22 Course
Student

S ID | C_ID

So1 Co1

So2 Coz2

So3 Co3

So4 Co2

Student_Course

Q1: Find S_ID of students who enrolled course ADS or DBMS
Ans: Inner Query:
> select C_ID from Course where
> C_Name = ‘ADS’ or C_Name = ‘DBMS’;
Cc_ID
co1

fab-Ne

Main Query:
> select S_ID from Student_Course where C_ID in

> (select C_ID from Course where C_Name = ‘ADS’ or C_Name = ‘DBMS’);

S_ID

So1

So2

(JaVi]

Q2: Find the S_Name of students who enrolled the course DBMS or JAVA
Ans:
> select S_Name from Students where S_ID in (select S_ID from Student_Course where
C_ID in (select C_ID from Course where C_Name = ‘DBMS’ or C_Name = ‘JAVA"));

Co - related Nested Query

If the sub-query (inner query) is evaluated repeatedly based on the result of outer query such queries are
known as co - related sub - queries. Here, outer query will be executed first based on which the inner
query will be evaluated repeatedly. For co - related sub query, we use ‘exist’ comparison operator rather

than ‘in’ operator.

- Triggers and active database

1. Triggers
a. A trigger is a store procedure i.e. invoked or generated automatically by the DBMS whenever the
database is updated or modified. Triggers are generally automatically as a response to the change
made on the database.
b. Triggers are managed by database administrator. The general format of trigger consists of the
following
i. Anevent ii. A condition iii.An action
i. The event describes the operation performed on the database which leads to activation of trigger
Ex: insert, update, delete
ii. The condition specifies whether an action should be performed or not. If the condition is true, the
action part will be executed and if the condition is false, the action will not be performed.
iii. The action specifies the response to be taken for the activation of a trigger. Action is the collection
of statement executed as part of trigger activation.
- Types of triggers

a. Before triggers

b.

Before triggers are invoked before an operation performed (insert, update, delete).

After triggers

These are invoked after an operation is performed (insert, update, delete).

Row-level triggers
It is invoked for each record inserted by the user

Statement level triggers
These triggers are invoked for each statement consist of multiple rows. Hence, it is called statement

level trigger.

- Creation of triggers

Syntax:
> create trigger trigger name
> trigger time trigger event
> on Table Name
> Dbefore/after
> insert/delete/update
> for each row
> begin
{
//Set of SQL statements
¥
> end
- Working with triggers
Consider the following relation: User, User_History to demonstrate triggers
ID | Name | Age | Weight | Address
1| aa 20 65 | Hyd1
2| bb 19 60 | Hyd2
3| cc 22 55 | Hyd3
4| dd 21 62 | Hyd4

Command Type Keyword
Insert Before/After New
Update | Before/After | New/Old
Delete Before/After Old

Ex1: //Consider a trigger: update trigger

delimiter $$

create Alter_Update_trigger

after update on Users

for each row

begin

insert into User_History (ID, Name, Age, Weight, Address) values (old. ID, old. Name, old. Age, old.
Weight, old. Address);

end $%

V V V V V V

delimiter;
update users set Name = ‘Anil’ where ID = 1;

select * from Users;

V V V V V

select * from User_History;

ID | Name | Age | Weight | Address
1| Anil 20 65 | Hyd1
User_History

Ex2: //Create a trigger After_Insert

V V. V V vV vV V V V V V

delimiter $$

create After Insert trigger

after insert on Users

for each row

begin

insert into User_History values (new. ID, new. Name, new. Age, new. Weight, new. Address);
end $$

delimiter;

insert into Users values (5, ‘Ravi’, 20, 65, ‘Hyds’);

select * from Users;

select * from User_History;

ID | Name | Age | Weight | Address
5 | Ravi 20 65 | Hyds

User_History

Ex3: //Create a trigger Before_Delete

V V. vV V vV VvV V V V V V

Delimiter $$

Create Before Delete_trigger

Before delete on Users

for each row

begin

insert into User_History values (old. ID, old. Name, old. Age, old. Weight, old. Address);
end $$

delimiter;

delete from Users from ID = 2;

select * from Users;

select * from User_History;

ID | Name | Age | Weight | Address
2| bb 19 60 | Hyd2
User_History

- Applications of triggers

a.
b.
C.
d.

Triggers will alert the users about unusual events.
It helps to enforce some business rules.
It validates the data even before updation or deletion or insertion.

Triggers will generate a log of events to support auditing and security checks.

- Limitation of triggers

a.

b.

Triggers increase overhead under system because it is called for every event like insert, update & delete
this causes makes the system to run slow.

It is difficult to give triggers compared to other database objects such as indexes.

2. Active database

a. A database that contain a set of associated triggers is known as an active database.
b. A database that has an ability to immediately react to the events occurring inside as well as outside of
the system is called an active database.

c. The ability to
respond
external events
is called active

behaviour.
d. The active
behaviour is

based on the
rules known as
ECA (Event
Condition
Action) rules.

- Designing active
database
Designing an active
database is very
difficult task because
sometimes it
contains recursive
triggers. The
activation of such
long chain of triggers
and the predictable
order in which DBMS
will process the
activated triggers
which is very
difficult to

understand.

- Complex Integrity
Constraints (IC’s)
in SQL
The complex integrity

constraints in SQL is
represented in 3 ways.

1. IC’s over a single
relation (table
constraint)

3. IC’s over multiple
relations (Assertion)

1. IC’s over a single
relation (table
constraint)

The table constraint
is a constraint i.e.

defined for a single relation it uses check constraint.
Ex:
> create table Sailors (S_ID int not null primary
key, S_Name char (15), S_Age int, check (S_ID
>=1and S_ID <= 10));
> insert into Sailors values (11, ‘aa’, 20);

This insertion will be rejected because check constraint is
violated.

Note: Table constraints (check constraint) cannot be
implemented in MySQL.

Domain constraint

By using domain constraint, we can create our own
domain rather than using default domain.

Ex:

> create domain ratingval integer default 1

> check (ratingval >= 1 and ratingval <= 10);
In the above statement, a domain is created with the
name ‘ratingval’ where its source type is integer and
default value are 1. The values of ‘ratingval’ are further
restricted by using check constraint.
Ex:

> create table Sailors (S_ID int, S_Name char (15),
S_Age int, Rating ratingval);

IC’s over multiple relations (Assertion)

i. The table constraints which are associated with a
single table and it will work only if the associated
table is non-empty.

ii. When a constraint involves 2 or more relation, the
table constraints will not work. To overcome this,
situation, SQL provide a constraint known as
assertion (constraints over multiple relation).

To enforce the constraint that no. of boats and no. of
sailors all together should be less than 100.

> create assertion smallcuts

> check ((select count (S. Sal) from Sailors S) + (select

count (B.ID) from Boats B) < 100);

Note: Assertion cannot be implemented in MySQL.
2. Domain constraint

Set operations (Union, Intersection, Difference)
a. Union (V)
TTe_Name EMP U TTname Manager

E_Name E_Name
aa aa
bb bb
cc cc
dd dd
Raj Raj
Ni bb
o aa
flcninn All

b. Intersection

(n)
TTE_Name EMpP N
TTName Manager E_Name
c. Difference (-) aa
TE_Name EMPp - b
TTname Manager P Name
dd

- Schema refinement
Schema refinement is one of the steps in DB design process. It is the process of refining the schema so that

we remove redundancy from the database.

- Schema

The overall design of the database is known as the database scheme.

- Redundancy

When the same data is stored multiple times unnecessarily in the database, it leads to redundancy problem.

Redundancy means duplication of the data stored at multiple location in the database.

- Problems caused by redundancy

1. Wastage of storage space 2. Inconsistency of data 3. Anomalies (Insert, update & delete)

1.

Wastage of storage space
When the same information is stored multiple times in the database, it leads to wastage of storage space

and accessing data from such database is time consuming

Anomalies

Anomalies are the problems i.e. caused due to partially planned unstructured database. There are 3 types
of anomalies:

a. Insert Anomalies b. Delete Anomalies c. Update Anomalies

Consider the student info relation to demonstrate Anomalies.
S_No | S_Name | Age | D_No | Branch | HOD
1A 20 10 | CSE Anil

2| B 19
3|C 18
4|D 19
5 E 21

10
20
20

30

CSE XX
EE vy
EE vy
IT 77

a. Insert Anomalies

Certain data cannot be inserted into database without the presence of other data.

Ex: Suppose we want to store information of civil department where no student enrolled into civil.

b. Delete Anomalies

If we want to delete some unwanted data, it causes deletion of some useful data.

Ex: If we want to delete student info of IT branch, then it causes deletion of branch info of IT.

c. Update Anomalies

If we want to update a single record of data then it must be done for all the copies of data

Ex: Suppose if we want to update HOD name for CSE department, then this updation must be reflected

for all the copies of CSE HOD.

3. Inconsistency

Redundancy leads to a problem known as inconsistency which occur whenever multiple copies are not

updated simultaneously.

Functional Dependencies (FD)
Let us consider a relation R with a set of attributes x, y where x, y € R, then an FD is given as
Ep:x By
determinant dependent

The FD’s are used to represent the relation among attributes

- Types of FD’s
1. Trivial FD 2. Non-trivial FD

1. Trivial FD
Suppose we have an FD x Bl y where y B x, such FD’s are known as trivial FD.
Ex: AB [A

The above FD is trivial but not useful as it does not determine anything new.

2. Non-trivial FD
Suppose we have a FD x @ y where y € x such FDs are known as non-trivial FDs
Ex: AB @ ABC

The above FD is non-trivial as it determines a new attribute C

Note: The non-trivial FDs are mostly used to solve different normalization problems

- Reasoning about FD’s
If a set of FDs are given over the relation R then several additional FD’s can be derived over R only when the
set of FDs given over R is satisfied.
Ex: Consider a sample relation Emp as given:
Emp (E_No, E_Name, Sal, D_No, D_Name)
FDs F: E_No @ D_No
D_No @ D_Name E No @ D_Name

In the above example, we can derive a new FD i.e. E_No @ D_Name from above 2 FDs.

- Closure of set of FDs
The closure of set of FDs F is given as F* computing closure of set of FDs to find the closure of set of FDs, we
use a set of rules known ‘Armstrong Axioms’.
1. Reflexivity
An FD: x @'y holds where y & x.

2. Augmentation

An FD: x B y then xz @ yz holds for an attribute z.
3. Transitivity

An FD x By, y @ z holds then x @ z also holds.

- Additional rules to find closure of set of FDs

1. Union
FD:x By, x @ z then x @ yz.

2. Decomposition
FD: x @ yz, then x @y, x @ z also holds.
Ex1: R (A, B, C) AQB, BEC
A*: ABC
B*: BC

C: C

- Normalization

It is a systematic approach of reducing or removing redundancy from the database tables. To perform
normalization, we use functional dependencies.

- Normal form

A normal form is a rule or condition that is applied sequentially on the database table to remove redundancy

from the tables.

- Types of normal form

1.

First Normal Form (aNF) 2. Second Normal Form (2NF) 3. Third Normal Form (3NF)

4. Forth Normal Form (4NF) 5. Fifth Normal Form (5NF)

6. Boyce-Codd Normal Form (BCNF or 3.5NF)

1.

First Normal Form (1NF):
A relation R is said to be in 1NF if every attribute contains only atomic values means multiple values are
not allowed for any column of a relation.

Consider a relation Student as given:

S No | S_Name Course
1] A DBMS, COA
2| B 0S, CN

In the above relation, the course column contains multiple values. Hence, the relation is not in 1NF.

* Converting a relation to be in 1INF

S_No | S_Name | Course
1] A DBMS
1] A COA
2B (ON]
2B CN

The relation satisfies the condition of 1NF. Therefore, this relation is in 1NF.

Second Normal Form (2NF):
A relation is said to be in 2NF iff
a. It must be 1NF
b. Partial dependency should not exist.
Second Normal Form is based on the concept of partial dependency & full functional dependencies.
i. Partial dependency
When a non-prime attribute is depending part of the key, such dependencies is known as partial
dependency
Consider a relation R(ABCD) holding the following FDs
AB [B, B@EC

Candidate key (AB)* = ABCD

ii. Prime attribute
The attribute which are part of key are known as prime attributes.
Ex: A, Bin above

iii. Non - prime attributes
The attributes which are not the part of the key are known as non - prime attributes.
In above relation, the FD: B @ C indicates the partial dependency because the non - prime attribute
C is depending on part of the key i.e. B. Therefore, the above relation is not in 2NF.

iv. Decomposing a relation to be in 2NF
I. The first decomposition must be with candidate key combination
i.e. R,(ABD) AB @ D
II. The second decomposition is
R.(BC) BEC
The decomposed relations are not having any partial dependency. Hence, we can conclude that these

relations are in 2NF.

3. Third Normal Form (3NF):
A relation R is said to be in 3NF iff
a. It must be 1NF & 2NF

b. No transitive dependency should exist in a relation R.

Transition Dependency
If a non-prime attribute is determined by another non-prime attribute such dependency is known as
transitive dependency. According to 3NF, a relation should not contain transitive dependency.
Ex: Consider a relation R with attributes ABCD holding the following FDs
ABEC, CBD
Finding candidate key
(AB)* Bl ABCD
©*@acb
AB is the key for R
AB [C is a transitive dependency C

D is not transitive dependency

Ris not in 3NF
Decompose R to be in 3NF
Decompose R in R; & R,
R:: ABC R.: CD
R.(ABC) ABEC not transitive dependency
R.(CD) c@b not transitive dependency

RIThe relation R is in 3NF

4. BCNF (Boyce-Codd Normal Form):

a. Arelation R is said to be in BCNF iff:

i. It should be in 1NF, 2NF, 3NF.

ii. Every determinant must be a key for R.

If a FD x Bl y where y B x, x must be a key for R.
b. BCNF is an extension to 3NF so sometimes it is called as 3.5 normal form.
c. BCNF is a strict version of 3NF.
Ex: Consider a relation R with R(ABC) & FDs

AB [C

c@B

Finding candidate key (AB)*: ABC v/ is in BCNF
(O)*:CD x not in BCNF
R is not in BCNF
Now decompose R to be in BCNF

Rto R1 &Ry

Ri(ABC): ABRC AB is a key
R.(CB): CEB Cis akey
PR is in BCNF

5. Multi Valued Dependencies (MVD) & Forth Normal Form (4NF):

A relation R is said to be in 4NF iff:

a. It should be in 1NF, 2NF, 3NF & BCNF.

b. No multi valued dependencies should be existing in R.
4NF is based on the concept known as Multi Valued Dependencies (MVD).

MVD

MVD is the dependency in which an attribute represents multi-valued facts about another. To determine

MVD, a relation should contain 3 or more attributes and the attributes are independent to each other.

Ex: Consider a relation given

Person | Mobile | Food

p1 m1mz2 | f1f2
p2 m3 f3
MVD to R

X vy

z

Convert to 1NF

4NF: A relation is said to be in 4NF if it doesn’t contain multi valued dependencies

Ex: Consider a relation given

Name | Computer Language
Aman | Apple Window | Hindi English
Anil | Linux Hindi English

The given Relation R has 2 - MVD
MVD: 1) Name Computer
2) Name Language
2R is not in 4NF
i

Decompose R into 2 relations

Name | Computer
Aman | Apple
Aman | Window
Anil | Linux

* Composite key (Name, Computer)

* Composite key (Name, Language)

PIR is in 4NF.

Ex: Consider R(ABCD) which hold FDs
A BC

CDRE

B [DE
@A

Convert to 1NF

Person | Mobile | Food

p1 mi1 f1

p1 mi1 f2

p1 m2 f1

p1 m2 f2

p2 m3 f3
Name | Computer | Language

Aman | Apple Hindi
Aman | Apple English

Aman | Window | Hindi
Aman | Window | English

Anil | Linux Hindi
Anil | Linux English
Name | Language

Aman | Hindi

Aman | English

Anil | Hindi

Anil | English

Find candidate key of R
Sol: (A)*: ABCDE

(CD)*: CDEAB
(B)*: BDEAC
(E)*: EABCD
@All are candidate key.
6. Join Dependencies & Fifth Normal Form (5NF):

A relation R is said to be in fifth normal form iff

a. It should be in 1NF, 2NF, 3NF, BCNF & 4NF.

b. It should not be further decomposed or non-join dependency.

5NF is also called as Projection Join NF (PJNF). It is based on the concept known as join dependencies.

JD: A relation R which can be decomposed into R;, R, R; ..., R is said to be join dependencies.
Ri(R) @0 Rz(R)x..x1 Ri(R)=R

Consider a relation R given

Name | Skill Job
Aman | DBA J1
Anil Programmer | J2
Rohan | Analyst]3
Ajay Tester Ja
R is decomposed into three relation:
R1 | Name | Skill R2 | Name | Job R3 | Skill Job
Aman | DBA Aman | J1 DBA J1
Anil Programmer Anil J2 Programmer | J2
Rohan | Analyst Rohan | J3 Analyst I3
Ajay | Tester Ajay | J4 Tester J4
JD:R; ™M R, @ R3(R)=R
Name Skill Job Name Skill Job
Aman | DBA J1 Aman | DBA J1
Anil Programmer | J2 Anil Programmer | J2
Rohan | Analyst I3 Rohan | Analyst I3
Ajay Tester J4 Ajay Tester Ja
a. R1 X Rz b. R1 > Rz ™ R3

The relation R is a lossless decomposition. Hence, the JD is satisfied.
BIThe relation R is not in 5NF
* Summary

5NF AINF: Only atomic values

4:\7F 2NF: No partial dependency
BENF 3NF: No transitive dependency
INF BCNF: Every determinant must be a key
4NF: No Multi Valued Dependencies
2NF 5NF: R should be lossless decomposition
INE
- Decomposition

One of the possible solutions for redundancy is decomposition. Decomposition is a process of converting a
larger relation into smaller relation. Whenever a relation is decomposed into smaller relations, care must be
taken otherwise it leads to 2 problems:

1. Lossless join decomposition 2. Dependency preventing decomposition

- Problems related to decomposition

1. Lossless join decomposition 2. Dependency preserving decomposition

1. Lossless join decomposition

The lossless join decomposition property says that when we have a relation ‘R’ decomposed into several
relations (R;, R,, ..., Ri), then we can recover the original relation ‘R’ by joining the decomposed relations
together.

R ={R;, Rz, R;, ..., R)

Ri X R; ™ ... xR =R

v. Rules to check whether a relation is lossless or not:
a. attr(R,) U attr(R) U ... U attr (R;) = attr(R)
The first rule says that we can recover all the attributes of R from the union of attributes of
decomposed relations.

b. attr(R,) N attr(R,) # o
This rule says that the intersection of attributes of R, & attributes of R, should not be empty.
c. attr(Ri1) N attr(R.) = attr(R,) or attr(R.)

The intersection of attributes of R; & attributes of R, should result either attributes of R; or
attributes of R,

d. Finally, we have to find the closure of intersection attributes.
Ex 1: Consider a relation R (ABCDE) which is decomposed into R,(ABC) & R.(ADE) having the
following FDs over R
R: Al BC CDOE B@D EQA

Find whether this decomposition of R is lossless or not
Sol:

i, (R/UR:) =R

(ABC) U (ADE) = (ABCDE) @R
ii. RNRy=o0
(ABC)N (ADE) =A =0
iii. RNR=R;, RiNR,=R,
(ABC) N (ADE) = A R, R.
iv. Closure of A
(A)* = (ABCDE) @ R
The Relation is lossless
2. Dependency preserving decomposition
A relation R is decomposed into Ri, R2, ..., Ri with the set of FDs given then R is said to be having
dependency preserving iff
(FJ+={FiUF, UFsU ...UFp}

Ex1: Consider a relation R with attributes ABC is decomposed into 2 relation AB, BC holding following
FDs
ARB
B@EC
CRA

Find whether R is dependency preserving or not
AB | BC
ABBB | g@mC
@Al cEB

(F)Jr = {Fl UF U F3} +

AlB BEC AQB
U = B@C
BE A c@aB CaA

c@B B@EC CEA
}CA }BA }CB
B@A CEA AQB

@R is dependency preserving

UNIT 4

- UNIT - IV Transaction Concept, Transaction State, Implementation of Atomicity and
Durability, Concurrent Executions, Serializability, Recoverability, Implementation of
Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols,
Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based
Recovery, Recovery with Concurrent Transactions.

- Transaction concept

A transaction is an execution of user program that is seen by Database Management System as a series of

operations.

(OR)

A transaction is a logical unit of work done by the user.

- Transaction operations

The common operations that can be performed on a transaction include:

1.

Read

2. Write

Ex: Consider a bank transaction where the operations debit credit is collectively known as transactions.

- Transaction properties

To maintain consistency of a database, every transaction must satisfy a set of properties known as “ACID”

properties. ACID - Atomicity Isolation Consistency Durability

1.

Atomicity
It ensures that either the transaction operations are executed successfully or not. That means incomplete

transactions are not allowed. Atomicity is taken by “Transaction Management Component”.

Consistency
A transaction that is performed on a consistent state of the database should result to another
consistent of database. It is taken care by application layer.

Isolation

The transactions executing in the system must have logical isolations. This property ensures
thatthe transactions that are executing in parallel will not interfere with each other. It is taken
care by concurrency control component.

Durability

It ensures that when a transaction is performed on a database the modification done on the
database should remain persistent even though the system failure occurs. Durability is taken
careby “Recovery Management Concept”.

- Transaction state

Partially Committed
Committed \
e
Active
Failed Abort

A transaction executing in the system will enter into different states during lifetime.
1. Active state 2. Partially committed state 3. Failed state 4. Committed state
5. Abort State 6. Terminated state

1. Active state

A transaction is in active state while it is in execution.

2. Partially committed state
Atransaction is in partially committed state when it is executing its last statement even after the execution,

the transaction may either be committed state or failed state.

3. Failed state

A transaction is in failed state when it no longer continues its normal execution.

4. Committed state

A transaction is in committed state when it completes its execution successfully.

5. Abort state
When a transaction fails all its operation, it must be role back & the transaction enters into abort state. An
aborted transaction will be either killed or restarted.

6. Terminated

It is the end of the transaction.

- Schedule

A schedule is a list of operations from a set of transactions.

- Types of schedules

1. Serial schedule 2. Non-serial schedule

Consider 2 transactions T,, T, where transaction T, will transfer the amount of 50 from A to B & transaction
T, transfers the amount of 500 from A to B.

Initial amount of A = 1000

Initial amount of B = 1000

Ty: read (A) T2: read (A)
A=A-50 Debit A=A-500 Debit
write (A) write (A)

T2: read (B) T2: read (B)
B=B+50 Credit B =B + 500 Credit
write (B) write (B)

1. Serial schedule
It is a schedule in which the transaction operations are executing in a serial fashion i.e. T, @ T, or T,

T1.

Ex: Consider a schedule S, with 2 transaction T, & T»

S1 T1 T2

read (A) 1000 450

A=A-50 0950 1550

write (A) 950 2000 (Consistent)
read (B) 1000

B=B+50 1050
write (B) 1050
read (A) 950
A=A-500 450
write (A) 450
read (B) 1050
B=B + 500 1550
write (B) 1550

The above schedule S; will give consistent result. Hence, it is a serial schedule.

2. Non - Serial schedule (Concurrent or Interleaved)
It is a schedule in which the transaction operations are executing by interleaving each other.
Consider a schedule S, as given
S1 T1 T>
1000 | read (A) 1000

read (A)
- -~ o TA=A-500 500
500

i 5000
write (A) 1550

write (A) 950
(Inconsistent)
read (B) 1000

B=B+50 1050

B=B+50
155

The above schedule S is inconsistent because the transactions are operating concurrently.

Note: Non-serial schedule may give consistent or inconsistent result.

- Serializability
A schedule S is said to be serializable if the interleaved execution of transactions is similar to that of some
serial schedule.

- Types of serializability
There are 2 types of serializability:
1. Conflict Serializability 2. View Serializability

1. Conflict Serializability

Two schedules S, S. are said to be conflict serializability if it is conflict equivalent to some serial schedule.

* Conflict equivalent

Two schedules S,, S, are said to be conflict equivalent if the conflict operations are executing in the
same order.

* To check conflict equivalent of schedules:
a. There must be 2 or more different transactions.
b. The transactions will work on the same data item.
c. Atleast one should be ‘write’ operation.

Consider 2 schedules S,, S given

S1 T T, S2 T1 T
R(A) R(A)
W(A) W(A)
R(A) R(B)
W(A) W(B)
R(B) R(A)

Checking conflict equivalence on S,, S

S, T, T, S, T, T,
R(A) W(A) R(A) W(B)
W(A) R(A) W(A) R(A)
R(A) W(A) W(A) W(A)
R(B) W(B) R(B) W(B)
W(B) R(B) W(B) R(B)
W(B) W(B) W(B) W(B)

Since, S, & S, are conflict equivalent hence, S, S.

2. View Serializability
Two schedules S,, S. are said to be view serializable if it is view equivalent to some serial schedule.

* View equivalent
Two schedules S,, S, are said to be view equivalent if the conflicting operations are executing in the

same order.

* Conditions to check view equivalent
a. Check the transaction which reads initial value of data items.
b. Check the transaction which writes final value of data item.
c. Check for write B read conflicts.

Consider 2 schedules S1, Sz given:

St Th T S2 Ty T
R(A) R(A)
A=A+10 A=A+10
W(A) W(A)
R(B) R(A)
B=B+20 A=A+20
W(B) W(A)
R(A) R(B)
A=A+30 B=B+30
W(A) W(B)

Checking of view equivalent

S1 Sz
A 1 T T1 T»
B T T T T
WHER 1 2 1 2 R(A)
W(A) R(A) | W(A)
R(B)

Since S, & S, are view equivalent hence, S, & S, are view serializable.

- Testing of serializability
In order to test serializability (Conflict serializability) of a given schedule, we use precedence graph. A
precedence graph is a directed graph where G = (V, E).
i. Algorithm for creating a precedence graph:
Step 1: Create a node for each transaction.
Step 2: Draw a directed edge from T; to Tj (T; @ T;) for the following cases
i. Ti(w) B Tj(r)
ii. Ti(r) @ Tj(w)
iii. Ti(w) B Tj(w)
Ex1: Consider a given schedule S,. Check whether S, is conflict serializable or not
St Th | T Ts

r(x)
r(z)
r(z)
r(x)

r(y)

w(x)

O

No cycle in graph hence, S; is conflict serializable

Ex2:
S, Th T T3

r(x)
r(x)

w(x)

S

It has cycle in graph so S, is not conflict serializable

Ex3:
Ss Tt |To |Ts
r(x)
r(z)
w(z)
r(y)
r(y)
w(v)

There is a cycle in the graph hence, it is not conflict serializable.

- Recoverability

A transaction may not execute completely due to failure such as hardware or software failure. In that case we
have to roll back the failed transaction but some other transactions are using the values written by failed
transaction. So, we have to roll back those transactions as well.

Ex: Consider a given schedule S,

S1 Th T2
r(A)
A=A+50
r(A)
A=A+100
w(A)
Failure point

In the above schedule, transaction T; fails due to some reason so we roll back T,. In such case, T, must
also be rolled back because T reads the value written by T, but in the above schedule, T» commits before

T.. Hence it cannot be rolled back. This phenomenon is known as irrecoverable schedules.

* Recoverable schedule

A schedule is recoverable where each transaction commits only after all transaction from which it has

read as committed.

Ex:
S2 T1 T>
r(A)
A=A+50
r(A)
A=A+100
Commit
Commit

In the above schedule, transaction T> commits after T; commits. If T, fails then we can roll back T, as

well as T.. Therefore, the schedule S. is said to be recoverable schedule.

- Cascading roll back
Consider a schedule S; given
S3 T1 T> T3
r(A)
r(A)
wael AN
r(A)
Failure point

In the above schedule, if transaction T; fails then we have to roll back T.. In such case, T» & T must be rolled

back because T, depends on T, & T; depends on T.. This concept is known as cascading rollback.

- Cascade less schedule
A cascade less schedule is a schedule where for each pair of transaction Tj, Tj such that Tj reads a data item
return T; only after T; commits.

Sa T1 T>
r(x)
r(y)
Commit
r(x)

Note: Cascade less schedule are always recoverable.

- Concurrency control protocol
Concurrency control is one of the methods which guarantees the consistency of the database even with
interleaved execution of transactions. To deal with interleaved execution of transactions, different
concurrency protocols are available
1. Lock based protocol 2. Timestamp based protocol 3. Validation based protocol
4. Multiple granularity protocol

1. Lock based protocol
* Lock: Alock is a variable that is assigned to a data item which gives the status of data item with respect

to the operations allowed on it

* Types of locks
Locks are basically categorized into 2 types.
a. Shared lock(s) b. Exclusive lock(x)

a. Shared lock(s)
It is also known as read only lock. It is denoted with s. Any no of transactions can have a shared

lock on a data item.

b. Exclusive lock(x)
It is also known as read - write lock. Only 1 transaction at a time can have exclusive lock on a data

item.

* 2 Phase Locking (2PL)
2PL is a concurrency control protocol available under lock-based protocol. 2PL ensures conflict
serializable schedules. 2PL works in 2 different phases
a. Growing phase b. Shrinking phase

a. In growing phase, a transaction obtains locks but may not release any locks.

b. In shrinking phase, a transaction may release lock but cannot obtain any locks.

* Types of 2 Phase Locking of lock-based protocols
a. Simple 2 phase locking b. Strict 2 phase locking c. Rigorous 2 phase locking
d. Conservative 2 phase locking

a. Simple 2 phase locking:
Consider 2 schedules S,, S, as given

Sa T1 T2 Lock Manager

lock - S(A) Crant lanl, CIAN
r(A)
unlock(A) Grant lock - x(B)
lock - x(B)
r(b)

vadd i)

lock - s(A) | Grant lock - S(A)
r(A)
unlock(A) | Grant lock - x(B)

lock - x(B)
r(b)

o\

Schedule S,(T;, T-) is not in 2PL. It does not obey the properties of 2PL because in T, lock(x(B)) is

executed after unlock(A) & similar in Ts.

Sa: T1 T2 Lock Manager
lock - S(A) Cvant lanl, CIAN
r(A)
Grant lock - x(B)
lock - x(B)
unlock(A)
r(b)

cadd)

lock - s(A) | Grant lock - S(A)
r(A)
Grant lock - x(B)
lock - x(B)
unlock(A)
r(b)

o

Schedule S,(T;, T>) obey the properties of 2PL so S. is in 2 Phase locking
e Advantages

It ensures conflict serializability.

e Disadvantages
i. It does not ensure freedom from deadlocks

ii. There is a possibility of cascading rollback to occur

. Strict 2 phase locking
It is compatible with 2PL. It does not release x lock (exclusive lock) until the transaction commits.
It guarantees conflict serializability.

Consider a schedule S; as given:

Ss: T1 T,

lock - x(P)
r(P)
w(P)
lock - x(Q)
r(Q)
lock - x(P)
r(P)
w(P)
lock - x(Q)
r(Q)

The S3(T,, T>) obeys strict 2PL

c. Rigorous 2 phase locking
It is compatible with 2PL. The shared locks & exclusive locks must be released only after
transaction commit or abort. It is a strict version of strict 2PL.

Consider a schedule S, as given:

S4: T1 T,
lock - s(P)
r(P)
lock - x(Q)
r(Q)
lock - s(P)
r(P)
lock - x(Q)
r(Q)

The S,(T,, T>) obeys rigorous 2PL.

Note: Strict 2PL, rigorous 2PL does not ensure freedom from deadlock.

d. Conservative 2 phase locking
The conservative 2PL says that a transaction should obtain all the required locks (shared or
exclusive) before it starts its execution & release all the locks after it commits. It ensures freedom
from deadlock.
Consider a schedule S; as given:

*

%

Ss: T1 T,

lock - s(A)
lock - x(B)
r(A)
r(B)
lock - s(A)
lock - x(B)
r(A)
r(B)

1=\

The S5(T, T2) obeys conservative 2PL.

Lock conversions

Lock conversion is a concept in which we can either upgrade or degrade the locks assigned to a
transaction. The lock conversion is necessary to overcome deadlock situation occurred in a
schedule. Ex: Consider a transaction T, holding a shared lock on ‘A’.

T:: lock - s(A)
If T, wants to perform ‘write’ operation on data item ‘A’, then it should request for exclusive lock
on A. This will be done by upgrading lock
T:: lock - s(A)
upgrading
lock - x(A)
Consider T: lock - x(B). Suppose T- does not require the x lock on B anymore, then we degrade
the lock to shared lock.
T,: lock - x(B)
degrading
lock - s(B)

Graph-based protocol (Tree locking protocol)

a. Itisa simple locking protocol i.e. not 2 phase locking.

b. This protocol is basically designed for exclusive locks.

c. This protocol requires a prior knowledge regarding the order in which data items can be accessed.
d. This knowledge can be acquired by using partial ordering on the given data items.
e

This protocol ensures conflict serializability.

Working of graph-based protocol

In tree locking protocol, every transaction should consider the following conditions

a. The transaction T; can lock any data item initially.

b. The Tican lock a data item ‘X’ only if it has a lock on parent of X.

c. Once a transaction T; lock and unlock a data item, then it cannot request for a lock on the same
data item.

Ex: Consider the given set of data item in a tree like structure

Consider a schedule Sy(T;, T, T5)
Sq: T1 T> Ts

lock - x(B)
r(B)
lock - x(C)
r(C)

lock - x(F)
r(F)
lock - x(D)

r(D)
w(D)

lock - x(C)
r(C)

w(C)
lock - x(B)
r(B)
w(B)

lock - x(D)

-~

unlock - F
lock - x(E)

r(E)
w(E)

unlock - D

ciialaall [p]

unlock - E

2. Timestamp based protocol

The timestamp ordering is a method that determine the serializability if different transaction in a

schedule.

* Timestamp

A timestamp is an identifier that specifies the starting time of transaction & it is generated by database
system. Each transaction will have a unique timestamp. It is denoted by Ts (T;).

The time stamps are generated by using 2 methods
a. System clock b. Logical counter

a. System clock

When a transaction enters into a system, it is assigned with a timestamp value equal to system
clock.

b. Logical counter
Each transaction is assigned with a counter value & it is incremented for every new transaction

that enters into the system

Types of timestamps
a. Read Timestamp (RTS) b. Write Timestamp (WTS)

a. RTS

It indicates the highest value of timestamp generated by the transaction for reading a data item.

b. WTS

It indicates the highest value of timestamp generated by the transaction for writing a data item.

In timestamp ordering protocol, the timestamp of an old transaction is always less than the timestamp
of new transaction i.e. Ts (Ti) < Ts (Tj)
where T; - Old transaction
Tj - New transaction

* Working of timestamp ordering protocol

I: When a transaction (Ti) issue a read operation on X

1. Ts(T) < WTS (X) //read is rejected
. Ts(T)I WTS (X) //read is executed & update WTS value with Ts (T).
II: When a transaction (T;) issue a write operation on X
i. Ts(Ti) < RTS (X) //write is rejected
ii. Ts(T) < WTS (X) //write is rejected
ii. Ts(T)I WTS (X) //write is executed & WTS is updated.
Si: T1 T2
I AN
r(A)
A=A+10
r(B)
r(B)
show (A + B)
show (A + B)

@Schedule S; obeys timestamp ordering by Ts (T:) < Ts (T>).

- Validation based protocol:
1. It is an optimistic concurrency control protocol.

2. Itis based on timestamp ordering technique. Each transaction is executed in 3 phases

a. Read - Read b. Validation - Validation c. Write - Write

a. Read phase (T))
In Read - Read transaction Tj, x is executed by reading various data items and storing them in local
variable.
b. Validation phase (T)
In this phase, the validation test conducted for transaction T; against serializability order.
c. Write phase (Ti)
In this phase, the transaction T; will update the data items in the database.

Time stamps are associated with 3 - phases
1. Start (T:) 2. Validate (Ti) 3. Finish (T;)

1. Start (T))

It indicates the time when T; started its execution.

2. Validate (T;)
It indicates the time when T; started its validation test.
3. Finish (Tj)

It indicated the time when it finishes the write phase.

- Working with timestamp-based protocol
- Validation test
Consider 2 transaction T, T, is executing in the system with timestamp ordering Ts(T.) < Ts(T-) then
Validation test for T;, T.:
1. finish (T,) < start (T>)
2. writes of T; & T do not overlap
Ex: Consider a schedule S, with T,, T»

St T1 T2
R(A)
W(A)
R(B)
R(A)
R(B)
<validate>

S, satisfy validate test
- Multiple granularity
1. In earlier concurrency control protocol, locking can be applied to a single data item. Sometimes we need
to lock a collection of data items by a transaction i.e. possible by using granularity process. Granularity
indicates the size of data item allowed to lock.
2. Multiple granularity can be define as a hierarchy that will breakup the database into different blocks which
can be locked by the transaction.
Consider a granularity hierarchy as given below:

- Working of granularity hierarchy

1. Each node can be locked individually.

2. When a node is locked using either shared or exclusive lock explicitly by a transaction, then all the
descends of that node get the same lock explicitly.

3. When a transaction wants to lock the entire database, which effects the concurrency of the system, it
requires a new locking mechanism known as intension lock nodes which are
a. IS (Intention Shared) b. IX (Intention Exclusion)

Compatibility matrix:

IS IX S SIX X

IS | v v v x
X | v v x x x
S v v v x x
SIX| vV x x x x
X v x x x x

- Implementation of locking (processing lock and unlock requests by lock manager)
Alock manager is implemented as a process that will receive lock request, messages from transactions
and give the response to the transaction.
The lock manager after receiving the lock request from a transaction process and grant the lock of the
data item if it is available free. To process the lock request, the lock manager uses the following data structure.

Data structure used by lock manager

10
Lock Separate
T1 T < E L
table chaining (LL)
(Hash 50 Ta
table)
80 7 T5 T6

H(k) = h(k) # 10

The lock table maintained the information about the data items that are locked and unlocked by transactions.
It uses a separate chaining technique to maintain a linked list of data items for each entry in the lock table.
The transactions which are waiting for the locks are added to the linked list once a transaction released a lock,

it is granted to one of the transactions in linked list.

- Recovering techniques

- Failure with loss of non-volatile storage:

The information present in a volatile storage gets lost whenever a system crash

occurs. But the lossof information in a non-volatile storage is very rear to avoid such failure,

some certain techniques need to be considered.

One of the techniques is dump. In this technique, the entire database is dump to a

stable storage at regular intervals of time. When a system crashes, in order to bring the

database back to consistent state, weuse the recent dump to restore.

*

Dump process:
1. During dump process, no transaction should be processed.
2. All the log records in the memory must be stored to a stable storage.

3. The entire database is copied to stable storage.

Drawbacks of dump process
The dump process is considered as an expensive task due to following reasons.
1. The huge amount of data transfer is needed.

2. No transaction is in process during dump, hence CPU cycle is waste.

- Remote backup system

The traditional transaction processing system is more suspected to failure due to natural

disaster. Hence there is a need for designing a system which will continue its processing

even if the system fails due to natural disaster. Such a system is known as remote backup

system. The main goal of remote backup systemis to provide high degree of availability.

Primary : /\

Remote
Logs —7

Fig: Remote backup system

- Working of remote backup system

1.

When a primary site is updated, this updation should be reflected in the remote site.
This can be doneby synchronization between primary site and remote site.

When primary site fails, the remote site immediately takes the responsibility of
transaction processing.

Logs

- Design issues of remote backup system
1. Failure detection 2. Control of transfer 3. Recovery time 4. Time of commit

e NN N\ 4
omNnTtT=-v - 0,

DATA ON ExTE€RNAL .STDFZ-/AEYG'—',——
vt q/zvan*ﬂoﬁ?’s 0/» cata, and

14:’
onrs

H DeMSs Stoves
oSt Pers?s—f: QA Cross ?roﬁram e Xec

ctored ©7 exterral storage

1,% arnd tapes, and —/E-&cbec/
Aevices d’(s/‘:‘g F ’

Srte medn me'mo-n'da ag il el —FOV‘ Frocus?‘o?,o.
e 2 rformakon sead from tor it
‘o df;[L Qe A'F:Lﬁe_“/’/;@ eize Qd, oo Faﬁé Te :.g)
DeMs Pa;rame-berp g -\',—7?1’4@.4 it e i '

7

+Hrhe data
) -
h an:ft ore . data (¢

B P -

—— s

KB -
The cost. od“ Faﬁﬁ' T
and @Lué[)u:b" ~f1om mem@/% +o df’s/f;)

/O .C?OF‘@LT | ’]ETOVQ dtp_ck Lo mdn

- /v

] -
Aonfonotes the cost % -L'%F?Caﬁ datalbace @Fd‘ O‘g,
| o 2 |

. ®

and dectabasce s cteme are care-f'uwj,, OF{—rrn)x.cc/ + |
mTntmt=e 4hTe cost. | |
Lo @& q’mFor‘ban'b' Poﬁ?ﬂ{—c‘ S ‘ !

mﬁm0v7{,

- Dieks e b ,‘L’m[yorbarr’: @X-f:e_;fna_é. g{-oraic, deVTC_ES.‘\
They alow us to ~etriew an i page sl aCmD'E‘/‘e@E
faxced cost per page: However, ?75 we read ge:era[|
pages o the eorder Hhot —l:heﬁ/ ave stoved thgtcal%sj
the coct can be much lecs than the cad- 0/_ s '%ﬁa

e Lame Foaes tn a vandem order.

I
|

i o
;.TQFQ — gegwem{faﬁ access devices and force vs -to

Cyend data one Peage a-f’\":er the of/mer-'ﬂhey ave MO\S\%,LE
.Dg‘ed -to archive daota that T not neea,e:a(@y an ’l

Scanned by CamScanner

-Eqse@»dor basie - ot
\ Codn vecod o file has o orfaue THe0 S

| colled a aecord Td ,or A8d for chorts An e hat
| Jisk

can ?clel/l'{'l’ﬁ +he

cecord uﬁnﬁ
PrOcesanﬁv and »
a (ader

I) j’
er |

|

|

“4he ?roper*# that we
acdldvess od the. Pqge oon+a?n?n?~
. Dova T vead “nbo memovzf 'fo'”
Lovsttenn 40 dfs/é 7‘0»’ Pe/r‘sf’s-l:-erﬂ: J-Eoraﬁe,lov"
'O&~ on—bu)an?, caled ~+the fouffer mam@er-me buﬂ@’ ;
mmaﬂef —fe,{:chec +he Fo_ae -from dLOS/A‘ f—f es ?S not |
Q,L'O’QQAV\ TN mmorﬁy' '
| Spme on dZtk s rf)ar)aﬁed L)V Ak cpace
:\ma"?ia?f-‘TFSa dicle gpace rnaf)ager‘ lceepg 'L"’GL[“ C% the
Etpo\aes % vce Imd +the af—‘?(e (_cudex 3 (":,L =3 Pa,ae s
1'—‘ff66c4 bT Hhe —f—'?[.e, ' Lajate‘lrj -{:’fq@ gram N\O—’)aﬁvel
ARFe , and reuces 4he ace. = Pl layer
[ond oute’ e fpus ot e Loy
!f‘o‘e,ct,u% a new 'Fa_ﬁc. latevr on,
,F'Cé OREANILATION AND lM'DC—x\r\\(igﬁ

i

| The bl e e

| -

| abstrackon t» o PBMS,and & tmplemented L’Ef“
[:FTOIZ and Q ccecs Methods [Cuicr Qf +he code . A |

[
f ;Ffle can be crea-éecl_, c'/tf&’éroytc{ s and |leve Vac,ochc ’
l Gncerted Trto Of)d cfe[e,{;gd 'frcjm T . #_{7 aleo

I,’ ﬁctlﬁon'LS Ecans jQ (Cramn @D/7<ira'('z%o ollows we o

f’ _g‘ltiff 'i'L)?Ou?h ald ‘L'L)é ?'ECOV‘J_g \Tp) +he 7510/63 one
/a:{: o -()Qme,‘ffdeCﬁ?’ﬂ Ze ‘L—yF?Ca(lﬂa stoved ax A)Cf& OlL VCCOH:/S,

S

S e Scanned by CamScanner

| | i - B T |
“The .Q'fmp lest- -H’[e Structore s an vnordecedd j; le !
or hea P rf? le.. Ke corc/.é h a lfveaf? 7@ [awe sto red @

roar\dom arfler‘ a.C; oSS ’f'{')c ’Fa?«u Qdﬁ ’flle :
that grgant z€5

——

An ?ﬂzléx e a data ';S"l;rué’hk?‘c L
C& on CJ?S/C o DF‘&Z‘TO?M Certaln /-41-’7
OV

Cl - [¥2 2%
(=} e o .f{n fna_e/c auaw Yoy |

) & a/e)ff
.) EA Sl
(Ohdf—&b().s o geaVCLL {fﬁ’ 7’£16/C[$ % e

We vse -the Ferm Adata Er)-{;—r# > "afgfer'

TS Tndex 761"[6 ;A ot e”’hf

7, b
i, Aenoted at k % contains @V’O“ﬁ)

recoros

®)
ot

atored T

Ke(,dn sl
Znformation o locete (ore
Search. Key valuwe f-

—There are +hree mMain alter

ma-éf(fes {Or what +o store

|
as a dat en‘(:ry- Fn an Tndex: ;
e_
i

| A data entp k¥ s @n actual deta (wlth search

k67 valee kD.
2. 4 data errﬁrf P a (K, rfd> ‘Pc&"r; Lohere id Te ‘éAG

i
i

record %d of & dacta. vecord wPth search /{e# value kg
3. A data emtry s a (kyrid-list) Pass nlbere vid-lat
R a st olﬂ records ‘i‘c/s‘ of decta. rec;rc/g wibh
geaveh ey value f- |

A Pndexed ’ff’le. oc/ﬁan?xa corL, S ba sese Phelasd {

Ofa\ 'FDV examF(e.,a corted .f—?[e v s el . :
«‘Fﬁé | O/ ’recortalg,

T — I R =

- —— O —
Scanned by CamScanner

]

| fLoSTERED TNDEXES i .- :
When. a ifﬂe. e Oraan?uJ co that the ovJ(-’rfny,

ta recorc/.g %_9 the came as or close +o the

data. enf‘ffe.g . Corme fndﬂ’ we sayf»
% P£ cLth'ch

o Aex
orc/erfnj.
that the ndex s cluctered 5 otherofise
e an uncluctered tndex. Hn ehdex +that U5€S
Atterrative Cl) e clustered 5% [je,ﬁo,,? S Nedlz.w() |
cometimes vefer 4o an fodes velng A Lbern D

10‘4 a claedered 'fffé’-, becavee +Hre deta errirfes

l c -—f*/-;eye re
| are acchaL C/CL{-Q ﬂfecora’SpancJ ‘p”‘J%’(s

o »,Lfb: o/ Adata ~>ecorels -

—Tl;e: coct of U_gf’n?., anrn Qr)cle,,(-&5 ancuoer &
Lbased on

Tange ceavch q/u_gry‘ vary 'f;‘r‘erﬂer')a!OcoSly‘
Lobe ther the Cndex ¢ cluctevesd -

PRIMARY AND SeconDARy TnWDEXES T |

An THdex on a Set OJ- %Qeﬂs +hoct The bud e the e

Prmary. key b called a. psSmary, Trdex 5 other
Tdexes ave called &acoocbr(y- en dexec.

Towoe entiec are €a2d +o be QILLFL[’@&A e %L\47
love +he Same value —f*or Cearch l<17~ —f?etcf
Oscototed tStth. tHhe tndex + B pﬁmm&‘ Trdex 7o

‘3uararrl—eec1 not to centath JLLFLCEQJCQQ? bt ap

e

IndeX on. other —Fz"elcls Can Corrtain cJCL/DLPC(L‘AfS' oy

Caeneradp ' Scwncfat’% tndex cortaln, dupuoca'tcs_ -5{-"1

A —————

we dmow that no daplizate extet, that G, toe fme,

]
I
R e

Scanned by CamScanner

o),

et

Lhat the Search kéy- tontaknge come, CaocLlc/a'éc A f"

e calh the ?r)cie/c oL un%/uz Tndex .
TIrdey T

entnes
(Pirect seavch

,/ \ for data en-mc))
/ Indey -ifl&

/

ade entie
D X ¢ _J

Data
D&‘(_'ta 1[11(_

"ZCOVJC

' F?? 4 Onc,l,u_(“ke\fecj E [0.:167)(DQ‘EJD?-, ,Ag[,‘t‘ev'r‘)a‘l«'?l/@ C?—) 1

1INDex pama ETRUCTUR S -

One. wmzf i Orﬁa_n’fz@ Adata. 601[‘7)62 s +o /’LQ,LLL

; d&:&o. 60",‘1‘5)63 o e J.‘ec;z_rcpt. /{eﬁ_, A’)’)O‘H :[qail
~“+o orﬁantu Aata entrfey 9o

data Structume +hat dveclr -, Jearak

er {—npe_g 7[8

to lou_x_[ci a tree _ LL/c&

!

i

Scanned by CamScanner

e ’ g . —_L
HacH T-ARLE JNDC—.XINGI g

-
R——

- N . o
We can Dv’ﬂan("KC records Ugf:r)? o {ecLanzpue

£ |
gt"attca(has[a‘fny.. +o q/.ca’c/cly, f% 7{;’3’101 4 ?C’O"J'g -E'Aa |

iltaue: a ?fﬁ‘vwz Search, /Qf value .

\
i

d
TL!Q. C\Ppnﬂcld:m, {[’)5 VECGr(/S th a {,ﬂg are ﬁrau-FZ
| V)
G buc}ceis, bdf’)en: a éucf(_c-l- C/Or’)sf_gt;' 0/, a Przrnar% E
| 7 (fr)/kzc/ en =
'?Clﬁc and » Po.sg‘t’b[(f:, ach{'zonaK Paaeef

can

chain + The fouc-'/(ff {o whith a — éebnﬁg

e tron
be. c‘le{’frmf\nea ‘97«‘ @W%ﬂgj a (S'Fgc?aﬂ fr) (& 2

. Blven a |
%CalleJ a hach 'fvnc&‘an;”—'o the search {{gy,, q

%buc/ce[' number, a hash —based &ndex structaTe
- th
!iauow_; ve to retewe the P-rﬁ’rruv?, g™ 'IEO &

buc/{e{- in oné or twoo dfsﬁ, I/o;.

On Cneerts , the vecord 1s Encerted foto +he

I

]
{

" Qs hecu,fa"j» .

guf " 7y
,aFPYOPYfat-EL buc/{(,-ﬁ-, with overf[ow pages allocate

|

7 s

2 Smth, ;3000 —1&1\

i Jores, 40,6003
Tfact;f-, z,.z_bgootj

e s

>

= il § 5
af)d d HQ'}C)TOI (— : \\\)
'é@‘ =8 3 & 'ﬁsbbyff??iaooo ‘ @ﬁf
(| Basw, 33,4003 [003 [haee == =" "
N Bristow, 29,2003 | ooy h(sal D=
h(ag8¢)eip ~_| |

cf

‘I‘ Cass, 5

O>» ‘5'009— ,

Danlels, 22,600

7 File of~ <sal, rid> pafrs.
Lér'ﬁp"b‘/'ﬂfi"jfr,ﬁmhec{ on age bhoshed on cal

T R ——

Scanned by CamScanner

i Lot

e — % '
M‘EE TS " 5 NSRS Do
£ RSNty werplon et s {

s

Note that the k ‘-’rj‘ -f or i Uride e LON be dn”»
g@wemaz OJ oNE. Or vy, e ,f,_[:e, J c, and Bt vieed rot
Un%/uéty' fdeﬂ‘h’fy. "rewrclg, i

[Ree ~BAED TNDexinE

-
An alarnave 44 baals o Lumomed {)f,d,gz?r,ﬁ, T Ao

O"ﬁar)fzg recovds vcf a tree — L?/CZ cleata, 'C{’U£ﬁ;“-.’e"

| The datr emtles ase arranac—cj G sorted cvder

bﬁ' searchh key value ,and a. hierarchicad search
data struckve % mlirsty g pd thot dbrelts £€ar ches
’ to COrre t FOLZ{/ Of data en'/'n‘oa_c; "

Tre lcivect= (evel o/, +tree , chec/ léa.:/v Zeve,_é
oot exarr)/?@, these

iCO"Tb.-'ioS the data. erstfes 5 [

1 are emFIOyfe vorords .
Hary searehs

[SIETI

aaﬁ(l"&«

12 <sage

} LEVELS N
LEAF EvéL1 L v La . L2 2
| - - e WY ey —————— !
‘f i‘D‘a:\\ﬁ‘s .‘Q”—:;‘/," -2_9‘:?’1' - [:',aff?—.:,"?.‘ffo% 4| -—‘_’:’»’-‘—:‘a‘i’i—;ri-’ Lt.‘tjgoao
ehbbw .26, 4000 Jones,yo,6003 Trac Y, 5601 ‘(
F ST) 03 vy /”‘? it f',‘»' ?{,H,,S Et‘ f
. P J l Cazss ‘:
At | . - " 50 ’
! ;.‘ " - ¢ ’ ;Scuf. 5B

! Ff7 ¢ Tvee —Stru cteved Ind ex

Scanned by CamScanner

| Bty % . 2 FPorrk Lecade V
“Tie clwedare allowe ve tp < -f/ i er) ff-(/d‘
T a
5 oy [2 L"l’ 24
A Acta Crytihes St ceo V(.‘LL f’ l‘—7

T adr
Aecfred '”’)O?- AL Cecrcher b ((74'1 7 .
cententE 0/‘ r

o correc ol léaf

_L,OF(Y')O&'{I ?
es D

nede , called “the wcot , and the
.C’('tw/(‘/’)(',’;

e

Pl
NOM ——lé’ﬁf Lleve le rect

(FCLZ'f])
" i Adurng
“Thus 5 the no, (_’)J—. (]10:;[/_ __I,/c,,c Procaurrea ?
: h ath f-rom +he
ceawsch s equal o [.[fﬁﬁ‘{; gj. P o

oot b a Laad.) Pluﬁ the ro. 0/_ teat PG eo
o
%atf"/yi’nﬁ, Adota, entfes. The B tee s 27 Trcky

j) -[—/)g orr roct-
| rf{‘v’ucfa'aa ok ercares that oldL fa ‘f"’

4o leo—f- r ﬁ/tove,m s ee o€ qfﬁ‘garﬁe
[o bt -
Te, the. chructure 7e alu’)fu,j.g Iga.lamcacj_ Tr l’)e/ta

“The heia‘*rt OJA a Lalanced —tree- Te +he lerazaf{a O}

oL 'Po.-!fr\, —f»fom. o oot —+o ,feaf #
ThHe M@fﬁﬁ,& MNO« C)Jﬂ ch?lc{rem «{Dr‘ a- -nonv-[éaf
ralled ~the f/an —out Of the tree. ;‘-?17£

hae v children | a +ree DJ,

node S
everﬂ-. nor)—-,{pa/, rode
f/)c/fgh-b- b hae nt* Aéea/.. Faﬁ&r.
o FlILE ORGANIZATIONS :-

the cocts % clmple Opera’t'z‘ém _}PDV

ComprRISON
l/\’& oo GOI’OI;afZ
G vl boufe :ff’La cw@an??ﬂ:[?bﬂﬁ on a coledion, af
eve

=2 i "
rzwrt/&’" The orﬁamm&ons that- e mnS:l:c/er

emFLO'jée
2 ,[C)L(,Ouff)ﬁ-:
darf)cy- pra/ered ernFloyecz rewr:/_s', oOr Aeaf’ #ﬂé‘

Scanned by CamScanner

are +h

A SR i B S T 3

(EA

L0000 A S W 55 R A

“Flis of ("”f)/c"/w vecorels Sordecd ao {age goal > L
| sak 2
: C((I.C{,c‘r(*{/ H-'” 'L‘r‘afe ff'[(_) M)?’Lhe ,C(?{JIC'LL ,“/Od_ Cﬂ@g >
. Ghdex ©O7
? "”()(1{7 -/f/c. wlth, ane . onclusgteved B+ €ree b

40 €y .g(lﬁ\/'-

dloap file Feh an onclaskered bk

Cfr)c/c/ ore (aie,sap

| the
g O (d call e 1o er r)[)l')a.c Pze 1the om f?o vLance 0/
s, 5 TOPRE

chofre O(/. an. C}Ff)vo,;-rﬂ'abc: «[’f’ia
Ahe above LOS'L fOCLcchqg {ﬁ;g main alter??

Cor).cﬂ-/m" T flur-a clcee -

'ch. Opern'(z?m; Loe wn.s?c/ef/' o€ {;ﬁ)egc:

« Scan ¢ Fetch old sracovae T 4he ‘f'ﬁﬁ « [l ezl
| Tn. 4be {ne, moct be fetched from déef to

Lhe buffer Pool. There (¢ aleo a cPU overhead per |
wecord —FOV Loc:a-(i—’n?ﬁ the reord on the page (fn‘ Fooﬂ). ‘
J. Search WTth {cwa&%-% Lelection : Fetch. all recovds |
,—Llfmé 5a—&g757n an W&”ﬁ/. g‘e/cﬂeo&{’m Fagee that

contain %a&%/fn?« record s m:Jsé be —Fefciaeé{ 7L,,Dm
C/&/c, and cpua&’fyfnﬁ vecords mvst be locateAd

Within vetrifeved Faﬁes-
o jﬁarcl’l I/\ﬁ’f’h Egr)?‘g (fé/ec%n: Fe{,’C&L]t y—ewr—cys

+hhat (ga[;fgf:#. o ranﬁc celection. -

e Thsert a [Lecord? Tnsert a %?fe,q recore Bt 740[6-
We rooct Q’Jen'lf-fﬂ the page (n the file 9nto bz |
~Lhe nNew vecord muct be i’nser-{:ed,fe%cﬁz Jgﬁzm’: page

r O &)
J,fgpm Clﬁ;/(’,, rY)odl’ifcd, it to Drclude 4bhe —— Vecoer-

e

Scanned by CamScanner

and -L—hm wrte. back. the modifred page:
DeFend?nT on fele Organ?:zr&%ﬂ-,h?@- pocry bave *0
"lte-lzch Dmoar’fva; and corfte back. other pages ay cell.
[*Relete o Reord: Defete o record that €
Spectied oing. e vid.We must Tdentify <he
Page that- cortaine the vecovd, fetch Fe from
A, modify, t, and wohte 94 back. Depending, on -
the file organtzakin, we mag. bave to Jetch,
mod?f%,aod worfle back othen pages as coell.

(_\f[= —=p —_—

Tle g, @ttaﬁ?ﬁg R s e
'Y Tfe , Learch Seareh Irsert: Delete. I
| -

—Heap 80 o5 BD D 2D Cecwch+

. R S f (R
‘ — S — e — ,_{,__—_.‘ —— - -

Py, B %8@ DLocg,;B—f—#: Search + | Search+ |
— e 0T |ralehiog pages| BD BD |
cl ' Y T

ustered 1-68D DbﬁF oy DLOﬂF"E’_e‘*'#— Seareh + | Seareh+ |
e | [|medching pages| D D
WnClustered | 2O(R+ |D (1+ |Dlles 0. 1584 b(3 7 |
| : : 4 a
f?e,.?ﬂé?f_hﬁ O-157) Loy £ O.fé‘@ mﬁeﬁ v*eLochl log_ 0.158) | ze[irCh 'i‘ 3

Unclustered |ap (R+ | 4 P te — N
hagh 2ndex O-1257) 4D e |
: 2D ;

IND & XeS AND PerForMANCE Tong . ‘

The chofce ©F ndexes has a tremendoog mead:_?
on gystem F@”‘FSWOOL”CG‘JOOGJ must be made 8y the
corrtext o&. e exFec:-L—ed workload , or _;Hf,?caﬂ B |
od» %er?eeg and vpctrte OFW‘L\?@(}S, !

A 'F“M A% cuceton @J. Tadexes and "Fe"")eombnqﬁ
"areq,ufreg an Onderctand® g 9f date bage %e‘,ﬁ_\ ’

'
i
]
¢

*\\

Scanned by CamScanner

—m‘u
e

.é.va(«qa:fzba pray n COnwrrenuj,. — ol
;C%+arecl lndex O nTaadkon ¢

i -A‘ CJALS‘Lcr‘eJ Todex e rea,uﬂ‘ —?ELL Or?faﬂoxa%@/l/
:FO Lthe '—L”A&'Lytnﬁ- et riesras: R raords Gan be

them: so there
*larae and we should avo?d réFL‘ 47—?

| an be at most+ one c,[a:l red ?'MJ?X = ﬁq'fen
| Lufld an unc[u&[crecg

P L ol e, le Con aleo
oo Of o e '?7[fp)efe Ts cuch e -F&LJ—

‘Ciﬂcle/t onN, Saﬁ—v C‘IEFar-é-nfjen_-z"—
| +o re=Shtoin

| Clushered “rdexes ,whfle less expensie
‘\ than a —fuuf <tored -f‘i[e,are-naneﬁée[w .@fpens?w:
4o malntain. _

- In c:{ea,fff)ﬁ- wotth the (EmPlattn +that ot most
| ome Pockk can be chectered, T e 'O(f/{—m Usaﬁd’
o concTder tohether -the ?ﬂ']Lrﬁrmon&m P an tnc]excs
Search key‘ 15 £U-f7Aluen% o ancwer +he q/werbé For
Q)Cam’;(e, 2f we [have an ?nc/c:)a on age, emel’ sies (BEEPE

s meu_%e +he average o_ae @dn @mFlo‘/“é;’ +the DRMS

ton do -thiz fovn g?mFLZ/- exammma the data entries

o o LnJe/ ThTe e 23 Z)’amf[& Of am ?na’e/a om[%

T~

EVQIA.LCL”{ZOVZ' In an Tndex - onLﬂ\ evaliealion, 0‘/« OV'L%
ot access +L»@ dafa. vecords “n iﬁ."’es +/3q+

T ——————— —

| Ltoe r)eﬁcf
i : il
contaln +he reladions n -the %evg‘3 we can evalugd,

T W,ﬁ,, CmeLe{:eLy -t'ﬁvroua*h‘ rndexes on e 7E'o[(,

g 59 . é’xamrle.f ,'Illu.c'[‘ralm7 C/U.C‘[‘erec/ /"’)Cle)(ag-
| Dz g @ clustered Qe o

QLW e +Fhe ovse

Scanned by CamScanner

—
"o”anae, ol,uc’tfﬁ.,cor),gfdey- +he —Fgu,owbonaa EXamP[e

A anothe oxampk | condler +he foliowha
'?)’Q-f—gmemem:(r p/. L= PrewﬂOUﬁ %,,Ler(y.:

|

| —+hat

 Ceaveh /‘Cey» that doec wot g"ncL%c{é a ' candiAate /Cea

We Drecent +he "FO[/LOLOLOO7. CJ]/{-GV&L:

Tre next q/uer(% Chowos l’)ow aacdreaa-ﬁe. oTeVa'&?:n.s Car)

»
v

ééLéCT Pl c{'ho-
nitler e £.ag¢ >
Qﬁ do. :

Setect €. dro, cCoonT(+))
. 'FRObj Employees €
WiHere €. age >0

C’,Roup BY E.dno.
Cluoct err%’:«ﬁa Ce alco T portant Yﬁar cwn Tndex on a

95, an. Gnhdex T which several data entries can
bave +he Larme [{57 Va,cuvé. “lo @L&L&f‘rq‘{:c ’}ﬁ)ﬂ /Do?n'bj

SELecT E.dn0
"FRO[\"] nglo7ce£ E
Witlere = Lﬁololoﬁ-.—’; ﬁs%amp‘g;.

Qﬂ%u,(e;ncg_ Hoe C%O?CQ_ QJ/‘ ?ﬂde/\ﬁe‘s:

SeLecT E-cl o, ODUNTC"“)
FRov 6mp[OL1ee§ £

C‘:’ROUP‘ BY E.dno.
,Tr)de,)c gpeao]c?c(r(;on g Sgg?h:lcqu:

The Sgu :1999 Standard does rot Telude v

Scanned by CamScanner

i

f
|
|
!

| gtart ement ,'QD,

Crea-f:—f’nﬁ or chaF‘Fﬂ?, Frcdes

Structuves.

CReATE 1INDex lmcfﬁﬁagg:lfna-. onl S'L‘uclen’h“

WITH STrRucTORe = BTRES>

Key = gage;ﬁPa)-

INDEXED ceQueNnTIAL Access * ME TH ODE (18 AN z-

e data. entres of the TSHAN Grdex ane tn the
leap pages o the tree and addfional overflow pages

chafned to come leap page- The ISHM) shrchire te
Com;de{_e%‘ 547515(752 and —fac?&pf-@g guwln. VQOLD Jng

| [

{

q?hcmtljb&tbns.
! /

l Non - lea
{ Paag_& ~ N
| [- - - N
| T 71
D - ;\3 R
B U \, /YN, 7 ;/,/,\!;\ v s B
[f.ﬂd '_:L__J D""‘:l i:j--—uf“ \j;:tag '
Fc\f’f'i D D
(C Overflos f»[:l NN sl
0 ”Lfnmﬁ.vi: Fa,ac/g

recties . leof [ogec W file % o i g
'Paﬁe" are allocoected ceqgpren {—zgauﬁg and corted e Learcl

|

|

|

!! Each. 4yee mde T a Aa}c Pouae)q,)a; all —the decten

/K67 value . These addftfonal PRget ave Lo efmm
Corlews an

@W,F[,ow aveq. rD&:'ﬁC« F’a‘aw

|

:[—,ch ex '{}C?(ﬂ (T § f

UCRCA i
]

Ove v ’[low \’
(-~

L ———— T —
Scanned by CamScanner

The bast Olﬁerarét?on.g of Frcertion, deleton » aryd cearcl,

[are atl gudte gﬁafﬁ bt forward. For an e%aﬂ"?

| Celeckiy, cearcl s, woe start atll the woot wode arid
AeternPre which. Subtree to cearch. by 2 wmﬁ' the
| ek en cearch »f—f’e[d of ﬁ?ven vecord wtth the ﬁ”;//
values @ +he mnode. : -

| hle aecurmne that each [ea/, page @7 condcain. {woo

€n—£'rtpag, CLDQ,?/L\S’ [9) over--locd Fc(ﬁ eL Can éas 197, Z/Q-VeZOF,

e[
N

-
b l'agﬂ 15 ijé’?’l

/
1= p— » | Lo x % e
ieal Lo 2 B S e A e e

Root ~

51

:

! 63 I q* [

#
55

F:fcaz Sam’?]ﬁ LLANM) Tree.

Non — |ea_,!

PMC;

U

ket 1o |5 [aot [a| [257
o o o

| pages

2=

N

AT '.3 (2
("

Scanned by CamScanner

©

i O'ZV—fqu.} Po“a"/ég Lockfcg» (onelder <005 ! ¥
!s Clg[,é‘f‘er;

Once e 121 :I'i?[e fe created, Crcerls and

}%ﬁag& %{77 “the corrtersts ’/Ef Leof faﬁest. 4 consegpene
VZT/’L&(JJ cheins could

rrede D the Loz

\

1)? 65? ﬁc < 5 ')
,zoi thic d g+ s ot L.orﬁ

‘)AQVE,,OF DL%' a mOe. O/l L?r)gef‘l:g are

| tﬂﬂ —Fté;/)é'
[6&.‘\{' . —_[-F'é/sel C/l")o:?r‘) £ Can Cfgnf%’;&ntéy‘ O.ﬂfbb =

-

oI
tp Tetrewe o vecovd Lecovse Ahe ovffﬂaw <

Loell whhen ihe geafc}l ?efég

has 4o be seorched o

+o LhTe Lea'f'

Tre {ad\r At 00(7_ lecf- paget ore mOcL:}Zf‘ecJ
alee bhos oan %, Fo,fan-& odvaurtoge T4, ";e/gfec/é 4o
Conuatrent occg . When a poge T accecsed, Tt ik
tyttally Cloked” Ly the weguestor 4o encuve that
Tt T¢ vok Comcurre/tf%. ’nOthjflacc/ 107 other Users

f oF the 'Fofﬁe, Pn the 1SAM 8‘(1%5&"%, sThee we know

iawa;t Trnder. — level ?a_a—gg awe nrever rnodfld, we can
l'ga.}eur omts the Locktng. step. Not Locf«fo? Pndy el
| Pages 7e an Fporlant advardeg op iean oyer
;aﬁmm?c hrudre ke oo Bt dree . AL deda

| dfctAbudion and Stz ore relodively. sttt cohi2

1: rOHeans O\/@r‘fbom hatthe are rove, 1541 maf'rb be

|

preferable to Bt trees bue & adaniage

? D Trees . N ynvAmMIc TDEX CTRucTLE, - —
| B
o shodi chudare saele on e Doam gy

Scanned by CamScanner

3

s

R

i ﬁwﬂze,r.é igmm +he {->rolotcm_ that Lon !
ZTOCQSD Léadtr)?‘ 'L‘D

ovef-'ﬁfouo

 Poor performance.Thfe P
%de.veLOFmthE of rmore %léx?b
that adfust ﬁrace][uLLyL to b
Bt bree search chructue, ohfe

;:laafancacl tree. T
“L"’Wé_ Cearcln and the Leaf

Ctﬂo-Pf)S‘ can. Aeve,&o’p au “+he #[6

rObLem o

le. » cjynam?c Shuchms
ng@ffg ar)c/ A@L&f&g. he

h Fs u:)tocfe7~ lﬁéed_, e a
des divect

tHvat ed the

el e @nternal no

(-
Pol
o des con tafn Aata 6/‘)76’765:

To —etrTeve all Leaf Faﬁes efffu%nfﬁf,m%’, have +o

Nk them vefrg. page pofiters: Vs argan&f’n?
z'tbem Thto a cloub(# Lenked Lat, we can eaﬁLj/
i—frrauerse the <teguerce Cf Leaf poges Cgomehgmes
jCalleaaf +e Cequeence get) Gn Lthenr Azreckon . THfs

ebue c‘{Z;,'ré Fe GELL(L:S’H&'&C?C/ beloco.
r! \Z/B ') . =
Tndex enines

-~

(To direct 555\»/5/1)

/ N\
/ ’ \,
R _Lna'e}x

N

//' ‘\‘\ :

o — e
‘| ‘/ v f f/ﬂ Data enfres
’ [r .J L__' . C‘Sef«'/«wncc Set ™) _ﬁr
| :
{‘ Fig = Structiore G a B+ Tree.

- The -'Fouow?r)?, cave Some @/‘“ the math chavractericts

|
;’ % a B-)" T'Teﬁ:
Lo @peb’aﬂ(:fbns (Trsert, delete) on the trec Kep Tt

‘; ba[ancaJ .
Scanned by CamScanner

*\\ _M--—""‘"« ‘6 J
U S
AT r\?mum OCcu,Far)ad.. gdﬂ &0 PerCefL'ﬁ' ﬁfz‘ar
:f‘OV’ each node QKCLF{T the oot ’I[‘ dg&:&an/

a | ten
lfdo*?&hm Tx %QP(L‘T)M’EGCJ ,Hougever‘ e/(//’&bn Te Oyt

T plorment edl o <Brply Looding the deda entrif
the —Tee &4

[0V} r
emov?r,@ U, oPhout aAJug'l'l”a‘
| needed -to Ca‘f«tar“avt-l,—ee -the ¢co Fcrcwfkb Oc,owfaOCfﬁ"J

Pemece ffles tiphaly quow cober Abon sbriok

Smrd’“""ﬁ for vecord zq/u%/‘fz& Juet @ traversal
-—f—rom ‘?:b)e o0t “+to CLFFYDTDWOC!‘G Lﬂl‘f' e qeder-bo

Lenad—th, o(r a fackﬁy, ;F,OM %C oot to o Le,ccf —-an#

leafs becavee +he tree @ b@lmcec/._m the L)wam,—
IQI the -bree . '

'r e U bﬁ&cfyﬂ B+ -treec @ ohe) @m% Node
1(,004%?05 m enties , where deme o . The wvaluwe A
% a parameler ©f S+ Teee , called Hhe ordes of%é

‘b’eagaf)ci A @ Méeasure Of Ca{)qad:a e)d. 'b'ee hode 7]')¢

| voot node 4OY>L‘1" CK&F{TDO +o thPe recgremept

o ‘)
on Number Od—- %%%j‘for 't‘ﬁse 7@0_(7) CE_(T L @D
' ap)
fereq/u,%féd +hat < m < Qd. FL;M

} _ a % Le. OJ- vecords T o PAQ:L‘CA ‘7[1’
equen
2 Sor-ted qccece ““C T po rtant | mi’mﬁa_?n% Héf ’

d 2 Bt Tog,
Andex UL data geeords ctored au Aata entrfe,

/@ almoct always 5ernom *e koa‘mlc‘”’?ﬂ‘?’ a
| stoned frler B drees ave oeualip alia prefoy

Scanned by CamScanner

l

|
| R
g

b et

:t;.—vmlgﬁl\/l ?ﬂo’exf’n% becowse tnserts Y€ hand (g4
thalns . tlowever, ?.)U-H.,C

Caracz—fuwﬁ« ST ot @Ver{*L@w
atacet 5?56 and c{?&ffﬁbuﬁz‘?on remalkn 7/aj‘,{7' sHatiz,

not be a nf)odpoa" ?’Oblé’n'),ASa

g+ Treecs cwe Lc e% 1o fe"faf”l

A
Ovacﬂooo ¢ headiing M-

Cacnem[‘ ule > however,
bettenr +han ,DSAN]'

Tormat of a Node: | i)
T\lorzr—Lea—f— nodeg L/OCL)‘f'A- 2 ‘?OCJ&X emLﬂes contcin

N+ Fo?o—terg to cbPldren. . Pofnter Pe

'_Cu.b-{:‘re@ Tn (;Ol/\fch a},ﬂ —ﬁ% I/Q,L{,Leg l{, aure Su.cH ’Hwa’k‘

Kgz k <IKT+1. Fov (eadﬂ hoa[_b&g enfhﬂQaA are Aencitzd

L ks veuad - Juet ox n 2LAM Lea’f‘ nodes

condafn dJdotx entries. ’ﬂ;uusj e lecwvesr /’fc)rm c

?cbu Core [~>e U;Cfic':{r +to armccoer frar)ge

| gg%eo@ s LOh
q,u_er?fzs »ed J—‘? e fo nf&dr .
| j,t’i. ;f;[oelc(beffd? TN c/eXG’c/ e od« —'ﬁﬂoxea(lel/Lfa f'Ll., +lw_,z(.

Thdex ernties oPLL be @/\ -’{—Pxed [enﬁ%;otﬁ;erwﬁsej

coe bave variable ,el’)a«% records . T ofihe,r Case e

R+ +tree. acan ?—ﬁgeﬁ-/i ..’oe, l/toeuDec’ ag Q%Dle é)d Yé€clords,

HD— leat- ==t do not cortatn the actual dade records,
then -the B+ -j(:ree Es Crndecd a ’1’%0(8 odw rgwrds Hhat

e deknck from the frle that conteing the datal

14 the leaf pages contedn deoda wecorde o then a

,‘F'p[e Lonafne the 2+ tree ar wel cu the data.

Scanned by CamScanner

potnts o &l

	- Applications of Database System
	1. University 2. Banking 3. Hospital 4. Telecommunication 5. Finance

	- History of database
	- File System vs Database system
	* Drawbacks of File Processing System
	d. Data Isolation e. Data Security f. Difficulty in accessing the data
	b. Data Inconsistency:
	c. Data Integrity:
	d. Data Isolation:
	e. Data Security:
	f. Difficulty in accessing the data:

	- View of Data
	- Data abstraction
	- Need for the data abstraction
	- Levels of abstraction
	1. Physical Level 2. Logical Level 3. View Level
	2. Logical Level
	3. View Level

	- Instance
	- Schema/Scheme
	1. Physical Scheme 2. Logical Scheme 3. Sub Scheme

	- Data independence
	1. Physical data independence 2. Logical data independence
	2. Logical Data Independence:

	- Data Models
	1. Object based data model 2. Record based data model 3. Physical data model
	E-R Model (Entity-Relationship):
	2. Record based data model:
	a. Hierarchical model b. Network model c. Relational model
	b. Network Model:
	c. Relational Model:

	- Database system structure:
	1. Database User 2. Database Administrator
	a. Native User (Unsophisticated) b. Application Programmers
	a. Native User (Unsophisticated):
	b. Application Programmers:
	c. Sophisticated User:
	d. Specialized User:
	2. Database Administrator (DBA):
	* Functions of DBA
	b. Storage structure of access method definition:
	c. Physical organisation modification:
	d. Granting authorization for data access:
	e. Regular Maintenance:
	ii. Monitoring the jobs:
	iii. Monitoring the disk space:

	- Database Architecture:
	1. Query processor 2. Storage manager
	a. DML Compiler:
	b. DDL Interpreter:
	c. Query evaluation engine:
	2. Storage manager:
	a. Buffer manager:
	b. File manager:
	c. Authorization & Integrity manager:
	d. Transaction Manager:

	- Database Design
	1. Requirement Analysis (Data Gathering)
	3. Logical Design (Relational Model)
	5. Physical Database Design (index, clusters etc)

	- ER Model beyond ER Design
	- Additional features of ER model
	1. Key constrains 2. Participation constrains 3. Weak entities 4. Class hierarchy
	1. Key Constraints:
	2. Participation constraints:
	3. Weak Entities:
	4. Class Hierarchy:
	a. Generalization b. Specialization
	b. Specialization:
	i. Overlap Constraint:
	ii. Covering Constraint:
	5. Aggregation
	- Features of Aggregation
	6. Key constraints for ternary relationship

	- Conceptual design with the ER Model
	1. Entity vs Attribute

	
	2. Entity vs Relationship

	 (1)
	3. Binary vs Ternary

	 (2)
	4. Aggregation vs Ternary

	1. Relational Schema 2. Relational Instance
	- Basic terminology
	1. Relation:
	2. Attribute
	3. Domain
	4. Degree of relation
	5. Cardinality of a relation

	- Integrity constraints over relations
	- Legal instance
	- Key constrains
	- Types of key constraints:
	5. Foreign key 6. Composite key
	2. Primary key
	Condition for primary key
	3. Composite key
	4. Super key
	5. Alternate Key (Secondary key)
	6. Foreign key (Referential key)

	- General constraints
	1. Table constraints 2. Assertions
	2. Assertion

	- Enforcing integrity constraints
	- Logical Database Design
	1. Mapping of entity set into tables
	3. Mapping relational sets with participation constraints into table
	5. Mapping weak entity into table
	7. Mapping ER diagram with aggregation into table
	Procedure to map entity set into table

	2. Mapping the relationship set (without constraints) into table
	Mapping procedure

	3. Mapping relationship set with key constraint into table
	Mapping procedure

	4. Mapping relationship set with participation of constraints
	Mapping procedure

	5. Translation weak entity into tables
	Mapping procedure

	6. Translating class hierarchies into table
	Method I
	Method II

	7. Translating ER Diagram with aggregation into table

	- Introduction to views
	- Working with views
	- Syntax for creating views
	i. Creating view: Emp_DeptV
	ii. Updating view
	iii. Altering view (adding a column) - E_Sal
	iv. Drop view

	- Advantages of Views:
	- Updateable views:
	- Relational Model
	1. Relational Algebra 2. Relational Calculus
	2. Relational Calculus

	- Relational Algebra
	- Fundamental operations of relational algebra
	1. Selection (𝝈) 2. Projection (𝝅) 3. Set operations (Union, Intersection, Difference)
	1. Selection (𝝈)
	2. Projection (𝝅)
	3. Set operations (Union, Intersection, Difference)
	𝜋E_Name Emp ∩ 𝜋Name Manager
	𝜋E_Name Emp – 𝜋Name Manager
	4. Rename
	5. Division
	6. Joins
	a. Conditional Joins (⋈C) b. Equi Joins (⋈=) c. Natural Joins (⋈)
	a. Conditional Joins (⋈C)
	b. Equi Joins (⋈=)
	c. Natural Joins (⋈)

	𝜋 S_Name ((𝜎 B_ID = 102 Reserves) ⋈ Sailors)
	𝜋 S_Name ((𝜎 Colour = ‘Red’ Boats) ⋈ Reserves ⋈ Sailors)
	𝜋 Colour ((𝜎 S_Name = ‘bb’ Sailors) ⋈ Reserves ⋈ Boats)
	𝜋 S_Name ((𝜎 Colour = ‘Red’ Boats  𝜎 Colour = ‘Green’ Boats) ⋈ Reserves ⋈ Sailors)

	- Relational Calculus
	1. Tuple Relational Calculus (TRC) 2. Domain Relational Calculus (DRC)
	Syntax:
	Q1: Find S_No, S_Name from D_No = 20
	Q2: Find the names of male students in D_No = 20
	Q1: Find loan details of loan amount > 2000
	Q2: Find the names of all customers who have a loan from the branch ‘Kachiguda’
	Q3: Find the customers who have account or loan or both

	2. Domain Relational Calculus
	Q1: Find the name and address of employees whose E_Name = ‘Raj Kumar’
	Q2: Find names of employees working in D_No = 10
	Q3: Find names of employees who are not managers
	Q4: Find names of employees working in HR department

	- UNIT - III SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers and active data bases. Schema Refinement: Prob...
	-
	- (1)
	- Forms of basic SQL Query
	- Query:
	1. Select Clause 2. From Clause 3. Where Clause
	2. From clause
	3. Where clause

	- Examples of basic SQL queries
	- Aggregate operators (Function)
	1. count () 2. max () 3. min () 4. sum () 5. avg ()
	Consider a sample relation emp to demonstrate the aggregate functions.
	Ex:
	Ex: (1)
	Ex: (2)

	- Null Values:
	- Comparing null values
	- Logical connectives AND, OR, NOT with null values
	- Disallowing/Restricting null values
	Nested Queries & Co - related Nested Queries
	1. Nested Query
	Q1: Find S_ID of students who enrolled course ADS or DBMS
	Ans: Inner Query:
	Main Query:

	Q2: Find the S_Name of students who enrolled the course DBMS or JAVA
	Ans:

	2. Co - related Nested Query

	- Triggers and active database
	1. Triggers
	i. An event ii. A condition iii.An action

	- Types of triggers
	a. Before triggers
	b. After triggers
	c. Row-level triggers
	d. Statement level triggers

	- Creation of triggers
	- Working with triggers
	Ex1: //Consider a trigger: update trigger
	Ex2: //Create a trigger After_Insert
	Ex3: //Create a trigger Before_Delete

	- Applications of triggers
	- Limitation of triggers
	2. Active database

	- Designing active database
	- Complex Integrity Constraints (IC’s) in SQL
	1. IC’s over a single relation (table constraint) 2. Domain constraint
	1. IC’s over a single relation (table constraint)
	Ex:

	2. Domain constraint
	Ex:
	Ex: (1)

	3. IC’s over multiple relations (Assertion)
	1. Set operations (Union, Intersection, Difference)
	𝜋E_Name Emp ∩ 𝜋Name Manager
	𝜋E_Name Emp – 𝜋Name Manager

	- Schema
	- Redundancy
	- Problems caused by redundancy
	1. Wastage of storage space 2. Inconsistency of data 3. Anomalies (Insert, update & delete)
	2. Anomalies
	a. Insert Anomalies b. Delete Anomalies c. Update Anomalies
	a. Insert Anomalies
	b. Delete Anomalies
	c. Update Anomalies
	3. Inconsistency

	Functional Dependencies (FD)
	- Types of FD’s
	1. Trivial FD 2. Non-trivial FD
	2. Non-trivial FD

	- Reasoning about FD’s
	- Closure of set of FDs
	1. Reflexivity
	2. Augmentation
	3. Transitivity

	- Additional rules to find closure of set of FDs
	1. Union
	2. Decomposition
	Ex 1: R (A, B, C) A  B, B  C A+: ABC
	C+: C

	- Normalization
	- Normal form
	- Types of normal form
	1. First Normal Form (1NF) 2. Second Normal Form (2NF) 3. Third Normal Form (3NF)
	6. Boyce-Codd Normal Form (BCNF or 3.5NF)
	2. Second Normal Form (2NF):
	i. Partial dependency
	ii. Prime attribute
	iii. Non - prime attributes
	iv. Decomposing a relation to be in 2NF

	3. Third Normal Form (3NF):
	Transition Dependency
	Ex: Consider a relation R with attributes ABCD holding the following FDs AB  C, C  D

	4. BCNF (Boyce-Codd Normal Form):
	Ex: Consider a relation R with R(ABC) & FDs

	5. Multi Valued Dependencies (MVD) & Forth Normal Form (4NF):
	MVD
	Ex: Consider a relation given
	Ex: Consider a relation given (1)
	Ex: Consider R(ABCD) which hold FDs A  BC

	6. Join Dependencies & Fifth Normal Form (5NF):

	- Decomposition
	- Problems related to decomposition
	1. Lossless join decomposition 2. Dependency preserving decomposition
	v. Rules to check whether a relation is lossless or not:
	a. attr(R1) ∪ attr(R2) ∪ … ∪ attr (Ri) = attr(R)
	b. attr(R1) ∩ attr(R2) ≠ 0
	c. attr(R1) ∩ attr(R2) = attr(R1) or attr(R2)
	Ex 1: Consider a relation R (ABCDE) which is decomposed into R1(ABC) & R2(ADE) having the following FDs over R
	Find whether this decomposition of R is lossless or not

	2. Dependency preserving decomposition

	- UNIT - IV Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Pro...
	-
	- Transaction concept
	- Transaction operations
	- Transaction properties
	1. Atomicity
	2. Consistency
	3. Isolation
	4. Durability

	- Transaction state
	1. Active state 2. Partially committed state 3. Failed state 4. Committed state
	1. Active state
	2. Partially committed state
	3. Failed state
	4. Committed state
	5. Abort state
	6. Terminated

	- Schedule
	- Types of schedules
	1. Serial schedule 2. Non-serial schedule
	1. Serial schedule
	Ex: Consider a schedule S1 with 2 transaction T1 & T2

	2. Non - Serial schedule (Concurrent or Interleaved)
	Consider a schedule S2 as given

	- Serializability
	- Types of serializability
	1. Conflict Serializability 2. View Serializability
	* Conflict equivalent
	* To check conflict equivalent of schedules:
	Consider 2 schedules S1, S2 given
	2. View Serializability
	* View equivalent
	* Conditions to check view equivalent

	- Testing of serializability
	i. Algorithm for creating a precedence graph:
	Ex1: Consider a given schedule S1. Check whether S1 is conflict serializable or not
	Ex2:
	Ex3:

	- Recoverability
	Ex: Consider a given schedule S1
	Ex:

	- Cascading roll back
	- Cascade less schedule
	- Concurrency control protocol
	1. Lock based protocol 2. Timestamp based protocol 3. Validation based protocol
	1. Lock based protocol
	* Types of locks
	a. Shared lock(s) b. Exclusive lock(x)
	b. Exclusive lock(x)
	* 2 Phase Locking (2PL)
	a. Growing phase b. Shrinking phase
	* Types of 2 Phase Locking of lock-based protocols
	d. Conservative 2 phase locking
	• Advantages
	• Disadvantages
	b. Strict 2 phase locking
	c. Rigorous 2 phase locking
	d. Conservative 2 phase locking (1)
	* Lock conversions
	* Graph-based protocol (Tree locking protocol)
	* Working of graph-based protocol
	2. Timestamp based protocol
	* Timestamp
	a. System clock b. Logical counter
	b. Logical counter
	* Types of timestamps
	a. RTS
	b. WTS
	* Working of timestamp ordering protocol
	II: When a transaction (Ti) issue a write operation on X

	- Validation based protocol:
	a. Read - Read b. Validation - Validation c. Write - Write
	b. Validation phase (Ti)
	c. Write phase (Ti)
	1. Start (Ti) 2. Validate (Ti) 3. Finish (Ti)
	2. Validate (Ti)
	3. Finish (Ti)

	- Working with timestamp-based protocol
	- Validation test
	Validation test for T1, T2:
	Ex: Consider a schedule S1 with T1, T2

	- Multiple granularity
	- Working of granularity hierarchy
	- Implementation of locking (processing lock and unlock requests by lock manager)
	Lock table (Hash table)

	- Recovering techniques
	- Failure with loss of non-volatile storage:
	* Dump process:
	Drawbacks of dump process
	- Remote backup system
	Fig: Remote backup system
	- Design issues of remote backup system

	- (1)

