

VALUE ADDED COURSES CONDUCTED BY THE INSTITUTION

Course Year

No. of

Time

Offered Duration

No.

Students

Attended

CRT Programme 22-05-2023 to 27.05.2023 2 1 Week 280

CRT Programme 29-05-2023 to 03.06.2023 2 1 Week 190

CRT Programme 23.11.2021 to 26.11.2021 1 1 Week 320

Python Programming 12.12.2022 to 18.12.2022 1 2 Week 160

Java Programming 21.03.2022 to 26.03.2022 1 1 Week 240

Implementation Of Image Processing

Concepts For Real time Applications

Using MATLAB 2021 1 6 Weeks 25

Sketch with Arduino 2022 1 4 Weeks 30

VBB enabled Projects using Arduino 2021 1 3 Weeks 25

Image Retrieval Process using

MATLAB 2021 1 3 Weeks 31

STARTS ON September 19, 2021

SLOT-I REGISTRATION OPEN

Coordinators Convener Principal

Dr.N.C.Sendhilkumar Prof.k.Ashok Babu Dr.G.Suresh

Dr.P.Mukunthan

Contact: 9443968958,9894145701

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

HANDS ON TRAINING COURSE

ON

IMPLEMENTATION OF IMAGE PROCESSING

CONCEPTS FOR REALTIME APPLICATIONS USING

MATLAB

Registration : Rs.150

Course Duration : 24 Hours

Weekend Course (Saturday)

Invited Participants: Third Year ECE, EEE, CSE

Restricted to 25 Participants/Slot

Resource Persons: In-house Trainers

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HANDS ON TRAINING COURSE

ON

IMPLEMENTATION OF IMAGE PROCESSING CONCEPTS FOR REALTIME

APPLICATIONS USING MATLAB

Date: From 19.09.2021 (6 Week Course, Only on Saturdays)

COURSE CONTENTS

MODULE -1

Durations Topics Resource Person

Week 1

Basics on Image Processing

Dr.G.Suresh

Introduction to Image Processing Tools

Types of Image Representation

Waveform and Amplitude Spectrum

 False Contouring

Circular correlation between two signals

Assignment-1

Week 2

Program to Interchage phase between

two images

Dr.N.C.Sendhilkumar

Program to adjust brightness and

contrast level of an image

Histogram Analysis of an Image

Types of noises and removal

Assignment-2

Week 3

Bit-plane slicing of an Image

Dr.G.Suresh

Analysis of Zoom Factors

Image blending

Assignment-3
MODULE -2

Durations Topics Resource Person

 Program to compute the edges

Week 4

watershed transform

Dr.N.C.Sendhilkumar

Program for erosion and dilation then

edge detection

Program to separate R-G-B from RGB

Program to separate Missing R-G-B

from RGB

Code that runs conversion of color

image to YCbCr

Assignment-4
MODULE -3

Durations Topics Resource Person

Week 5

DWT based compression

Dr. G. Suresh

Implementation of Arithmetic Coding

Implementation of Wavelet Transform

Assessment -1

Assignment-5

Week 6

Implementation of Image Retrieval

Schemes

Dr.G.Suresh

Dr.N.C.Sendhilkumar

Implementation of Image Segmentation

Schemes

Assessment -2

Conclusion

1

S

HANDS ON TRAINING COURSE

ON

IMPLEMENTATION OF IMAGE PROCESSING CONCEPTS

FOR REALTIME APPLICATIONS USING MATLAB

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

2

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

HANDS ON TRAINING COURSE

ON

IMPLEMENTATION OF IMAGE PROCESSING CONCEPTS FOR REALTIME

APPLICATIONS USING MATLAB

Date: From 19.09.2021 (6 Week Course, Only on Saturdays)

COURSE CONTENTS

MODULE -1

Durations Topics Resource Person

Week 1

Basics on Image Processing

Dr.G.Suresh

Introduction to Image Processing Tools

Types of Image Representation

Waveform and Amplitude Spectrum

 False Contouring

Circular correlation between two

signals

Assignment-1

Week 2

Program to Interchage phase between

two images

Dr.N.C.Sendhilkumar

Program to adjust brightness and

contrast level of an image

Histogram Analysis of an Image

Types of noises and removal

Assignment-2

Week 3

Bit-plane slicing of an Image

Dr.G.Suresh

Analysis of Zoom Factors

Image blending

Assignment-3

MODULE -2

Durations Topics Resource Person

 Program to compute the edges

3

Week 4

watershed transform

Dr.N.C.Sendhilkumar

Program for erosion and dilation then

edge detection

Program to separate R-G-B from RGB

Program to separate Missing R-G-B

from RGB

Code that runs conversion of color

image to YCbCr

Assignment-4

MODULE -3

Durations Topics Resource Person

Week 5

DWT based compression

Dr. G. Suresh

Implementation of Arithmetic Coding

Implementation of Wavelet Transform

Assessment -1

Assignment-5

Week 6

Implementation of Image Retrieval

Schemes

Dr.G.Suresh

Dr.N.C.Sendhilkumar

Implementation of Image Segmentation

Schemes

Assessment -2

Conclusion

4

DEMONSTRATIVE MODE

SIGNAL AND IMAGE PROCESSING

Fourier Transforms

Every signal can be written as a sum of sinusoids with di®erent amplitudes and

frequencies. The MATLAB command to compute the Fourier Transform and its inverse

are respectively fft and ifft, for example:

>> x = rand(1,10); % suppose 10 samples of a random signal

>> y = fft(x); % Fourier transform of the signal

>> iy = ifft(y); % inverse Fourier transform

>> x2 = real(iy); % chop off tiny imaginary parts

>> norm(x-x2); % compare original with inverse of transformed

The fft is the abbreviation of Fast Fourier Transform. This algorithm implements the

discrete Fourier transform to transform data from time into the frequency domain. The

study of this algorithm is normally covered in a good linear algebra course. First we give

an example of the meaning of the Fourier transform before showing how Fourier

transforms can be used to filter noise from signals.

 Waveform and Amplitude Spectrum

Suppose we sample a signal during 4 seconds, at a sampling rate of 0.01:

>> dt = 1/100; % sampling rate

>> et = 4; % end of the interval

>> t = 0:dt:et; % sampling range

>> y = 3*sin(4*2*pi*t) + 5*sin(2*2*pi*t); % sample the signal

A natural plot is that of amplitude versus time:

>> subplot(2,1,1); % first of two plots

>> plot(t,y); grid on % plot with grid

>> axis([0 et -8 8]); % adjust scaling

>> xlabel('Time (s)'); % time expressed in seconds

>> ylabel('Amplitude'); % amplitude as function of time

With the Fourier Transform we can visualize what characterizes this signal the

most. From the Fourier transform we compute the amplitude spectrum:

>> Y = fft(y); % compute Fourier transform

>> n = size(y,2)/2; % 2nd half are complex conjugates

>> amp_spec = abs(Y)/n; % absolute value and normalize

To visualize the amplitude spectrum, we execute the following commands

5

>> subplot(2,1,2); % second of two plots

>> freq = (0:79)/(2*n*dt); % abscissa viewing window

>> plot(freq,amp_spec(1:80)); grid on % plot amplitude spectrum

>> xlabel('Frequency (Hz)'); % 1 Herz = number of cycles/second

>> ylabel('Amplitude'); % amplitude as function of frequency

On the amplitude spectrum we see two peaks: at 2 and 4. The location of the peaks occurs

at the two frequencies in the signal. The heights of the peaks (5 and 3) are the amplitudes

of the sines in the signal.

%Program:

x = rand(1,10); % suppose 10 samples of a random signal

y = fft(x); % Fourier transform of the signal

iy = ifft(y); % inverse Fourier transform

x2 = real(iy); % chop off tiny imaginary parts

norm(x-x2); % compare original with inverse of transformed

dt = 1/100; % sampling rate

et = 4; % end of the interval

t = 0:dt:et; % sampling range

y = 3*sin(4*2*pi*t) + 5*sin(2*2*pi*t); % sample the signal

subplot(2,1,1); % first of two plots

plot(t,y); grid on % plot with grid

axis([0 et -8 8]); % adjust scaling

xlabel('Time (s)'); % time expressed in seconds

ylabel('Amplitude'); % amplitude as function of time

Y = fft(y); % compute Fourier transform

n = size(y,2)/2; % 2nd half are complex conjugates

amp_spec = abs(Y)/n; % absolute value and normalize

subplot(2,1,2); % second of two plots

freq = (0:79)/(2*n*dt); % abscissa viewing window

plot(freq,amp_spec(1:80)); grid on % plot amplitude spectrum

xlabel('Frequency (Hz)'); % 1 Herz = number of cycles/second

ylabel('Amplitude'); % amplitude as function of frequency
% Filtering Noise from Signals

noise = randn(1,size(y,2)); % random noise

ey = y + noise; % samples with noise

eY = fft(ey); % Fourier transform of noisy signal

n = size(ey,2)/2; % use size for scaling

amp_spec = abs(eY)/n; % compute amplitude spectrum

figure % plots in new window

subplot(2,1,1); % first of two plots

plot(t,ey); grid on % plot noisy signal with grid

axis([0 et -8 8]); % scale axes for viewing

xlabel('Time (s)'); % time expressed in seconds

6

ylabel('Amplitude'); % amplitude as function of time

subplot(2,1,2); % second of two plots

freq = (0:79)/(2*n*dt); % abscissa viewing window

plot(freq,amp_spec(1:80)); grid on % plot amplitude spectrum

xlabel('Frequency (Hz)'); % 1 Herz = number of cycles per second

ylabel('Amplitude'); % amplitude as function of frequency

figure % new window for plot

plot(Y/n,'r+') % Fourier transform of original

hold on % put more on same plot

plot(eY/n,'bx') % Fourier transform of noisy signal

fY = fix(eY/100)*100; % set numbers < 100 to zero

ifY = ifft(fY); % inverse Fourier transform of fixed data

cy = real(ifY);

figure % new window for plot

plot(t,cy); grid on % plot corrected signal

axis([0 et -8 8]); % adjust scale for viewing

xlabel('Time (s)'); % time expressed in seconds

ylabel('Amplitude');

% Matlab code for White Gaussian Noise

clc;

clear all;

close all;

randn('state',0);

x=randn(100,1);

subplot(2,1,1)

plot(x)

xlabel('n')

ylabel('x[n]')

grid

subplot(2,1,2)

hist(x)

xlabel('x')

ylabel('no of outcome out of 100')

title('white gaussian noise')

figure

N=100;

nbins=10;

xmin=-3;

xmax=3;

ymax=1;

7

[y,xx]=hist(x(1:N),nbins);

delx=xx(2)-xx(1);

bar(xx,y/(N*delx))

grid

axis([xmin xmax 0 ymax]);

xlabel('x')

ylabel('PDF,p(x)')

title('white gaussian noise')

8

Example 1:

%this program illustrates false contouring

clc

clear all

close all

a=imread('boat.jpg');

subplot(3,2,1);

imshow(a)

title('original image')

%using 128 gray level

%figure,

subplot(3,2,2);

imshow(grayslice(a,128),gray(128)),

title('image with 128 gray level')

%using 64 gray level

subplot(3,2,3);

imshow(grayslice(a,64),gray(64)),

title('image with 64 gray level')

%using 32 gray level

%figure,

subplot(3,2,4);

imshow(grayslice(a,32),gray(32)),

title('image with 32 gray level')

%using 16 gray level

%figure,

 subplot(3,2,5);

imshow(grayslice(a,16),gray(16)),

title('image with 16 gray level')

%using 8 gray level

%figure,

subplot(3,2,6);

imshow(grayslice(a,8),gray(8)),

title('image with 8 gray level')

Output:

9

original image image with 128 gray level

image with 64 gray level image with 32 gray level

image with 16 gray level image with 8 gray level

Example 2:

%frequency response

clc

clear all

close all

[x y]=meshgrid(-pi:0.09:pi);

z=2*cos(x)+2*cos(y);

surf(x,y,z)

axis([-4 4,-4 4,-4 3])

Example 3:

%frequency response

clc

clear all

close all

[x y]=meshgrid(-pi:0.05:pi);

z=2-cos(x)-cos(y);

surf(x,y,z)

axis([-4 4,-4 4,-0.5 4])

10

Example 4:

%application of circular convolution

x=[1 0;0 0]

h=[1 1;1 1]

x1=fft2(x)

h1=fft2(h)

y1=x1.*h1

res=ifft2(y1)

Example 5:%circular correlation between two signals

clc

clear all

close all

x=[5 10;15 20]

h=[3 6;9 12]

h1=fliplr(h)%fold signal along column-wise

h2=flipud(h1)%fold signal along row-wise

x1=fft2(x);

h3=fft2(h2);

y1=x1.*h3

y2=ifft2(y1)

Example 6:

clc

clear all

close all

%generation of first image A

a=zeros(256);

[m n]=size(a);

for i=110:140

 for j=110:140

 a(i,j)=255;

 end

end

subplot(2,2,1)

imshow(a)

%generation of second image B

b=ones(256);

[m n]=size(b);

for i=110:160

 for j=110:160

 b(i,j)=0;

 end

11

end

subplot(2,2,2)

imshow(b)

%convolution in time domain

c=conv2(a,b,'same');

%multiplication in frequency domain

a1=fft2(a);

b1=fft2(b);

c1=a1.*b1;

d1=fftshift(ifft2(c1));

subplot(2,2,3)

imshow(c)

title('time domain convolution')

subplot(2,2,4)

imshow(d1)

title('frequency domain convolution')

output:

Example 8:

clc

clear all

close all

%generation of first image A

a=imread('boat.jpg');

12

subplot(3,1,1);

imshow(a)

title('original image')

b=imrotate(a,45,'bilinear','crop');

subplot(3,1,2);

imshow(b)

title('45 degree rotational image')

c=imcrop(b);

%figure;

subplot(3,1,3);

imshow(c)

title('cropped image')

Output:

original image

cropped image

Example 8:

%program to interchage phase between two images

clc

clear all

close all

%generation of first image A

a=imread('boat.jpg');

b=imread('lena.jpg');

ffta=fft2(double(a));

fftb=fft2(double(b));

%get the magnitude and phase components

mag_a=abs(ffta);

ph_a=angle(ffta);

mag_b=abs(fftb);

ph_b=angle(fftb);

13

%determine new FFT by interchanging the phase

newfft_a=mag_a.*(exp(i*ph_b));

newfft_b=mag_b.*(exp(i*ph_a));

%reconstruct the original image using inverse FFT

rec_a=ifft2(newfft_a);

rec_b=ifft2(newfft_b);

subplot(2,2,1)

imshow(a)

title('original imageA');

subplot(2,2,2)

imshow(b)

title('original imageB');

subplot(2,2,3)

imshow(uint8(rec_a))

title('phase shifted imageA');

subplot(2,2,4)

imshow(uint8(rec_b))

title('phase shifted imageB');

 Output:

original imageA original imageB

phase shifted imageA phase shifted imageB

Example 9:

% Fourier transform of Fourier Transform

clc

clear all

14

close all

%generation of first image A

%a=imread('boat.jpg');

a=imread('lena.jpg');

[m n]=size(a);

b=fft2(a);

%spectrum of spectrum

c=(1/(m*n))*fft2(b);

subplot(2,2,1),imshow(a),title('input image');

subplot(2,2,2),imshow(uint8(c)+40),title('spectrum of spectrum');

Output:

Example 10

%program to adjust brightness and contrast level of an image

clc

clear all

close all

a=imread('lena.jpg');

[m n]=size(a);

b=double(a)+50;

c=double(a)-70;

subplot(3,2,1);

imshow(a)

title('original image');

subplot(3,2,2);

imshow(uint8(b))

title('brightness enhanced image');

subplot(3,2,3);

15

imshow(uint8(c))

title('brightness supressed image');

d=a*.5;

e=a*20;

subplot(3,2,4);

imshow(uint8(d))

title('contrast increased image');

subplot(3,2,5);

imshow(uint8(e))

title('contrast decreased image');

output:

original image brightness enhanced image

brightness supressed image contrast increased image

contrast decreased image

Example 11:

clc

clear all

close all

I = imread('tire.tif');

K = histeq(I);

subplot(2,2,1);

imshow(I)

title('original image');

subplot(2,2,2);

imhist(I)

title('histogram of original');

subplot(2,2,3);

16

imshow(K)

title('histogram equalizedimage');

subplot(2,2,4);

imhist(K)

title('histogram equalized plot');

output;

original image

0

200

400

600

800

histogram of original

0 100 200

histogram equalizedimage

0

500

1000

histogram equalized plot

0 100 200

Example 12:

% Types of noises and removal

a=imread('dog.jpg');

a=rgb2gray(a);

b=imnoise(a,'salt & pepper');

c=imnoise(a,'gaussian');

d=imnoise(a,'speckle');

%defining 3x3 and 5x5 kernal

h1=1/9*ones(3,3);

h2=1/25*ones(5,5);

%attempt to recover the image

b1=conv2(b,h1,'same');

b2=conv2(b,h2,'same');

c1=conv2(c,h1,'same');

c2=conv2(c,h2,'same');

d1=conv2(d,h1,'same');

d2=conv2(d,h2,'same');

17

figure,subplot(2,2,1),imshow(a),title('original image'),

subplot(2,2,2),imshow(b),title('salt & pepper noise'),

subplot(2,2,3),imshow(uint8(b1)),title('3x3 averaging filter'),

subplot(2,2,4),imshow(uint8(b2)),title('5x5 averaging filter')

%---

figure,subplot(2,2,1),imshow(a),title('original image'),

subplot(2,2,2),imshow(c),title('Gaussian noise'),

subplot(2,2,3),imshow(uint8(c1)),title('3x3 averaging filter'),

subplot(2,2,4),imshow(uint8(c2)),title('5x5 averaging filter')

%---

figure,subplot(2,2,1),imshow(a),title('original image'),

subplot(2,2,2),imshow(d),title('speckle noise'),

subplot(2,2,3),imshow(uint8(d1)),title('3x3 averaging filter'),

subplot(2,2,4),imshow(uint8(d2)),title('5x5 averaging filter')

output:

original image salt & pepper noise

3x3 averaging filter 5x5 averaging filter

18

original image Gaussian noise

3x3 averaging filter 5x5 averaging filter

original image speckle noise

3x3 averaging filter 5x5 averaging filter

19

Example 13:

% bitplane slicing

clc

clear all

close all

a=imread('dog.jpg');

a=rgb2gray(a);

subplot(2,2,1)

imshow(a);

title('original image')

[m n]=size(a);

n1=input('enter the bit plane number (8 to 1 that to be removed:');

s=255-(2^(n1-1));

for i=1:m,

 for j=1:n,

 out_I(i,j)=bitand(a(i,j),s);

 end

end

subplot(2,2,2)

imshow(uint8(out_I));title(sprintf(' plane eliminated is %g',n1))

n1=input('enter the bit plane number (8 to 1 that to be removed:');

s=255-(2^(n1-1));

for i=1:m,

 for j=1:n,

 out_I(i,j)=bitand(a(i,j),s);

 end

end

subplot(2,2,3)

imshow(uint8(out_I));title(sprintf('plane eliminated is %g',n1));

n1=input('enter the bit plane number (8 to 1 that to be removed:');

s=255-(2^(n1-1));

for i=1:m,

 for j=1:n,

 out_I(i,j)=bitand(a(i,j),s);

 end

end

subplot(2,2,4)

imshow(uint8(out_I));title(sprint(' plane eliminated is %g',n1));

20

Output:

original image 6th plane eliminated

7th plane eliminated 8th plane eliminated

Example 14:

clc;

clear all;

close all;

a=imread('boat.jpg');a=imresize(a,[32 32]);

[m n]=size(a);

p=input('Enter the size you want: ');

for i=1:m %loop to extract every row

 for j=1:n %loop to extract every column

 for k=1:p %loop to control the number of replication

 b(i,(j-1)*p+k)=a(i,j); %replication of pixels in row wise

 end

 end

end

c=b;

[m n]=size(c);

for i=1:n %loop to extract every column

 for j=1:m %loop to extract every row

 for k=1:p %loop to control the number of replication

 b((j-1)*p+k,i)=c(j,i); %replication of pixels in column wise

21

 end

 end

end

imshow(a),title('original image')

figure,imshow(b),title('zoomed image')

xlabel(sprintf('zooming factor is %g',p))

Output:

original image

zoomed image

zooming factor is 2

Example 15:

a=imread('lena.jpg');%a=imresize(a,[64 64]);

zooming_factor=input('enter the zooming facttor:');

num=zooming_factor;den=1;

while(num-floor(num)~=0)

 num=num*2;den=den*2;

end

[m n]=size(a);s1=num*m;

re=zeros(s1,num*n);

for i=1:m,

 for j=1:n,

 k=num*(i-1);

 l=num*(j-1);

 re(k+1,l+1)=a(i,j);

 end

end

 i=1;

 while(i<=(s1))

 j=1;

 while(j<=(num*n))

22

 x=ones(num,num);

 for p=1:num,

 for q=1:num,

 c(p,q)=re(i,j);

 j=j+1;

 end

 i=i+1;j=j-num;

 end

 z=ifft2(fft2(c).*fft2(x));

 i=i-num;

 for p=1:num,

 for q=1:num,

 re(i,j)=z(p,q);

 j=j+1;end

 i=i+1;j=j-num;end

 i=i-num;j=j+num;end

 i=i+num;end

 if(den>1)

 m=den;[p q]=size(re);

 a=double(re);

 for i=1:ceil(p/m),

 for j=1:ceil(q/m),

 if(((m*i)<p)&((m*j)<q))

 b(i,j)=re(m*i,m*j);

 else b(i,j)=0;

 end

 end

 end

 else b=re;end

 figure,imshow(uint8(b));

Output:

23

Example 16:

% Image blending

clc

clear all

close all

%c=(1-x)a+xb

a=imread('lena.jpg');

a=rgb2gray(a);subplot(2,2,1);

imshow(a)

[m n]=size(a);

title('Image 1');

b=imread('boat.jpg');

b=rgb2gray(b);

b1=imresize(b,[256 256]);subplot(2,2,2);

imshow(b1)

title('Image 2');

c1=a+b1;

subplot(2,2,3);

imshow(c1)

title('blended Image');

x=input('enter x value:')

for i=1:m,

 for j=1:n,

 c2(i,j)=(1-x)*a(i,j)+x*b1(i,j);

 end

end

subplot(2,2,4);

imshow(c2)

title(sprintf('blended Image of %g',x));

output:

24

Image 1 Image 2

blended Image blended Image of 0.7

Example 17:

%this program is to perform median filtering of the image

clc

clear all

close all

a=imread('dog.jpg');

a=rgb2gray(a);

b=imnoise(a,'salt & pepper',0.2);

b=double(b);

[m n]=size(b);

N=input('enter the window size:');

out_img=b;

if(mod(N,2)==1)

 Start=(N+1)/2;

 End=Start;

else

 Start=N/2;

End=Start+1;

end

if(mod(N,2)==1)

 limit1=(N-1)/2;

25

 limit2=limit1;

else

 limit1=(N/2)-1;

 limit2=limit1+1;

end

for i=Start:(m-End+1),

 for j=Start:(n-End+1),

 I=1;

 for k=-limit1:limit2,

 for l=-limit1:limit2,

 mat(I)=a(i+k,j+1);

 I=I+1;

 end

 end

 mat=sort(mat);

 if(mod(N,2)==1)

 out_img(i,j)=(mat(((N^2)+1)/2));

 else

 out_img(i,j)=(mat((N^2)/2)+mat(((N^2)/2)+1))/2;

 end

 end

end

subplot(1,3,1)

imshow(a)

title('original image');

subplot(1,3,2)

imshow(uint8(b))

title('noissy image')

subplot(1,3,3)

imshow(uint8(out_img))

title(sprintf('median filtered with window size %gx%g',N));

Output:

26

original image noissy image median filtered with window size 5x

Example 18:

%program to compute the edges

clc

clear all

close all

a=imread('lena.jpg');

a=rgb2gray(a);

b=edge(a,'roberts');

c=edge(a,'sobel');

d=edge(a,'prewitt');

e=edge(a,'log');

f=edge(a,'canny');

%b=edge(a,'roberts');

subplot(2,3,1)

imshow(a)

title('original image')

subplot(2,3,2)

imshow(b)

title('roberts')

subplot(2,3,3)

imshow(c)

title('sobel')

subplot(2,3,4)

imshow(d)

27

title('prewitt')

subplot(2,3,5)

imshow(e)

title('log')

subplot(2,3,6)

imshow(f)

title('canny')

Output:

original image roberts sobel

prewitt log canny

Example 19:

%watershed transform

clc

clear all

close all

a=checkerboard(32);

a1=imnoise(a,'salt & pepper',0.1);

b=watershed(a,4);

b1=watershed(a1,4);

subplot(2,2,1)

28

imshow(a),title('original image');

subplot(2,2,2);

imshow(a1),title('noisy image');

subplot(2,2,3);

imshow(b),title('watershed of original');

subplot(2,2,4);

imshow(b1),title('watershed of noisy image');

Output:

original image noisy image

watershed of original watershed of noisy image

Example 20:

%program for erosion and dilation then edge detection

clc

clear all

close all

a=imread('sur.jpg');

b=[1 1 1;1 1 1;1 1 1];;

a1=imdilate(a,b);

a2=imerode(a,b);

29

subplot(1,3,1)

imshow(a),title('original image');

subplot(1,3,2)

imshow(a1),title('erode -thining image');

subplot(1,3,3)

imshow(a2),title('dilate-thickening image');

a3=a-a2;

a4=a1-a;

a5=a1-a2;

figure

subplot(1,3,1)

imshow(a3),%title('');

subplot(1,3,2)

imshow(a4),%title('erode -thining image');

subplot(1,3,3)

imshow(a5),%title('dilate-thickening image');

Output:

Example 21:

%program to separate R-G-B from RGB

RGB=imread('dog.jpg');

R=RGB;

G=RGB;

B=RGB;

R(:,:,2)=0;

R(:,:,3)=0;

G(:,:,1)=0;

30

G(:,:,3)=0;

B(:,:,1)=0;

B(:,:,2)=0;

subplot(2,2,1),imshow(RGB),title('original image')

subplot(2,2,2),imshow(R),title('red image')

subplot(2,2,3),imshow(G),title('green image')

subplot(2,2,4),imshow(B),title('blue image')

output:

original image red image

green image blue image

Example 22:

%program to separate Missing R-G-B from RGB

RGB=imread('dog.jpg');

R=RGB;

G=RGB;

B=RGB;

R(:,:,1)=0;

G(:,:,2)=0;

B(:,:,3)=0;

subplot(2,2,1),imshow(RGB),title('original image')

subplot(2,2,2),imshow(R),title('red missing image')

subplot(2,2,3),imshow(G),title('green missing image')

31

subplot(2,2,4),imshow(B),title('blue missing image')

original image red missing image

green missing image blue missing image

Example 23:

%Code that runs conversion of color image to YCbCr

%read in image filename

%inimage = input('Enter image file name with extension (like jennifer.bmp): ', 's');

%open image file

inimage = imread('dog.jpg');

%display on screen the image

figure(1), imshow(inimage); title('Original Image');

%the command size returns the size of the matrix/image

%A semi-colon suppresses the screen output of the variable

%values, while the lack of semi-colon prints it to the screen

size(inimage)

32

U = rgb2ycbcr(inimage);

figure(1), imshow(inimage); title('RGB image');

figure(2), imshow(U); title('YCBCR Image');

size(U)

%Here pick off the 256x256 luminance part of the ycbcr image

Y = U(:,:,1);

figure(3), imshow(Y); title('Y part of Image');

size(Y)

%Here pick off the 256x256 Cb part of the ycbcr image

CB = U(:,:,2);

figure(4), imshow(CB); title('Cb part of Image');

size(CB)

%Here pick off the 256x256 Cr part of the ycbcr image

CR = U(:,:,3);

figure(5), imshow(CR); title('Cr part of Image');

size(CR)

Example 24:

%dwt based compression

clc

clear all

close all

a=imread('dog.jpg');

[p q r t]=dwt2(a,'db1')

b=[uint8(p),q;r t];

[p1 q1 r1 t1]=dwt2(p,'db1');

b1=[p1 q1; r1 t1];imshow(b);

% b2=[b1,q;r,t];

% imshow(b2);

Output:

33

Example 25:

%C:\Documents and Settings\gsuresh\Desktop\Desktop 09-08-2012\code1

%boat.jpg %lena.jpg

%This program hides a message image in the lower

%bit planes of a cover image

%read in cover image filename

covername = input('Enter image file name with extension (like jennifer.bmp): ', 's');

%read in message image filename

messagename = input('Enter message image file name with extension: ', 's');

%open cover and message image files

cover = imread(covername);

message = imread(messagename);

%display on screen the two images

figure(1), imshow(cover); title('Original Image (Cover Image)');

figure(2), imshow(message);title('Image to Hide (Message Image)');

%change to double to work with addition below

cover=double(cover);

message=double(message);

%imbed = no. of bits of message image to embed in cover image

imbed=4;

%shift the message image over (8-imbed) bits to right

messageshift=bitshift(message,-(8-imbed));

%show the message image with only embed bits on screen

%must shift from LSBs to MSBs

showmess=uint8(messageshift);

showmess=bitshift(showmess,8-imbed);

figure(3),imshow(showmess);title('4 Bit Image to Hide');

%now zero out imbed bits in cover image

coverzero = cover;

34

for i=1:imbed

coverzero=bitset(coverzero,i,0);

end

%now add message image and cover image

stego = uint8(coverzero+messageshift);

figure(4),imshow(stego);title('Stego image');

%save files if need to

%4 bit file that was embedded = same as file extracted

imwrite(showmess,'showmess4.bmp'); %use bmp to preserve lower bits

%jpg will get rid of them

%stego file

imwrite(stego,'stego4.bmp');

output:

Original Image (Cover Image)

Image to Hide (Message Image)

4 Bit Image to Hide

Stego image

35

Email Address Hall Ticket Number
Name of the Student (as per

SSC)
Department Willing to choose to the Course Contact Number

mittureddy2707@gmail.com 18D41A04F9 P.vivek vardhan reddy ECE Yes 9390392706

mohammedadnan2000.ad@gmail.com 18D41A04E0 mohammed adnan ECE Yes 9490074747

neeleshgoud45@gmail.com 18D41A04F2 NEELESH KUMAR GOUD ECE Yes 7993292705

ganeshparitala2701@gmail.com 18D41A04G0 PARITALA GANESH ECE Yes 9121816469

abhishekramavath187@gmail.com 18D41A04N8 Ranavath Abhishek Raj Naik ECE Yes 7780526087

vamshidharreddy709@gmail.com 18D41A04L5
THALASANI VAMSHIDHAR
REDDY

ECE Yes 7095880325

tharunreddy2000t@gmail.com 18D41A04E9 N.Tharun kumar reddy ECE Yes 9652590841

masadiajay@gmail.com 18D41A04D7 Masadi ajay ECE Yes 6303582156

sudheervenkat2000@gmail.com 18D41A04G7 Pirla venkata sudheer ECE Yes 9381785076

manasareddy1813@gmail.com 17D41A0483 Gudipally.manasa ECE Yes 9951456683

varunnaidu1638@gmail.com 17D41A04J0 RAMISHETTI VARUN KUMAR ECE Yes 9278299278

Rishwanth1212@gmail.com 17D41A0408 Angoli Rishwanth Gpud ECE Yes 7036708816

punnakarthik91@gmail.com 18D41A04Q0 PUNNA KARTHIK ECE Yes 8008053834

varshiniamrutha222000@gmail.com 18D41A04H1 AMRUTHA VARSHINI PONNA ECE Yes 7995765935

indrakumardasari571@gmail.com 19D45A0418 D INDRA KUMAR ECE Yes 7680960312

chandu9polo@gmail.com 18D41A04H0 POLOJU POORNA CHANDAR ECE Yes 7995005935

vaishnavipandillaplly27@gmail.com 18D41A04P8 Vaishnavi ECE Yes 8096881024

manasareddy1813@gmail.com 17D41A0483 Gudipally.manasa ECE Yes 9951456683

roshansamala4@gmail.com 18D41A04J8 SAMALA ROSHAN ECE Yes 9985447531

umeshoutlook010@gmail.com 18D41A04F3 P UNESHCHANDRA ECE Yes 7674933730

reddysathwika51@gmail.con 18D41A04M5 Vadyala sathwika ECE Yes 7207000753

nishithamuppa68@gmail.com 18D41A04C2 M Nishitha ECE Yes 9848437534

surepallymounika123@gmail.com 18D41A04L3 SUREPALLY.MOUNIKA ECE Yes 9347128660

surepallymounika123@gmail.com 18D41A04L3 Surepally.Mounika ECE Yes 9347128660

bhavaniyamsani67@gmail.com 18D41A0425 Bhavani yamsani ECE Yes 9912007166

karthikrajpyarsani92@gmail.com 18D41AO4H5 Pyarasani karthik ECE Yes 9553441135

naniraju1436@gmail.com 18D41A04H3 Pusapati Narasimha Raju ECE Yes 9346437530

ashrithputtoju@gmail.com 18D41A04H4
PUTTOJU ASHRITH
CHAITHANYA

ECE Yes 8466833744

aishuckanth01@gmail.com 18D41A04G3 PASULA AISHWARYA ECE Yes 9059558421

Surepallypavan555@gmail.com 18D41A04L4 Surepally Pavan ECE Yes 9966447967

preethiarchu16@gmail.com 18D41A04J9 Sampati archana ECE Yes 6304734126

rangineniaparna@gmail.com 18D41A04J0 Rangineni Aparna ECE Yes 6303011252

nishureddy974@gmail.com 18D41A04F1
NARSAPOLA NISHANTH
REDDY

ECE Yes 7893212245

chandanareddy1307@gmail.com 18D41A04P2 R.Chandana ECE Yes 7569596720

kmadhukar52@gmail.com 18D41A04A5 KONDURI MADHUKAR ECE Yes 8498991740

naveenkumar64242@gmail.com 18D41A04H2 Poshanaboina Naveen Kumar ECE Yes 8247569534

sairohithk27@gmail.com 18D41A04A0 KODAMARTHI.SAI ROHITH ECE Yes 9959311982

devakrishnakanth18@gmail.com 18D41A0461 Deva Krishna kanth ECE Yes 9390662989

chandanareddy1307@gmail.com 18D41A04P2 R.Chandana ECE Yes 7569596720

sarayuredii27@gmail.com 18D41A04F4 PAKALA SARAYU ECE Yes 7675819696

sumanthreddybagannagari@gmail.com 17D41A0419 Bagannagari Sumanth Reddy ECE Yes 9182339625

preetham78333@gmail.com 18D41A04E4 Munagala Sai Preetham ECE Yes 8309102520

ruchikareddy03@gmail.com 18D41A04P4 NANNURI RUCHIKA REDDY ECE Yes 7997078365

harshaaravilli@gmail.com 17D41A0411
Aravilli Venkata Chakra Shree
Harsha

ECE Yes 8121271605

kondalreddy738@gmail.com 17D41A04D1 MAILA KONDAL REDDY ECE Yes 7702261384

abhinavreddy1191@gmail.com 18d41a0431 B ABHINAV REDDY ECE Yes 7675817201

ksandeepreddy8825@gmail.com 17D41A0499 KALLURI SANDEEP REDDY ECE Yes 9100503064

pavankasina29@gmail.com 17D41A04A3 K PAVAN KUMAR ECE Yes 8374483524

nitishkotagiri@gmail.com 17D41A04B7 Kotagiri nitish ECE Yes 8099302677

asairuthwik@gmail.com 18D41A0497
AAVULA SAIRUTHWIK
VAMSHIKAR

ECE Yes 6305585622

sandeepmandadi577@gmail.com 18D41A04D3 MANDADI SANDEEP ECE Yes 9347103346

pasulaakhila2@gmail.com 18D41A04G4 PASULA AKHILA ECE Yes 9381783055

ajayreddyajji143@gmail.com 17D41A0493 JANGA AJAY ECE No 9581568831

ssamhitha56@gmail.com 18D41A04K4 Samhitha ECE Yes 8978895968

bharathsimhareddy786@gmail.com 17D41A04B3 Koppula Bharath Simha Reddy ECE Yes 7799636959

sejaljoshi148@gmail.com 18D41A04K0 Sejal joshi ECE Yes 9393929494

sharathgupta120@gmail.com 17D41A04N4 YAMA SHARATH KUMAR ECE Yes 7036454741

bhavaniyamsani67@gmail.com 18D41A0425 Bhavani yamsani ECE Yes 9912007166

ankithareddygunreddy@gmail.com 17D41A0488 Hundreds Ankitha ECE Yes 7036417013

dendijeevanprakashreddy@gmail.com 18D41A0457 Jeevan Prakash Reddy ECE Yes 9398719612

neeraja2442@gmail.com 17D41A0478 Golla Neeraja ECE Yes 6304445840

kallakurihemanthsai@gmail.com 18D45A0401 KALLAKURI HEMANTH SAI ECE Yes 7382041663

gounisindhu123@gmail.com 17D41A0480 Gowni Sindhuja ECE Yes 9553316488

medipallypranay@gmail.com 17D41A04H4 Pranay Reddy M ECE Yes 9010666382

ar889958@gmail.com 17d41a04f9 INUKOLLU ANIRUDH REDDY ECE Yes 8688610625

bhuvanasri273@gmail.com 17D41A04C6 Lingala Bhuvana Sri ECE Yes 9640475559

ankithkumar7286@gmail.com 17D41A0404 Ageer Ankith kumar ECE Yes 7286923210

aksharalaya8@gmail.com 17D41A0414 B.Laya ECE Yes 7330816770

Nenavathpraveen10@gmail.com 17D41A04F6 NENAVATH PRAVEEN ECE Yes 8186868183

sujithnaik001@gmail.com 17D41A04F7 NENAVATH SUJITH NAIK ECE Yes 6303284211

prashantherra7@gmail.com 17D41A0464 Erra Prashanth ECE Yes 9849269539

madipeddivarshith.99@gmail.com 17D41A04D0 MADIPEDDI VARSHITH ECE Yes 7995734637

harshapawana1385@gmail.com 18D41A04L2 Sunkara. Harsha pawana ECE Yes 7995530648

vamsi.megavath@gmail.com 17D41A04E0 Megavath Sai Vamshi ECE Yes 7893263765

kolukolapallybikku688@gmail.com 19D45A0406 KOLKULAPALLY BIKKU ECE Yes 7995049810

sainath.reddy4242@gmail.com 17D41A04D4 MANDADI SAINATH REDDY ECE Yes 6301809415

vaishnavi.goud06@gmail.com 18D41A04L6 Thalla vaishnavi ECE Yes 8686228893

keerthanas619@gmail.com 17D41A04H1 Peepalpati sai keerthana ECE Yes 7036920436

narendraraju7033@gmail.com 17D41A04J9
REDDICHARLA NARENDRA
RAJU

ECE Yes 8367457033

pavancaeser321@gmail.com 17d41a0461 Durishety Pavan sai ECE Yes 9110747797

reddyrohith217@gmail.com 17D41A0409 Annapureddy Rohithreddy ECE Yes 9182773949

akhillogitla163@gmail.com 17D41A04C7 LOGITLA AKHIL KUMAR ECE Yes 7036944812

dendijeevanprakashreddy@gmail.com 18D41A0457 Dendi Jeevan Prakash Reddy ECE Yes 9398719612

bethapudiraghuvarma@gmail.com 17D41A0427 Bethapudi Raghu varma ECE Yes 8374038521

nagatipavankalyan@gmail.com 17D41A04F2 NAGATI PAVAN KLAYAN ECE Yes 9550308441

keshagoniprasanna123@gmail.com 17D41A04A5 Keshagoni Prasanna ECE Yes 7893421223

arjunreddy8565@gmail.com 18D41A04A3 Kolli Leela Krishna Reddy ECE Yes 6301658801

kumarnikhil0606@gmail.com 18D41A04A6 KOPPU NIKHIL KUMAR ECE Yes 9676685972

kamarsingh881@gmail.com 18D41A0485 K Amarsingh ECE Yes 8340991337

nivas.nlg@gmail.com 18D41A04C4 Maddala Srinivas ECE Yes 9.19642E+11

mohammedsameer902@gmail.com 18D41A04D9 MOHAMMAD SAMEER ECE Yes 9848526190

mahalsasai333@gmail.com 18D41A04C6 MAHALSA SAI DONTHA ECE Yes 9398409172

mnagaadithya8434@gmail.com 17D41A04E8 Munagapati naga adithya ECE Yes 8522962442

pauldayakar6125@gmail.com 17D41A0420 BALUSULA PAUL DAYAKAR ECE Yes 9963968461

bvenkatesh0432@gmail.com 17D41A0432 BOGGAVARAPU VENKATESH ECE Yes 9866278613

koresandhya64@gmail.com 17D41A04B4 Kore Sandhya Rani ECE Yes 9100697924

madduri.sameer39@gmail.com 18D41A04C5
Madduri Venkata Sameer
Kumar

ECE Yes 9849656622

madhavaramsriram@gmail.com 18D41A04P5 Madhavaram sriram ECE Yes 9949089587

anilkumardara222@gmail.com 17D41A0447 D Anil Kumar ECE Yes 9676389440

rajithasatyam2@gmail.com 19D41A0492 Koppula Rajitha ECE Yes 9618101271

sushmareddy320@gmail.com 17D41A04D3 Manda sushma ECE Yes 7013247898

kunchalavenkatesh007@gmail.com 17D41A04C1 Kunchala venkatesh ECE Yes 9182441549

madduri.sameer39@gmail.com 18D41A04C5
Madduri Venkata Sameer
Kumar

ECE Yes 9849656622

lasyavadala@gmail.com 18D41A04M2 V.Lasya ECE Yes 6301636405

nimireddie@gmail.com 17D41A04G1 Nimisha Reddy ECE Yes 8096005406

dathupraneeth@gmail.com 17D41A04M2
TATAVARTHY SATYADATHA
PRANEETH

ECE Yes 9959481749

chilukurisaihiranmaiy@gmail.com 18D41A0439 C. Sai hiranmayi ECE No 6304531337

vinishareddy1287@gmail.com 19D41A04C5 Vinisha ECE Yes 7780578005

bharadwajaenumula@gmail.com 18D41A0468 BHARADWAJA ENUMULA ECE No 8886868673

bgayathri0606@gmail.com 17D41A0434 Bommidi Gayathri ECE Yes 8555088937

gellaharini2000@gmail.com 17D41A0474 GELLA HARINI ECE Yes 9705623567

puneeshwaryerra@gmail.com 17D41A04N5 Yerra Puneeshwar ECE Yes 9652665597

tmraju1999@gmail.com 17D41A04M1 TANGELLA MALLAM RAJU ECE Yes 9533362745

ramadugupranathi@gmail.com 18D41A04H7 R.Pranathi ECE Yes 9290902931

preethichari001@gmail.com 19D41A0405 AERRAGINNELA PREETHI ECE Yes 7095522653

Saichanderrao72@gmail.com 18D41A04N1
VELGAPURI SAI CHANDER
RAO

ECE Yes 9959496360

salgutinikitha13@gmail.com 18D45A0420 Salguti Nikitha ECE Yes 9381459689

kolukolapallybikku688@gmail.com 19D45A0406 KOLKULAPALLY BIKKU ECE Yes 7995049810

Shivaramallenki2001@gmail.com 19D41A0408 ALLENKI SHIVA RAM ECE Yes 9390392076

guntivarun2000@gmail.com 17d41a0489 Gunti Varun ECE Yes 7330752010

bhavanareddy3568@gmail.com 18D41A0420 Bajjuri Bhavana reddy ECE Yes 9381093568

vickyhaldekar@gmail.com 18D41A04G2 Paspolla vikas ECE Yes 7036475271

pramodpadala260@gmail.com 17D41A04G5 PADALA PRAMOD ECE Yes 9640546310

tejaswinireddy0310@gmail.com 17D41A0406 Alugubelly.Tejaswini ECE Yes 9121096309

chindhammahesh17@gmail.com 18D45A0406 CH. MAHESH ECE Yes 9392368955

anilnani1912@gmail.com 18D41A04E2 MOKTHALA ANIL ECE Yes 6305415685

gouds1712@gmail.com 18D41A0481 J SHIVA PRASAD ECE Yes 9640442834

sairohithk27@gmail.com 18D41A04A0 KODAMARTHI.SAI ROHITH ECE Yes 9959311982

arthamsravani@gmail.com 17D41A04N9 Artham Sravani ECE Yes 8106334278

poojithachilukuri2000@gmail.com 17D41A0442 CHILUKURI POOJITHA ECE Yes 8897342191

manoharroyal123@gmail.com 18D41A04H6 R MANOHAR ECE Yes 9703533038

boggitirajeev@gmail.com 18D41A0430 Boggiti rajeev rathan ECE Yes 9502019831

cblue1661@gmail.com 18D41A04K5 Sharat Chandra ECE Yes 9391102328

nagasai313@gmail.com 18D41A04J1
REDROWTHU NAGA SAI
SRAVAN

ECE Yes 9133227319

bsowmya1890@gmail.com 18D41A0429 Sowmya Boddu ECE Yes 9573931880

bhikshapathiyadav1979@gmail.com 19D41A0474 KADARI BIXAPATHI ECE Yes 9398424409

manireddy2366@gmail.com 17D41A04K6 Sankepally Mani kumar reddy ECE Yes 9059527286

maanyaraj21@gmail.com 18D41A04N5 Yata Maanya Raj ECE Yes 9490330204

pallavinari.1999@gmail.com 17D41A04F4
NARAYANAPURAPU PALLAVI
NARI

ECE Yes 8328354990

mounikaborra411@gmail.com 19D41A0434 Borra Mounika ECE Yes 8688272130

shivanigoud688@gmail.com 17D41A04G2 P Shivani ECE Yes 7675877688

sahithireddy2929@gmail.com 17D41A0457 Depa Sahithi ECE Yes 8801518275

divyabolla12@gmail.com 19D41A0432 Bolla Divya ECE Yes 9390057371

shyamreddy6969@gmail.com 19D41A0495 KOTA MEGHA SHYAM REDDY ECE Yes 9849536303

manishgoud578@gmail.com 18D41A04M0 Tolupunoori Maneesh Goud ECE Yes 9515741663

saikumarrepala3@gmail.com 17D41A04K2 Repala Saikumar ECE Yes 9703288155

suppuminnu0418@gmail.com 19D45A0408 Bajjuri Supriya ECE Yes 6305663385

sailakshmanmadala@gmail.com 18D41A04C3 MADALA SAI LAKSHMAN ECE Yes 6303089804

himabindugoud0@gmail.com 18D41A04J5 ROLLA HIMA BINDU GOUD ECE Yes 7386764612

thummalaabhijithreddy@gmail.com 19D41A04H4 THUMMALA ABHIJITH REDDY ECE Yes 7032222509

gundagouthamreddy@gmail.com 17D41A0486 GUNDA GOUTHAM REDDY ECE Yes 9700303589

gundagouthamreddy@gmail.com 17D41A0486 GUNDA GOUTHAM REDDY ECE Yes 9700303589

dineshreddydornala@gmail.com 17D41A0460 Dornala Dinesh Reddy ECE Yes 6300610587

gopaldaspavanipavani@gmail.com 19D41A0457 Gopaldasu pavani ECE Yes 9390865993

nandinireinthala@gmail.com 18D41A04J3 REINTHALA NANDINI ECE Yes 9381965064

archanapuppireddy@gmail.com 17D41A04H6 Puppireddy Archana ECE Yes 6303822602

saikota246@gmail.com 17D41A04B6 Kota sai chandu ECE Yes 9701098400

Tejvardhan119@gmail.com 18D41A0447
CHILKUR TEJA VARDHAN
REDDY

ECE Yes 8639428145

etikyalaarunkumar@gmail.com 18D45A0403 ETIKYALA ARUNKUMAR ECE Yes 7093052335

vinayk8188@gmail.com 18D41A0490 KAMISETTY VINAY ECE No 9110382639

subhash143naik@gmail.com 17D41A0402 Jatavath Subhash Naik ECE Yes 6300101503

bharathkumarsaluvala003@gmail.com 18D41A04J7 SALUVALA BHARATH KUMAR ECE No 7658935412

sanjanabheemreddy21@gmail.com 19D41A0427 BHEEMREDDY SANJANA ECE Yes 9491519071

sindhunamani756@gmail.com 19D41A04C9 NAMANI SINDHU ECE Yes 9515591426

bsowmya1890@gmail.com 18D41A0429 Sowmya Boddu ECE Yes 9573931880

maheshbabukmb2000@gmail.com 17D41A0496 Kalavakuri Mahesh babu ECE Yes 8309919419

kartheekreddy811@gmail.com 17D41A04A4 Kathi Kartheek Reddy ECE Yes 9.19909E+11

tandrasanjanareddy4089@gmail.com 17D41A04L8 T.sanjana ECE Yes 9704420973

muppidipramod619@gmail.com 17D41A04E9 Muppidi pramod ECE Yes 8464085540

jangiliraghavendra2@gmail.com 18D45A0432 JANGILI RAGHAVENDRA ECE Yes 9100461432

saiabhinav.ranga@gmail.com 17D41A04H9 R Sai Abhinav Goud ECE Yes 8179239234

arshsiddique191@gmail.com 17D41A04H7
Quazi Mohammad Abdul
Raheem Siddique

ECE Yes 9553435774

mosesabhishek191@gmail.com 17D41A04N2 Vemuri Moses Abhishek ECE Yes 7036378749

anemonishirisha1234@gmail.com 19D41A0412 Anemoni shirisha mudhiraj ECE Yes 9390968285

tkavya2000@gmail.com 17D41A04L7 T Kavya ECE Yes 9948910614

rahulrangaraj2000@gmail.com 17D41A04J5 Rangaraju Rahul ECE Yes 7386052615

saisridachepalli05@gmail.com 19D41A0441 Dachepally Saisri ECE Yes 7995323325

rahulnaikjaan@gmail.com 19D41A04A0 LUNAVATH RAHUL NAIK ECE Yes 9177157542

buchikundhasainath@gmail.com 19D41A0435 B.Sainath ECE Yes 9542763976

madhavshiva629@gmail.com 17D41A04G9 Pasunuri shiva ECE Yes 8885902922

gayatrisagar2001@gmail.com 19D41A0436 BUDURU GAYATRI ECE Yes 7036429486

amadhuri567@gmail.com 19D41A0417 Ashwala Madhuri ECE Yes 9390425141

bhukyamahesh7386@gmail.com 19D41A04A3 MAHESH BHUKYA ECE Yes 7386770284

Rudhinikareddychirra@gmail.com 18D41A0451 Rudhinika ECE Yes 9121746686

nimireddie@gmail.com 17D41A04G1 Nimisha Reddy ECE Yes 8096005406

dedeepyabeemagani@gmail.com 19D41A0424 BEEMAGANI DEDEEPYA ECE Yes 9542013099

pruthvikiran106@gmail.com 17D41A04C5 L.pruthvi kiran ECE Yes 9398817764

lasyareddykontham1999@gmail.com 17D41A04B2 KONTHAM LASYA REDDY ECE Yes 8185075619

manishkesidi@gmail.com 18D45A0422 KESIDI MANISH KUMAR ECE Yes 7013394005

snehasree591@gmail.com 17D41A0436 B. SNEHA ECE Yes 8374569428

sailakshmanmadala@gmail.com 18D41A04C3 MADALA SAI LAKSHMAN ECE Yes 6303089804

mdivyasree2804@gmail.com 17D41A04E4 MONDRU DIVYA SREE ECE Yes 8247446506

madhurireddy0311@gmail.com 17D41A04C9 MADHURI NERAVETLA ECE Yes 9398164161

The easiest way for beginners to get started with Arduino is by creating circuits using a solderless

breadboard. These simple projects will teach you the basics of Arduino Uno, electronics and

programming. In this tutorial, you will be creating circuits using the following electronic components:

 LED

 RGB LED

 Temp Sensor

 Pushbutton

 Potentiometer

 Photoresistor

 Servo

 Motor

 Buzzer

 LCD screen

This tutorial is going to allow you to jump right in and start building circuits. If you need some

background on the Arduino Uno board or the tools that are needed, please check out post – Arduino Uno

For Beginners.

https://www.makerspaces.com/arduino-uno-tutorial-beginners/
https://www.makerspaces.com/arduino-uno-tutorial-beginners/

Getting Started

Before you can start working with Arduino, you need to make sure you have the IDE software

installed on your computer. This program allows you to write, view and upload the code to your Arduino

Uno board. You can download the IDE for free on Arduino’s website.

Once the IDE is installed, you will need to connect your Arduino to your computer. To do this, plug one

end of the USB cable to the Arduino Uno and then the other end of the USB to your computer’s USB

port.

Select The Board

Once the board is plugged in, you will need to open the IDE and click on Tools > Board > Arduino

Uno to select the board.

Select Serial Port

Next, you have to tell the Arduino which port you are using on your computer. To select the port, go

to Tools > Port and then select the port that says Arduino.

Project Code

To complete the projects in this tutorial, you will need to download the project code which are known as

sketches. A sketch is simply a set of instructions that tells the board what functions it needs to

perform. For some of these projects, we are using open-source code that was released by the good people

at Sparkfun and Arduino. Use the link below to download the zip folder containing the code.

Download Project Code – (ZIP File)

Once the file has been downloaded, you will need to unzip/extract the folder in order to use it.

https://www.arduino.cc/en/Main/Software
https://www.sparkfun.com/
https://www.arduino.cc/
https://www.makerspaces.com/wp-content/uploads/2017/06/Arduino-Project-Code.zip

#1 – Test Arduino

The first project is one of the most basic and simple circuits you can create with Arduino. This project

will test your Arduino by blinking an LED that is connected directly to the board.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) LED 5mm

 (1) 220 Ω Resistor

Project Diagram

Project Steps
1. Twist a 220 Ω resistor to the long leg (+) of the LED.

2. Push the short leg of the LED into the ground (GND) pin on the board.

3. Push the resistor leg that’s connected to the LED into the #13 pin.

Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_01_TestArduino

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#2 – Blink an LED

This project is identical to project #1 except that we will be building it on a breadboard. Once complete,

the LED should turn on for a second and then off for a second in a loop.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) LED 5mm

 (1) 220 Ω Resistor

 (2) Jumper Wires

Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/1-Test-Arduino_-LARGE.jpg

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_02_Blink

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#3 – Push Button

Using a push button switch, you will be able to turn on and off an LED.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) LED 5mm

 (1) 220 Ω Resistor

 (1) 10K Ω Resistor

 (1) Push Button Switch

 (6) Jumper Wires

Project Diagram

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_03_Pushbutton

https://www.makerspaces.com/wp-content/uploads/2017/05/2-Blink-an-LED_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/3-Pushbutton_LARGE.jpg

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#4 – Potentiometer

Using a potentiometer, you will be able to control the resistance of an LED. Turning the knob will

increase and decrease the frequency the LED blinks.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) LED 5mm

 (1) 220 Ω Resistor

 (1) Potentiometer (10k Trimpot)

 (6) Jumper Wires

Project Diagram

Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_04_Potentiometer

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#5 – Fade an LED

By using a PWM pin on the Arduino, you will be able to increase and decrease the intensity of brightness

of an LED.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) LED 5mm

 (1) 220 Ω Resistor

 (2) Jumper Wires

Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/4-Potentiometer_LARGE.jpg

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_05_Fade

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#6 – Scrolling LED

This project will blink 6 LEDs, one at a time, in a back and forth formation. This type of circuit was

made famous by the show Knight Rider which featured a car with looping LEDs.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (6) LED 5mm

 (6) 220 Ω Resistor

 (7) Jumper Wires

Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/5-Fade-an-LED_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/6-For-Loop-Scrolling-LED_LARGE.jpg

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_06_Scrolling

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#7 – Bar Graph

Using a potentiometer, you can control a series of LEDs in a row. Turning the potentiometer knob will

turn on or off more of the LEDs.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) Potentiometer – Rotary

 (10) LED 5mm

 (10) 220 Ω Resistor

 (11) Jumper Wires

Project Diagram

Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_07_BarGraph

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#8 – Multiple LEDs

This project will use 8 pins on the Arduino board to blink 8 LEDs at the same time.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (8) LED 5mm

 (8) 330 Ω Resistor

 (9) Jumper Wires

Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/7-Bar-Graph_LARGE.jpg

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_08_MultipleLEDs

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#9 – RGB LED

This project will be using an RGB LED to scroll through a variety of colors. RGB stands for Red, Green

and Blue and this LED has the ability to create nearly unlimited color combinations.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) RGB LED

 (3) 330 Ω Resistor

 (5) Jumper Wires

Project Diagram

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_09_RGBLED

https://www.makerspaces.com/wp-content/uploads/2017/05/8-Multiple-LEDs_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/9-RGB-LED_LARGE.jpg

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#10 – Photoresistor

A photoresistor changes the resistance a circuit gets based on the amount of light that hits the sensor. In

this project, the brightness of the LED will increase and decrease based on the amount of light present.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) LED 5mm

 (1) 330 Ω Resistor

 (1) 10K Ω Resistor

 (1) Photoresistor

 (6) Jumper Wires

Project Diagram

Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_10_Photoresistor

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#11 – Temp. Sensor

A temperature sensor measures ambient temperatures of the world around it. In this project, we will be

displaying the temperature in the serial monitor of the Arduino IDE.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) Temperature Sensor – TMP36

 (5) Jumper Wires

Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/10-Photoresistor_LARGE.jpg

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_11_TempSensor

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#12 – Tone Melody

The project will use a piezo buzzer/speaker to play a little melody.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) Piezo Buzzer/Speaker

 (2) Jumper Wires

Project Diagram

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_12_ToneMelody

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

https://www.makerspaces.com/wp-content/uploads/2017/05/11-Temp-Sensor_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/12-Tone-Melody_LARGE.jpg

#13 – Servo

In this project, you will be able to sweep a servo back and forth through its full range of motion.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) Servo

 (6) Jumper Wires

Project Diagram

 Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_13_Servo

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#14 – Motor

Using a switching transistor, we will be able to control a DC motor. If everything is connected correctly,

you should see the motor spinning.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) DC Motor

 (1) 330 Ω Resistor

 (1) Diode 1N4148

 (1) NPN Transistor

 (6) Jumper Wires

Project Diagram

https://www.makerspaces.com/wp-content/uploads/2017/05/13-Servo_LARGE.jpg

Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_14_Motor

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

#15 – LCD Screen

An LCD is a liquid crystal display that is able to display text on its screen. In this project, you should see

the words “hello,world!” displayed on the screen. The potentiometer is used to adjust the contrast of the

display.

Parts Needed
 (1) Arduino Uno

 (1) USB A-to-B Cable

 (1) Breadboard – Half Size

 (1) LCD Screen

 (1) Potentiometer

 (16) Jumper Wires

Project Diagram

Project Code
1. Connect the Arduino board to your computer using the USB cable.

2. Open project code – Circuit_15_LCD

3. Select the board and serial port as outlined in earlier section.

4. Click upload button to send sketch to the Arduino.

https://www.makerspaces.com/wp-content/uploads/2017/05/14-Motor_LARGE.jpg
https://www.makerspaces.com/wp-content/uploads/2017/05/15-LCD-Screen_LARGE.jpg

Troubleshooting

 Make sure your board and serial port is selected in the IDE. To do this, plug your board in and go

to Tools > Board >Arduino to select your board. Next, go to Tools > Port >Com (Arduino) to

select your serial port.

 The long leg of the LED is the (+) positive and the short leg is the (-) negative. Make sure the

correct leg of the LED is in the proper pin of the Arduino or breadboard as directed.

 It can be easy to put a component or jumper into the wrong pin on the Arduino or the

breadboard. Double check the correct pin is being used.

Experiment 1: Turn an LED

Turn an LED on for one second, off for one second, and repeat forever.

void setup()

{

 pinMode(13, OUTPUT);

}

void loop()

{

 digitalWrite(13, HIGH); // Turn on the LED

 delay(1000); // Wait for one second

 digitalWrite(13, LOW); // Turn off the LED

 delay(1000); // Wait for one second

}

/*

Experiment 2: Turns on and off LED

Turns on and off a light emitting diode(LED) connected to digital

 pin 13, when pressing a pushbutton attached to pin 2.

 The circuit:

 * LED attached from pin 13 to ground

 * pushbutton attached to pin 2 from +5V

 * 10K resistor attached to pin 2 from ground

 * Note: on most Arduinos there is already an LED on the board

 attached to pin 13.

// set pin numbers:

const int buttonPin = 2; // the number of the pushbutton pin

const int ledPin = 13; // the number of the LED pin

// variables will change:

int buttonState = 0; // variable for reading the pushbutton status

void setup() {

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

 // initialize the pushbutton pin as an input:

 pinMode(buttonPin, INPUT);

}

void loop() {

 // read the state of the pushbutton value:

 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed.

 // if it is, the buttonState is HIGH:

 if (buttonState == HIGH) {

 // turn LED on:

 digitalWrite(ledPin, HIGH);

 } else {

 // turn LED off:

 digitalWrite(ledPin, LOW);

 }

}

Experiment 3: Display RGB LED

const int RED_PIN = 9;

const int GREEN_PIN = 10;

const int BLUE_PIN = 11;

const int DISPLAY_TIME = 1000; // used in mainColors() to determine the

// length of time each color is displayed.

void setup() //Configure the Arduino pins to be outputs to drive the LEDs

{

 pinMode(RED_PIN, OUTPUT);

 pinMode(GREEN_PIN, OUTPUT);

 pinMode(BLUE_PIN, OUTPUT);

}

void loop()

{

 mainColors(); // Red, Green, Blue, Yellow, Cyan, Purple, White

 // showSpectrum(); // Gradual fade from Red to Green to Blue to Red

}

/**

 * void mainColors()

 * This function displays the eight "main" colors that the RGB LED

 * can produce. If you'd like to use one of these colors in your

 * own sketch, you can copy and paste that section into your code.

/***/

void mainColors()

{

 // all LEDs off

 digitalWrite(RED_PIN, LOW);

 digitalWrite(GREEN_PIN, LOW);

 digitalWrite(BLUE_PIN, LOW);

 delay(DISPLAY_TIME);

 // Red

 digitalWrite(RED_PIN, HIGH);

 digitalWrite(GREEN_PIN, LOW);

 digitalWrite(BLUE_PIN, LOW);

 delay(DISPLAY_TIME);

 // Green

 digitalWrite(RED_PIN, LOW);

 digitalWrite(GREEN_PIN, HIGH);

 digitalWrite(BLUE_PIN, LOW);

 delay(DISPLAY_TIME);

 // Blue

 digitalWrite(RED_PIN, LOW);

 digitalWrite(GREEN_PIN, LOW);

 digitalWrite(BLUE_PIN, HIGH);

 delay(DISPLAY_TIME);

 // Yellow (Red and Green)

 digitalWrite(RED_PIN, HIGH);

 digitalWrite(GREEN_PIN, HIGH);

 digitalWrite(BLUE_PIN, LOW);

 delay(DISPLAY_TIME);

 // Cyan (Green and Blue)

 digitalWrite(RED_PIN, LOW);

 digitalWrite(GREEN_PIN, HIGH);

 digitalWrite(BLUE_PIN, HIGH);

 delay(DISPLAY_TIME);

 // Purple (Red and Blue)

 digitalWrite(RED_PIN, HIGH);

 digitalWrite(GREEN_PIN, LOW);

 digitalWrite(BLUE_PIN, HIGH);

 delay(DISPLAY_TIME);

 // White (turn all the LEDs on)

 digitalWrite(RED_PIN, HIGH);

 digitalWrite(GREEN_PIN, HIGH);

 digitalWrite(BLUE_PIN, HIGH);

 delay(DISPLAY_TIME);

}

/**

 * void showSpectrum()

 *

 * Steps through all the colors of the RGB LED, displaying a rainbow.

 * showSpectrum() calls a function RGB(int color) that translates a number

 * from 0 to 767 where 0 = all RED, 767 = all RED

 *

 * Breaking down tasks down into individual functions like this

 * makes your code easier to follow, and it allows.

 * parts of your code to be re-used.

/***/

void showSpectrum()

{

 for (int x = 0; x <= 767; x++)

 {

 RGB(x); // Increment x and call RGB() to progress through colors.

 delay(10); // Delay for 10 ms (1/100th of a second) - to help the "smoothing"

 }

}

/**

 * void RGB(int color)

 *

 * RGB(###) displays a single color on the RGB LED.

 * Call RGB(###) with the number of a color you want

 * to display. For example, RGB(0) displays pure RED, RGB(255)

 * displays pure green.

 *

 * This function translates a number between 0 and 767 into a

 * specific color on the RGB LED. If you have this number count

 * through the whole range (0 to 767), the LED will smoothly

 * change color through the entire spectrum.

 *

 * The "base" numbers are:

 * 0 = pure red

 * 255 = pure green

 * 511 = pure blue

 * 767 = pure red (again)

 *

 * Numbers between the above colors will create blends. For

 * example, 640 is midway between 512 (pure blue) and 767

 * (pure red). It will give you a 50/50 mix of blue and red,

 * resulting in purple.

/***/

void RGB(int color)

{

 int redIntensity;

 int greenIntensity;

 int blueIntensity;

 color = constrain(color, 0, 767); // constrain the input value to a range of values from 0 to 767

 // if statement breaks down the "color" into three ranges:

 if (color <= 255) // RANGE 1 (0 - 255) - red to green

 {

 redIntensity = 255 - color; // red goes from on to off

 greenIntensity = color; // green goes from off to on

 blueIntensity = 0; // blue is always off

 }

 else if (color <= 511) // RANGE 2 (256 - 511) - green to blue

 {

 redIntensity = 0; // red is always off

 greenIntensity = 511 - color; // green on to off

 blueIntensity = color - 256; // blue off to on

 }

 else // RANGE 3 (>= 512)- blue to red

 {

 redIntensity = color - 512; // red off to on

 greenIntensity = 0; // green is always off

 blueIntensity = 767 - color; // blue on to off

 }

 // "send" intensity values to the Red, Green, Blue Pins using analogWrite()

 analogWrite(RED_PIN, redIntensity);

 analogWrite(GREEN_PIN, greenIntensity);

 analogWrite(BLUE_PIN, blueIntensity);

}

Experiment 4: Dancing LED

int ledPins[] = {2,3,4,5,6,7,8,9}; // Defines an array to store the pin numbers of the 8 LEDs.

// An array is like a list variable that can store multiple numbers.

// Arrays are referenced or "indexed" with a number in the brackets []. See the examples in

// the pinMode() functions below.

void setup()

{

 // setup all 8 pins as OUTPUT - notice that the list is "indexed" with a base of 0.

 pinMode(ledPins[0],OUTPUT); // ledPins[0] = 2

 pinMode(ledPins[1],OUTPUT); // ledPins[1] = 3

 pinMode(ledPins[2],OUTPUT); // ledPins[2] = 4

 pinMode(ledPins[3],OUTPUT); // ledPins[3] = 5

 pinMode(ledPins[4],OUTPUT); // ledPins[4] = 6

 pinMode(ledPins[5],OUTPUT); // ledPins[5] = 7

 pinMode(ledPins[6],OUTPUT); // ledPins[6] = 8

 pinMode(ledPins[7],OUTPUT); // ledPins[7] = 9

}

void loop()

{

 // This loop() calls functions that we've written further below.

 // We've disabled some of these by commenting them out (putting

 // "//" in front of them). To try different LED displays, remove

 // the "//" in front of the ones you'd like to run, and add "//"

 // in front of those you don't to comment out (and disable) those

 // lines.

 oneAfterAnother(); // Light up all the LEDs in turn

 //oneOnAtATime(); // Turn on one LED at a time

 //pingPong(); // Same as oneOnAtATime() but change direction once LED reaches edge

 //marquee(); // Chase lights like you see on theater signs

 //randomLED(); // Blink LEDs randomly

}

/**

 * oneAfterAnother()

 *

 * This function turns all the LEDs on, pauses, and then turns all

 * the LEDS off. The function takes advantage of for() loops and

 * the array to do this with minimal typing.

/***/

void oneAfterAnother()

{

 int index;

 int delayTime = 100; // milliseconds to pause between LEDs

 // make this smaller for faster switching

 // Turn all the LEDs on:

 for(index = 0; index <= 7; index = ++index) // step through index from 0 to 7

 {

 digitalWrite(ledPins[index], HIGH);

 delay(delayTime);

 }

 // Turn all the LEDs off:

 for(index = 7; index >= 0; index = --index) // step through index from 7 to 0

 {

 digitalWrite(ledPins[index], LOW);

 delay(delayTime);

 }

}

/***

 * oneOnAtATime()

 *

 * This function will step through the LEDs, lighting only one at

 * a time. It turns each LED ON and then OFF before going to the

 * next LED.

/**/

void oneOnAtATime()

{

 int index;

 int delayTime = 100; // milliseconds to pause between LEDs

 // make this smaller for faster switching

 for(index = 0; index <= 7; index = ++index) // step through the LEDs, from 0 to 7

 {

 digitalWrite(ledPins[index], HIGH); // turn LED on

 delay(delayTime); // pause to slow down

 digitalWrite(ledPins[index], LOW); // turn LED off

 }

}

/***

 * pingPong()

 *

 * This function will step through the LEDs, lighting one at at

 * time in both directions. There is no delay between the LED off

 * and turning on the next LED. This creates a smooth pattern for

 * the LED pattern.

/**/

void pingPong()

{

 int index;

 int delayTime = 100; // milliseconds to pause between LEDs

 for(index = 0; index <= 7; index = ++index) // step through the LEDs, from 0 to 7

 {

 digitalWrite(ledPins[index], HIGH); // turn LED on

 delay(delayTime); // pause to slow down

 digitalWrite(ledPins[index], LOW); // turn LED off

 }

 for(index = 7; index >= 0; index = --index) // step through the LEDs, from 7 to 0

 {

 digitalWrite(ledPins[index], HIGH); // turn LED on

 delay(delayTime); // pause to slow down

 digitalWrite(ledPins[index], LOW); // turn LED off

 }

}

/***

 * marquee()

 *

 * This function will mimic "chase lights" like those around

 * theater signs.

/**/

void marquee()

{

 int index;

 int delayTime = 200; // milliseconds to pause between LEDs

 // Step through the first four LEDs

 // (We'll light up one in the lower 4 and one in the upper 4)

 for(index = 0; index <= 3; index++) // Step from 0 to 3

 {

 digitalWrite(ledPins[index], HIGH); // Turn a LED on

 digitalWrite(ledPins[index+4], HIGH); // Skip four, and turn that LED on

 delay(delayTime); // Pause to slow down the sequence

 digitalWrite(ledPins[index], LOW); // Turn the LED off

 digitalWrite(ledPins[index+4], LOW); // Skip four, and turn that LED off

 }

}

/***

 * randomLED()

 *

 * This function will turn on random LEDs. Can you modify it so it

 * also lights them for random times?

/**/

void randomLED()

{

 int index;

 int delayTime;

 index = random(8); // pick a random number between 0 and 7

 delayTime = 100;

 digitalWrite(ledPins[index], HIGH); // turn LED on

 delay(delayTime); // pause to slow down

 digitalWrite(ledPins[index], LOW); // turn LED off

}

Experiment 5: Running Motor

const int motorPin = 9; // Connect the base of the transistor to pin 9.

 // Even though it's not directly connected to the motor,

 // we'll call it the 'motorPin'

void setup()

{

 pinMode(motorPin, OUTPUT); // set up the pin as an OUTPUT

 Serial.begin(9600); // initialize Serial communications

}

void loop()

{ // This example basically replicates a blink, but with the motorPin instead.

 int onTime = 3000; // milliseconds to turn the motor on

 int offTime = 3000; // milliseconds to turn the motor off

 analogWrite(motorPin, 255); // turn the motor on (full speed)

 delay(onTime); // delay for onTime milliseconds

 analogWrite(motorPin, 0); // turn the motor off

 delay(offTime); // delay for offTime milliseconds

 // Uncomment the functions below by taking out the //. Look below for the

 // code examples or documentation.

 // speedUpandDown();

 // serialSpeed();

}

// This function accelerates the motor to full speed,

// then decelerates back down to a stop.

void speedUpandDown()

{

 int speed;

 int delayTime = 20; // milliseconds between each speed step

 // accelerate the motor

 for(speed = 0; speed <= 255; speed++)

 {

 analogWrite(motorPin,speed); // set the new speed

 delay(delayTime); // delay between speed steps

 }

 // decelerate the motor

 for(speed = 255; speed >= 0; speed--)

 {

 analogWrite(motorPin,speed); // set the new speed

 delay(delayTime); // delay between speed steps

 }

}

// Input a speed from 0-255 over the Serial port

void serialSpeed()

{

 int speed;

 Serial.println("Type a speed (0-255) into the box above,");

 Serial.println("then click [send] or press [return]");

 Serial.println(); // Print a blank line

 // In order to type out the above message only once,

 // we'll run the rest of this function in an infinite loop:

 while(true) // "true" is always true, so this will loop forever.

 {

 // Check to see if incoming data is available:

 while (Serial.available() > 0)

 {

 speed = Serial.parseInt(); // parseInt() reads in the first integer value from the Serial Monitor.

 speed = constrain(speed, 0, 255); // constrains the speed between 0 and 255

 // because analogWrite() only works in this range.

 Serial.print("Setting speed to "); // feedback and prints out the speed that you entered.

 Serial.println(speed);

 analogWrite(motorPin, speed); // sets the speed of the motor.

 }

 }

}

Experiment 6: Potentiometer

int sensorPin = A0; // select the input pin for the potentiometer

int ledPin = 13; // select the pin for the LED

int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {

 // declare the ledPin as an OUTPUT:

 pinMode(ledPin, OUTPUT);

}

void loop() {

 // read the value from the sensor:

 sensorValue = analogRead(sensorPin);

 // turn the ledPin on

 digitalWrite(ledPin, HIGH);

 // stop the program for <sensorValue> milliseconds:

 delay(sensorValue);

 // turn the ledPin off:

 digitalWrite(ledPin, LOW);

 // stop the program for for <sensorValue> milliseconds:

 delay(sensorValue);

}

Experiment 7: Scrolling LED

int timer = 100; // The higher the number, the slower the timing.

void setup() {

 // use a for loop to initialize each pin as an output:

 for (int thisPin = 2; thisPin < 8; thisPin++) {

 pinMode(thisPin, OUTPUT);

 }

}

void loop() {

 // loop from the lowest pin to the highest:

 for (int thisPin = 2; thisPin < 8; thisPin++) {

 // turn the pin on:

 digitalWrite(thisPin, HIGH);

 delay(timer);

 // turn the pin off:

 digitalWrite(thisPin, LOW);

 }

 // loop from the highest pin to the lowest:

 for (int thisPin = 7; thisPin >= 2; thisPin--) {

 // turn the pin on:

 digitalWrite(thisPin, HIGH);

 delay(timer);

 // turn the pin off:

 digitalWrite(thisPin, LOW);

 }

}

Experiment 8: Potentiometer

int sensorPin = A0; // select the input pin for the potentiometer

int ledPin = 13; // select the pin for the LED

int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {

 // declare the ledPin as an OUTPUT:

 pinMode(ledPin, OUTPUT);

}

void loop() {

 // read the value from the sensor:

 sensorValue = analogRead(sensorPin);

 // turn the ledPin on

 digitalWrite(ledPin, HIGH);

 // stop the program for <sensorValue> milliseconds:

 delay(sensorValue);

 // turn the ledPin off:

 digitalWrite(ledPin, LOW);

 // stop the program for for <sensorValue> milliseconds:

 delay(sensorValue);

}

Experiment 9: LED with PWM

int led = 9; // the PWM pin the LED is attached to

int brightness = 0; // how bright the LED is

int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:

void setup() {

 // declare pin 9 to be an output:

 pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {

 // set the brightness of pin 9:

 analogWrite(led, brightness);

 // change the brightness for next time through the loop:

 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:

 if (brightness <= 0 || brightness >= 255) {

 fadeAmount = -fadeAmount;

 }

 // wait for 30 milliseconds to see the dimming effect

 delay(30);

}

Experiment 10: To measure the temperature sensor's

// signal pin.

const int temperaturePin = A0;

void setup()

{

 Serial.begin(9600); //Initialize serial port & set baud rate to 9600 bits per second (bps)

}

void loop()

{

 float voltage, degreesC, degreesF; //Declare 3 floating point variables

 voltage = getVoltage(temperaturePin); //Measure the voltage at the analog pin

 degreesC = (voltage - 0.5) * 100.0; // Convert the voltage to degrees Celsius

 degreesF = degreesC * (9.0 / 5.0) + 32.0; //Convert degrees Celsius to Fahrenheit

 //Now print to the Serial monitor. Remember the baud must be 9600 on your monitor!

 // These statements will print lines of data like this:

 // "voltage: 0.73 deg C: 22.75 deg F: 72.96"

 Serial.print("voltage: ");

 Serial.print(voltage);

 Serial.print(" deg C: ");

 Serial.print(degreesC);

 Serial.print(" deg F: ");

 Serial.println(degreesF);

 delay(1000); // repeat once per second (change as you wish!)

}

float getVoltage(int pin) //Function to read and return

 //floating-point value (true voltage)

 //on analog pin

{

 return (analogRead(pin) * 0.004882814);

 // This equation converts the 0 to 1023 value that analogRead()

 // returns, into a 0.0 to 5.0 value that is the true voltage

 // being read at that pin.

}

// Other things to try with this code:

// Turn on an LED if the temperature is above or below a value.

// Read that threshold value from a potentiometer - now you've

// created a thermostat!

1. Foreground Background Extraction

clc;

close all;

clear;

%Read Background Image

Background=imread('background.jpg');%Background=rgb2gray(Background);

Background=imresize(Background,[160,160]);

%Read Current Frame

%x1=size(Background);

CurrentFrame=imread('original.jpg');%CurrentFrame=rgb2gray(CurrentFrame)

CurrentFrame=imresize(CurrentFrame,[160 160]);

%Display Background and Foreground

subplot(2,2,1);imshow(Background);title('BackGround');

subplot(2,2,2);imshow(CurrentFrame);title('Current Frame');

%Convert RGB 2 HSV Color conversion

[Background_hsv]=round(rgb2hsv(Background));

[CurrentFrame_hsv]=round(rgb2hsv(CurrentFrame));

Out = bitxor(Background_hsv,CurrentFrame_hsv);

%Convert RGB 2 GRAY

Out=rgb2gray(Out);

%Read Rows and Columns of the Image

[rows columns]=size(Out);

%Convert to Binary Image

for i=1:rows

for j=1:columns

if Out(i,j) >0

BinaryImage(i,j)=1;

else

BinaryImage(i,j)=0;

end

end

end

%Apply Median filter to remove Noise

FilteredImage=medfilt2(BinaryImage,[5 5]);

%Boundary Label the Filtered Image

[L num]=bwlabel(FilteredImage);

STATS=regionprops(L,'all');

cc=[];

removed=0;

%Remove the noisy regions

for i=1:num

dd=STATS(i).Area;

if (dd < 500)

L(L==i)=0;

removed = removed + 1;

num=num-1;

else

end

end

[L2 num2]=bwlabel(L);

% Trace region boundaries in a binary image.

[B,L,N,A] = bwboundaries(L2);

%Display results

subplot(2,2,3), imshow(L2);title('BackGround Detected');

subplot(2,2,4), imshow(L2);title('Blob Detected');

hold on;

for k=1:length(B),

if(~sum(A(k,:)))

boundary = B{k};

plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);

for l=find(A(:,k))'

boundary = B{l};

plot(boundary(:,2), boundary(:,1), 'g','LineWidth',2);

end

end

end

2. Round Object Detection

%RGB = imread('10.bmp');

%RGB=imread('E:\D Drive Files 03.11.2014\epsiba phd\Project Code\fusion of local global

estimation\project\Codes\snaps\075.jpg');

imshow(RGB);

I = rgb2gray(RGB);

threshold = graythresh(I);

bw = im2bw(I,threshold);

imshow(bw)

% remove all object containing fewer than 30 pixels

bw = bwareaopen(bw,30);

% fill a gap in the pen's cap

se = strel('disk',2);

bw = imclose(bw,se);

% fill any holes, so that regionprops can be used to estimate

% the area enclosed by each of the boundaries

%bw = imfill(bw,'holes');

figure;

imshow(bw)

[B,L] = bwboundaries(bw,'noholes');

figure;

% Display the label matrix and draw each boundary

imshow(label2rgb(L, @jet, [.5 .5 .5]))

hold on

for k = 1:length(B)

 boundary = B{k};

 plot(boundary(:,2), boundary(:,1), 'w', 'LineWidth', 2)

end

stats = regionprops(L,'Area','Centroid');

threshold = 0.94;

% loop over the boundaries

for k = 1:length(B)

 % obtain (X,Y) boundary coordinates corresponding to label 'k'

 boundary = B{k};

 % compute a simple estimate of the object's perimeter

 delta_sq = diff(boundary).^2;

 perimeter = sum(sqrt(sum(delta_sq,2)));

 % obtain the area calculation corresponding to label 'k'

 area = stats(k).Area;

 % compute the roundness metric

 metric = 4*pi*area/perimeter^2;

 % display the results

 metric_string = sprintf('%2.2f',metric);

 % mark objects above the threshold with a black circle

 if metric > threshold

 centroid = stats(k).Centroid;

 plot(centroid(1),centroid(2),'ko');

 end

 text(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','y',...

 'FontSize',14,'FontWeight','bold');

end

title(['Metrics closer to 1 indicate that ',...

 'the object is approximately round']);

3. Edge object detection

clc;

clear all;

k=input('Enter the file name','s'); % input image; color image

im=imread(k);

im1=rgb2gray(im);

im1=medfilt2(im1,[3 3]); %Median filtering the image to remove noise%

BW = edge(im1,'sobel'); %finding edges

[imx,imy]=size(BW);

msk=[0 0 0 0 0;

 0 1 1 1 0;

 0 1 1 1 0;

 0 1 1 1 0;

 0 0 0 0 0;];

B=conv2(double(BW),double(msk)); %Smoothing image to reduce the number of connected

components

L = bwlabel(B,8);% Calculating connected components

mx=max(max(L))

% There will be mx connected components.Here U can give a value between 1 and mx for L or

in a loop you can extract all connected components

% If you are using the attached car image, by giving 17,18,19,22,27,28 to L you can extract the

number plate completely.

[r,c] = find(L==17);

rc = [r c];

[sx sy]=size(rc);

n1=zeros(imx,imy);

for i=1:sx

 x1=rc(i,1);

 y1=rc(i,2);

 n1(x1,y1)=255;

end % Storing the extracted image in an array

figure,imshow(im);

figure,imshow(im1);

figure,imshow(B);

figure,imshow(n1,[]);

4. Content Based Image Retrieval

[filename, pathname] = uigetfile('*.bmp', 'Pick an Image');

 a=imread(filename);

 figure(1),imshow(a);

 X1=a;

 [r c]=size(X1);

 a=X1(:,:,1);

 b=X1(:,:,2);

 c=X1(:,:,3);

 [r c]=size(a);

 M=r*c;

 N=reshape(a,[1 M]);

 N=double(N);

 p=[];

 for i=1:M

 p(i)=N(i)./M;

 end

 P=sum(sum(p));

 HSVmap1 = rgb2ycbcr(X1);

 figure(2),imshow(HSVmap1);

 fid = fopen('database.txt');

resultValues = []; % Results matrix...

resultNames = {};

i = 1; % Indices...

j = 1;

while 1

 imagename = fgetl(fid);

 if ~ischar(imagename), break, end % Meaning: End of File...

% [X, RGBmap] = imread(imagename);

% HSVmap = rgb2hsv(RGBmap);

 [X] = imread(imagename);

 figure(3),imshow(X);

 HSVmap = rgb2ycbcr(X);

 figure(4),imshow(HSVmap);

[D1,D2,D3] = quadratic1(X1, HSVmap1, X, HSVmap);

 resultValues1(i) = D1;

 resultValues2(i) = D2;

 resultValues3(i) = D3;

 resultNames(j) = {imagename};

 i = i + 1;

 j = j + 1;

end

fclose(fid);

[sortedValues1, index1] = sort(resultValues1); % Sorted results... the vector index

[sortedValues2, index2] = sort(resultValues2);

[sortedValues3, index3] = sort(resultValues3); % is used to find the resulting files.

%------------------RED--

fid = fopen('colourResults_R_C.txt', 'w+'); % Create a file, over-write old ones.

for i = 1:10 % Store top 10 matches...

 tempstr = char(resultNames(index1(i)));

 fprintf(fid, '%s\r', tempstr);

 disp(resultNames(index1(i)));

 disp(sortedValues1(i));

 disp(' ');

end

fclose(fid);

%------------------GREEN--

fid = fopen('colourResults_G_C.txt', 'w+'); % Create a file, over-write old ones.

for i = 1:10 % Store top 10 matches...

 tempstr = char(resultNames(index2(i)));

 fprintf(fid, '%s\r', tempstr);

 disp(resultNames(index2(i)));

 disp(sortedValues2(i));

 disp(' ');

end

fclose(fid);

%------------------BLUE---

fid = fopen('colourResults_B_C.txt', 'w+'); % Create a file, over-write old ones.

for i = 1:10 % Store top 10 matches...

 tempstr = char(resultNames(index3(i)));

 fprintf(fid, '%s\r', tempstr);

 disp(resultNames(index3(i)));

 disp(sortedValues3(i));

 disp(' ');

end

fclose(fid);

%return;

disp('Colour part done...');

disp('Colour results saved...');

disp('');

% displayResults1('colourResultsR.txt', 'Colour Results_r...');

% displayResults1('colourResultsG.txt', 'Colour Results_g...');

% displayResults1('colourResultsB.txt', 'Colour Results_b...');

% displayResults1('textureResults_r.txt', 'Texture Results_r...');

% displayResults2('textureResults_g.txt', 'Texture Results_g...');

filename='colourResults_R_C.txt';

fid = fopen(filename);

i = 1; % Subplot index on the figure...

while 1

 imagename = fgetl(fid);

 if ~ischar(imagename), break, end % Meaning: End of File...

 [x, map] = imread(imagename);

% subplot(4,5,i);

 if i==1;

 subplot(3,10,1);

% figure()

 imshow(x);

 end

 if i==2

 subplot(3,10,2);

 imshow(x);

 end

 if i==3

 subplot(3,10,3);

 imshow(x);

 end

 if i==4

 subplot(3,10,4);

 imshow(x);

 end

 if i==5

 subplot(3,10,5);

 imshow(x);

 end

 if i==6

 subplot(3,10,6);

 imshow(x);

 end

 if i==7

 subplot(3,10,7);

 imshow(x);

 end

 if i==8

 subplot(3,10,8);

 imshow(x);

 end

 if i==9

 subplot(3,10,9);

 imshow(x);

 end

 if i==10

 subplot(3,10,10);

 imshow(x);

 end

 i = i + 1;

end

fclose(fid);

% displayResults1('textureResults_b.txt', 'Texture Results_b...');

%%

filename='colourResults_G_C.txt';

fid = fopen(filename);

i = 1; % Subplot index on the figure...

while 1

 imagename = fgetl(fid);

 if ~ischar(imagename), break, end % Meaning: End of File...

 [x, map] = imread(imagename);

% subplot(4,5,i);

if i==1;

subplot(3,10,11);

imshow(x);

end

if i==2

subplot(3,10,12);

 imshow(x);

end

if i==3

subplot(3,10,13);

 imshow(x);

end

if i==4

subplot(3,10,14);

 imshow(x);

end

if i==5

subplot(3,10,15);

 imshow(x);

end

if i==6

subplot(3,10,16);

 imshow(x);

end

if i==7

subplot(3,10,17);

imshow(x);

end

if i==8

subplot(3,10,18);

 imshow(x);

end

if i==9

subplot(3,10,19);

 imshow(x);

end

if i==10

subplot(3,10,20);

imshow(x);

end

% subimage(x, map);

% imshow(x);

% xlabel(imagename);

 i = i + 1;

end

fclose(fid);

% displayResults1('textureResults_b.txt', 'Texture Results_b...');

filename='colourResults_B_C.txt';

fid = fopen(filename);

i = 1; % Subplot index on the figure...

while 1

 imagename = fgetl(fid);

 if ~ischar(imagename), break, end % Meaning: End of File...

 [x, map] = imread(imagename);

% subplot(4,5,i);

if i==1;

subplot(3,10,21);

imshow(x);

end

if i==2

subplot(3,10,22);

imshow(x);

end

if i==3

subplot(3,10,23);

imshow(x);

end

if i==4

subplot(3,10,24);

imshow(x);

end

if i==5

subplot(3,10,25);

imshow(x);

end

if i==6

subplot(3,10,26);

imshow(x);

end

if i==7

subplot(3,10,27);

imshow(x);

end

if i==8

subplot(3,10,28);

imshow(x);

end

if i==9

subplot(3,10,29);

imshow(x);

end

if i==10

subplot(3,10,30);

imshow(x);

end

% subimage(x, map);

% imshow(x);

% xlabel(imagename);

 i = i + 1;

end

fclose(fid);

Introducing Virtual Breadboard Windows App

The Virtual Breadboard (VBB) modern App for
the Windows Universal Platform (UWP) uses the
Fluent Design System modelled on the Windows
Paint 3D App that we all know and love.
In VBB the main design area
(1) is a Design Sheet where you layout Virtual
Breadboard circuits which can be virtualized by
powering on the circuit (2). The menu (3) opens a
navigation view where standard file dialogs along
with examples, trainings and account management
can be accessed. While designing the toolbar ribbon
(4) selects the design mode which shows context
sensitive tool panes in the right hand panel (5).

Main functional regions of the App:
1. Design Sheets : Are where you design your

Breadboards
2. Power On : Power Up the circuit to start the

interactive Virtualization
3. Menu : Open and save projects, find examples

and take training and access your account
4. Tools Ribbon : Access the tools for editing and

managing your project from the tools ribbon
5. Tools Pane : Tools from the Tools Ribbon are

accessed from the Tools Pane
Avatar Hardware

Your real microcontroller is inserted into a Virtual
Breadboard via an Avatar Hardware interface.
Your microcontroller cannot tell the difference
between virtual or real.
Other real components can also be connected to
your microcontroller creating micro-mixed-reality.

App Menu Navigation View
The Menu Navigation view slide out panel provides
access to the file management, account, settings and
other management features.

The platform workspace environment features:
1. File Menu : New, Open, Save, Save as file

options
2. Remotify : Publish virtual hardware to the

Cloud
3. Student Manager : Create and manage student

accounts
4. Export : Export and exchange VBB designs in

SVG and KiCad formats
5. Examples : Browse reference examples for

quickstarting a project.
6. Training : Awards based training system for

getting started.
7. Keyboard Shortcuts : Awards based training

system for getting started.
8. Software Store : Make In-App purchases from

the Software Store.
9. Hardware Store : Browse the available Avatar

interface modules.
10. What’s New : Displays the Splash Screen

which contains news and quick access tutorials.
11. Learn and Feedback : Access Documentation,

YouTube and CodeLab Tutorials and Forum.
12. Account : Account status and login.
13. Settings : Project wide settings and App

information.

Files
Virtual Breadboard projects are stored in .VBB
files. Standard file dialogs are used to open and
save .VBB files.
New
Click New to create a New blank project. If you
already have a project open you will be prompted to
save the project before the New project is created
Open
Click Open displays the Open panel with tools to
open existing project. If you already have a project

https://manual.virtualbreadboard.com/designsheets/designsheets.html
https://manual.virtualbreadboard.com/virtualization/virtualization.html
https://manual.virtualbreadboard.com/menu/menu.html
https://manual.virtualbreadboard.com/tools-ribbon/tools-ribbon.html
https://manual.virtualbreadboard.com/menu/files/files.html
https://manual.virtualbreadboard.com/menu/remotify/remotify.html
https://manual.virtualbreadboard.com/menu/studentmanager/studentmanager.html
https://manual.virtualbreadboard.com/menu/export/export.html
https://manual.virtualbreadboard.com/menu/examples/examples.html
https://manual.virtualbreadboard.com/menu/training/training.html
https://manual.virtualbreadboard.com/menu/shortcuts/shortcuts.html
https://manual.virtualbreadboard.com/menu/softwarestore/softwarestore.html
https://manual.virtualbreadboard.com/menu/hardwarestore/hardwarestore.html
https://manual.virtualbreadboard.com/menu/whatsnew/whatsnew.html
https://manual.virtualbreadboard.com/menu/learnandfeedback/learnandfeedback.html
https://manual.virtualbreadboard.com/menu/account/account.html
https://manual.virtualbreadboard.com/menu/settings/settings.html

open you will be prompted to save the project
before the existing project is opened.

1. Browse Files : Click to open a file dialog to

locate .vbb files to open
2. Import Previous Project : Click to open a folder

dialog to locate and import project folders from
earlier versions of VBB

3. Recent Breadboard Files : A listing of recently
used .vbb project files. Click a project from the
list to open directly

Save
Saves the current project to the currently selected
.vbb file. If this is the first time you are saving the
project the Save as will be activate instead.
Save as
Click to open a Save File Dialog to provide a new
name and location for your .vbb file and save to the
new file.
Remotify

Remotify is a publishing system that enables virtual
circuits to be published to the internet and played in
a Browser.
You can think of Remotify as a Cloud File and
Folder manager where the Files are VBB Projects
and the folders are Groups of VBB Projects.
Remotify manager maintains a tree heirachy view
of the Groups and Projects.
The basic procedure is
1. Create Group
2. Add Project to Group
3. Publish Group or Individual Projects in the

group
4. Paste the publish Link to the browser

When publishing url link is copied to the clipboard
which can be used in a Browser to Play the virtual
hardware project
HTML5 WebPlayer

The WebPlayer is a lightweight Html javascript
client that connects a Html5 Canvas renderer to a
docker container instance of the .Net CORE version
of the VBB runtime connected over SignalR. The
docker container is hosted as an Azure container
instance and spun up on demand per user session so
all users have their own dedicated instances giving
consistent scaleable performance for each user.
Despite being an economical approach there is a
cost associated with hosting cloud sessions and
hence the basic subscriptions covers development
and casual personal use of the WebPlayer only. If
useage grows beyond fair use a seperate usage
based susbcription will apply.
HTML5 Canvas currently works on the latest
versions of
 Chrome
 Edge
Published Group
When a group is published a url will be saved to the
clipboard. The url can then be pasted directly to a
browser or an alternate such as notepad. The url can
then be shared by email or a link in a content
management system. When the url is opened or
pasted into a browser it will load the group access
page with
the Name, Description and Thumbnail taken from
the group editor fields and the projects.
There are two types of Browser view
 Collections of Groups
 Collections of Projects

Group Collections Viewer

Project Collections Viewer

Published Project
When a published project is opened from a Group
view or by directly pasting or linking the project url
the project will load into a project Viewer. If this is
the first project accessed in a browser session then a
session container will be spun up which currently
takes around 30 seconds. In the future standby
containers will be used to reduce this intial spin up
time. If when switching to a new project within the
same session the browser uses can track the current
session and reuses the same container. Hence there
is no additional spin up time when switching
between projects as long as the same browser
window is used and standard navigate back button
is used to navigate the groups collection heirachy.
Each session has a time limit after which it will
expire. This can depend on the user account.
Project Viewer Load

Project Viewer Run

Remotify Manager Tools

1. Subscription : A subscription and Virtual

Breadboard account is required to activate
Remotify

2. Remotify : Remotify is accessed from the
Navigation View Menu

3. WebPlayer Play Lists : The root directory of the
web group collections

4. Group : A Group is a collection of Groups or
Projects

5. Project : A Virtual Breadboard Project stored in
a Group

6. Group/Project Toolbar : The Toolbar of the
currently selected Group or Project

7. Current Project : The VBB project currently
open when Remotify Menu was selected

1. Subscription Status
To activate the Remotify Manager requires :

 PRO or CLASSROOM Subscription
 Virtual Breadboard Account
For more information about accounts see here
: Account
If not activated the Remotify Manager will show
the following message.

2. Remotify Menu
Remotify is accessed from the Navigation View
Menu. This
3. WebPlayer Play Lists
The root remotify group contains all the Group or
Project collections. There can be only groups or
projects at the same level of the heirachy.
The Name, Description and Thumbnail are not
editable for the root remotify group.

Ico
n Function

Adds a new Group Child to the root
directiory

Publishes the project, making it public and
copying a url link to the clipboard

UnPublishes the project making it private
and not visible in the browser

4. Group
A Group is a collection of Groups or Projects.
When selected a group will be highlighted with a
blue strip in the heirachy and the group information
will be displayed in the Group pane.
5. Project
A Virtual Breadboard Project stored in a Group.
When selected a project will be highlighted with a
blue strip in the heirachy and the project
information will be displayed in the Project pane.
6. Selected Group/Project Toolbar
6.1 Selected Group Toolbar
The Group definition is edited in the Group Pane.
The Name, Description can be edited to be
displayed in the Browser Group Viewer to inform
the nature of the projects in the group.

The Thumbnail is also editable and must be a
290x200 png image.

Icon Function

Adds a new Group as a child of this
group.

Decrements the selected group
order moving it up one place in the
list

Increments the selected group order
moving it down one place in the list

Deletes the selected group if empty
removing the group from the cloud.

Publishes the project, making it
public and copying a url link to the
clipboard

UnPublishes the project making it
private and not visible in the
browser

Opens a dialog to select an
290x200 png image to be the new
thumbnail.

Saves the new group definition to
the remotify cloud.

6.2 Selected Project Toolbar
The Project definition is viewed in the Project Pane.
The Name, Description are copied over from the
Info designsheet in the VBB Project. The remotify
project can be opened and later saved directly to the
remotify cloud making remotify a type of cloud
drive for VBB projects. The toolbar tools are used
to manage the visibility and membership of the
project in it’s group.

https://manual.virtualbreadboard.com/menu/account/account.html

Icon Function

Decrements the selected project
order moving it up one place in the
list

Increments the selected project
order moving it down one place in
the list

Deletes the selected project
removing it from the cloud store

Publishes the project, making it
public and copying a url link to the
clipboard

UnPublishes the project making it
private and not visible in the
browser

Opens the remote remotify project
as the current project

Opening Remote Project
When opening a remote project the title of the
project will be prefixed with remotify.

When a remotify project is saved it it will be
updated directly in the cloud. In this way remotify
acts as a cloud drive for VBB projects.
7. Current Project

When navigating to the Remotify Manager there is
a project currently open in the background. A

snapshot of this project is shown in the Current
Project pane. The Name and Summary are taken
from the project information of the current project
and the Thumnail is automatically generated from
the active Breadboard. The Project tools are used to
connect the project with a Remotify Group.

Icon Function

Add Project to the currently selected
group

Troubleshooting
 Firefox does not seem to work with the way

VBB uses the Html5 Canvas at this time.
 Projects should be single Breadboard projects.
 A Group should contain only projects or groups

but not both otherwise the web player will not
function correctly.

Roadmap
 ESP8266 is not currently available - backend

version needs to be updated.
 Connect Avatars to Remotify Browsers via

RasPi Server to create remote labs

Student Manager
Classroom administrators use the Student Manager
to create and manage Student Accounts. The task of
the Student Manager is to enable an Adminstrator to
register Student Accounts by following these steps.
1. Edit or import the list of Student Names
2. Set a password for all Students.
3. Click the Register Students Button
Notes:
 Student Names should be unique names.
 The password should be unique to your

classroom.
 Student names and accounts can be changed

and updated as required.
 Students logged on when registrations are

updated will have to logon again.
 Only one student can be logged onto each

student name at a time.
Student Accounts
Student Accounts are suitable for school use where
there are often privacy concerns. A Student license
only uses a nickname and is maintained by
classroom administrator so there is no student
information, email or microsoft account information
stored with a Student Account. A Student Account
has full access to VBB except with only a few
restrictions:
Student Account Restricted Access:
 Student Manager

 Remotify Publishing
 CDK Publishing
Student Manager Tools

1. Classroom Subscription : A Classroom

subscription is required to activate the Student
Manager

2. Student Manager : The Student Manager is
access from the Student Manager Navigation
Menu

3. Student Names : The Student Manager
maintains a list of editable student names
representing a class

4. PassPhrase : A shared password is created by
editing the password textbox

5. Import Student Names Button : Imports a list of
student names

6. Export Student Names Button : Export the
current list of students can be d using this
button

7. Register Students Button : Create a Virtual
Breadboard Student account for each named
student with the shared passphrase

1. Classroom Subscription
To activate the Student Manager requires two
accounts.
 Microsoft Classroom Subscription
 Virtual Breadboard Account
For more information about accounts see here
: Account
If not activated the Student Manager will show the
following message.

Microsoft Classroom Subscription
The Microsoft Classroom Subscription account
manages the subscription information. There are 4
classroom subscriptions available to suit different
class sizes of 10,20,30 and 60 students. These
subscriptions are annual subscription and we have
partnered with Microsoft using their In-App
purchasing system to simplify the aquistion,
invoicing, localised sales taxes and management of
these licenses. When you start the Virtual

Breadboard App your account information is
already known from your Microsoft Windows 10
Logon and so the subscription information is
queried automatically using this account.
A classroom subscriber will have the
CLASSROOM name shown in their Account stutus

Note : There are actually 2 account required to
work with the Student Manager so if only the
subscription account is available ‘*’ is shown in the

status name to show the account is only partially
activated.
Virtual Breadboard Account
The Virtual Breadboard Account manages the
access to Virtual Breeadboard Cloud backend. The
Student Accounts are registered in the cloud which
enables students to logon from any location. For
more information on creating a Virtual Breadboard
account see : Account
When both accounts are registered your account
status will display CLASSROOM without the ‘*’

showing the CLASSROOM account is fully
activated.

2. Student Manager
The Student Manager is access from the Navigation
Menu.
3. Student Names
An editable collection of student names is managed
by the Student Manager.
 Clicking a name will highlight the text ready

for editing
 Use the Arrow keys to navigate between names
4. Pass Phrase
A single password is shared by all users. The
Password should be longer than 6 letters and should
be easy to remember but not super obvious.
5. Import Student Names
To make it easy to maintain class lists you can
import a named list of students.
 Should be a .txt file
 One student per line
 If more students are in the list than are available

in the subscription the list will be truncated.
6. Export Student Names
To make it easy to maintain class lists you can
Export a named list of students.
 The file will be .txt file
 One student per line

https://manual.virtualbreadboard.com/menu/account/account.html
https://manual.virtualbreadboard.com/menu/account/account.html

7. Register Students
Registers the current list of Student names creating
a unique account for each student.
If you have students names that are not unique or
there is some other error then you will receive a
warning.
If the registration is sucessful you will receive a
success message.

VBB101
Contents:

 Interactive
o Interactive Circuits
o Push a Momentary Button
o Toggle a Switch
o Rotate a Potentiometer

 Junctions
o Junction Mode
o Place Junctions
o Exercise : Power Up and Verify

 Links
o Wires
o Enter Wire Mode
o Draw a Link
o Change the Link Color
o Exercise : Practice makes perfect
o Reposition Link Corner
o Reposition Horizontal Link Segment
o Reposition Vertical Link Segment
o Moving Links
o Exercise : Reorganise Links

 Move
o Moving Components
o Select Move Mode
o Move Component
o Copy and Paste
o Move Duplicate
o Copy and Paste with ShortCut keys
o Move Duplicate 2
o Group Selection Append
o Group Move
o Power On First Customised Circuit

 NetLists
o Adding a Netlist
o Showing Hidden Nets
o Edit netlist property
o Exercise : Power Up and verify

 Nets
o Adding a Net
o Edit Net Properties
o Add Existing Net
o Copy and Paste Net
o Show Nets
o Exercise : Power Up and verify

 PowerOn
o Powering On
o Powering Down
o Closing a Project

 Properties
o Component Properties
o Select Mode Toolbar
o Select Component
o Change Property Value
o Select a Group of Components
o Change Group Property Values

 Schematics
o Schematics
o Edit ‘ID’ property
o Common ‘ID’ Common Netlist
o Edit ‘Layout’ property
o Exercise : Repeat the previous steps
o Wire Up the Schematic
o Exercise : ‘Power Up’ and verify

 Toolbox
o Toolbox
o Search for Component
o Place Component

Interactive
Interactive Circuits
Virtual Breadboard circuits are interactive. Input
components such as buttons, switches and
potentiometers are used to provide user input to test
and operate virtual circuits.
Push a Momentary Button
The momentary button is normally not connected
contact switch. When you press the button a contact
is made between pins on either side of the button
completing a circuit while the button is held down.

Award : Power On the circuit then locate the
momentary button. Press and hold it down for a few
moments. The L.E.D will light up because the
momentary contact switch completes the L.E.D
circuit with the battery and resistor.

https://manual.virtualbreadboard.com/menu/training/VBB101/Interactive/Interactive.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Interactive/Interactive.html#interactive-circuits
https://manual.virtualbreadboard.com/menu/training/VBB101/Interactive/Interactive.html#push-a-momentary-button
https://manual.virtualbreadboard.com/menu/training/VBB101/Interactive/Interactive.html#toggle-a-switch
https://manual.virtualbreadboard.com/menu/training/VBB101/Interactive/Interactive.html#rotate-a-potentiometer
https://manual.virtualbreadboard.com/menu/training/VBB101/Junctions/Junctions.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Junctions/Junctions.html#junction-mode
https://manual.virtualbreadboard.com/menu/training/VBB101/Junctions/Junctions.html#place-junctions
https://manual.virtualbreadboard.com/menu/training/VBB101/Junctions/Junctions.html#exercise-power-up-and-verify
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#wires
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#enter-wire-mode
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#draw-a-link
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#change-the-link-color
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#exercise-practice-makes-perfect
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#reposition-link-corner
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#reposition-horizontal-link-segment
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#reposition-vertical-link-segment
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#moving-links
https://manual.virtualbreadboard.com/menu/training/VBB101/Links/Links.html#exercise-reorganise-links
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#id1
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#select-move-mode
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#move-component
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#copy-and-paste
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#move-duplicate
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#copy-and-paste-with-shortcut-keys
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#move-duplicate-2
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#group-selection-append
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#group-move
https://manual.virtualbreadboard.com/menu/training/VBB101/Move/Move.html#power-on-first-customised-circuit
https://manual.virtualbreadboard.com/menu/training/VBB101/NetLists/NetLists.html
https://manual.virtualbreadboard.com/menu/training/VBB101/NetLists/NetLists.html#adding-a-netlist
https://manual.virtualbreadboard.com/menu/training/VBB101/NetLists/NetLists.html#showing-hidden-nets
https://manual.virtualbreadboard.com/menu/training/VBB101/NetLists/NetLists.html#edit-netlist-property
https://manual.virtualbreadboard.com/menu/training/VBB101/NetLists/NetLists.html#exercise-power-up-and-verify
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html#adding-a-net
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html#edit-net-properties
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html#add-existing-net
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html#copy-and-paste-net
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html#show-nets
https://manual.virtualbreadboard.com/menu/training/VBB101/Nets/Nets.html#exercise-power-up-and-verify
https://manual.virtualbreadboard.com/menu/training/VBB101/PowerOn/PowerOn.html
https://manual.virtualbreadboard.com/menu/training/VBB101/PowerOn/PowerOn.html#award-powering-on
https://manual.virtualbreadboard.com/menu/training/VBB101/PowerOn/PowerOn.html#award-powering-down
https://manual.virtualbreadboard.com/menu/training/VBB101/PowerOn/PowerOn.html#award-closing-a-project
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html#id1
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html#select-mode-toolbar
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html#select-component
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html#change-property-value
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html#select-a-group-of-components
https://manual.virtualbreadboard.com/menu/training/VBB101/Properties/Properties.html#change-group-property-values
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#id1
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#edit-id-property
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#common-id-common-netlist
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#edit-layout-property
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#exercise-repeat-the-previous-steps
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#wire-up-the-schematic
https://manual.virtualbreadboard.com/menu/training/VBB101/Schematics/Schematics.html#exercise-power-up-and-verify
https://manual.virtualbreadboard.com/menu/training/VBB101/Toolbox/Toolbox.html
https://manual.virtualbreadboard.com/menu/training/VBB101/Toolbox/Toolbox.html#id1
https://manual.virtualbreadboard.com/menu/training/VBB101/Toolbox/Toolbox.html#search-for-component
https://manual.virtualbreadboard.com/menu/training/VBB101/Toolbox/Toolbox.html#place-component

Toggle a Switch
A 3 pin switch has two possible configurations. It
can connect the command center pin with the left
pin or the right pin. When connected to one pin the
other pin is disconnected or open circuit. The
switch position toggles to show which pin is
connected to the center pin.
Award : While Powered Up locate the Toggle
Switch and click the component on the switch
location. The position of the switch slider will
toggle and the alternate circuit will be completed
toggling which L.E.D is activated.

Rotate a Potentiometer
A potentiometer is a variable resistor which when
you rotate the dial it’s resistance changes which

changes the output voltage of the central pin.
Virtual Breadboard models the voltage output of the
potentiometer voltage divider which can be read by
instruments like the digital voltmeter and visualised
by components like the L.E.D which are sensitive to
analog voltage levels.
Award: While Powered Up locate the
Potentiometer and press and hold the mouse down
on the potentiometer dial. Rotate the dial around the
center for the full range of voltage values. To
receive this reward you need to exercise the full
potentiometer range. You will see the L.E.D dim
when the voltage is low and brighten when the
voltage is high.

Advanced TIP: VBB is not an analog PSPICE
simulator but instead models high level circuit
behaviour. For example a PSPICE simulator will
model the reduced L.E.D current and bandgap and
deduce the L.E.D should dim but VBB models
common circuit behaviours directly.
Junctions
Learn how to join links with junctions
Junction Mode
Links are drawn between component pins. However
there is often the need to link multiple pins together
on the same wire. You can draw multiple individual
wires from pin to pin but you can also use junctions
to simplify circuit layout and make it easier to
understand what the connections are.
Award: Select Junction Mode from Wires ToolTab

Place Junctions
When in Junction Mode the cursor changes to a
cross-hair and when the cursor is pressed a junction
is placed at the cursor location. Junctions should be
placed at the end point of a wire and a wire
segment. This joins all the wires into a single wire.
Award: Place a junction at each of the 3 wire-t-
junctions

Exercise : Power Up and Verify
When correctly placed the wire becomes a single
wire leading from the DIP power source to the LED
lights. All the LEDS should light up when the LED
is in the ‘on’ position.

Wire Links
Wires
Wires link component pins to form circuits. Real
breadboard ‘wires’ are usually coloured with plastic
protection and are stripped back to wire only at the
ends. Virtual Breadboard (VBB) wires are the also
only active at the ends and snap to pins at either
end. When successfully snapped the wire thickens
slightly to give a visual clue the link has been
successfully made.
Enter Wire Mode
Wire mode is a design mode and is set from the
Wires tool tab. When in wire mode the cursor
changes to a colored cross-hair and cursor actions
draw wires.
Award : Select the Wires Tab and press a colored
Wire Button to enter Wire Mode.

Draw a Link
A link is active only at it’s ends but it can have

multiple ‘joint’s along it’s length to enable better

layout organisation than just have a wire running
from end to end. Links are drawing by clicking the
joints with the left button then either clicking the
right mouse button to end the link at the last
joint or double clicking to make the current joint
the final link.
Award: Draw a link from DIP pin 1 to LED pin 3
avoiding the obstacles with pin joints. To get this
award you need to link the correct pins (DIP Pin 1,
LED Pin 3).

Change the Link Color
If you change your mind about the color of the link
you can change it by first selecting it either in move
or select mode. When selected the links properties
will be shown in the properties pane. Select a new
color from color property.
Award: Select a link and change it’s color.

Exercise : Practice makes perfect
Repeat the previous step drawing a link from DIP
Pin 2, to LED pin 2. This time use the alternative
link ending. So if you used right click method, use
double click this time. Or if you used double click
use the right click method this time.

Reposition Link Corner
When in Move Mode links can be moved around in
several different ways. You can move joints,
sections or move the link as a whole.
Award: Enter move mode and drag a corner of a
link, move it around and then drop it back in place.

Reposition Horizontal Link Segment
If you drag a link section from the middle of the
section instead of the corners the whole section will
move. If the section is horizontal it can be moved
vertically.
Award: Drag a horizontal link section up and down
vertically and then drop it back in place.

Reposition Vertical Link Segment
If the link section is vertical it can be moved
horizontally.
Award: Drag a vertical link section left and right
horizontally and then drop it back in place.

Moving Links
You can also move a link either as part of a group
or as a single link by dragging with the right
mouse button

Award: Drag the whole unattached link using the
right mouse button and attach it the DIP pin 3.

Exercise : Reorganise Links
A neatly organized layout is easier to understand.
Practice your new skills to re-arrange the layout
into a neater arrangement.

Moving Components
Moving Components
Virtual Breadboard (VBB) components can be
moved around a design by dragging and dropping
them while in Move Mode .
Select Move Mode
Move mode (ShortCut V) is one of the Editor
Design Modes which can be selected from the Edit
mode toolbar. Move Mode is used when you want
to move components around.
Award: Enter move mode by selecting the move
icon from the mode toolbar

Move Component
When in move mode components can be dragged
and dropped into position by pressing and holding
and moving to the new location. VBB dynamically
calculates the connections the component is making
with other components and highlights the shared
pin contacts. This is a useful visual guide for
making sure components are correctly connected.
Award: Drag and Drop the L.E.D to the left most
wire/resistor connection using the contact point

highlighting to make sure the LE.D is correctly
aligned.

Copy and Paste
Use Copy and Paste to duplicate the currently
selected breadboard elements. Copy copies to the
Clipboard and Paste creates new versions of the
copied components with a small offset to the
originally selected elements and selects the newly
created elements.
The Select toolbar contains functions that work
with the currently selected elements including Copy
and Paste.
Award: From the Selected toolbar first press Copy
and then press Paste to duplicate the L.E.D

Advanced Tip: Copy stores the currently selection
to the Clipboard and can be pasted to other
Breadboards in the project or even Breadboards in
other Project.
Move Duplicate
Move the duplicate L.E.D to the next resistor/link
connector point

Copy and Paste with ShortCut keys
In the previous award the Copy and Paste functions
were activated from the toolbar. The VBB App is
designed with touchscreens in mind so all functions
are available with touchable sized buttons.
However for keyboard users Copy and Paste have
well defined shortcut keys in windows || Function ||
ShortCut | Copy | CTRL+C | Paste | CTRL+V | Cut |
CTRL+X
These shortcuts can often be faster to use when
working in desktop environment.
Award: Copy and Paste the duplicate L.E.D using
the short cut keys by first selecting it then using the
CTRL+C to copy it and CTRL+V to paste it

Move Duplicate 2
Move the second duplicate L.E.D to the next
resistor/link connector point inline with the first two
L.E.D’s

Group Selection Append
In an earlier award a group of components were
selected by drawing a selection window around the
whole group. You can also create groups by
appending new components to the group by holding
down the SHIFT key and then selecting other
components to add to the selection group.

Group Move
Moving a group of selected elements can be much
faster than moving components one at a time. To
move the whole group hold down the SHIFT key
and press and hold one of the selected components.
You can then drag and drop the group. You can also
use the right mouse button without the SHIFT key.

Power On First Customised Circuit
Repeat the previous steps 2 steps to practice the
copy and moving components.

When ready you can then Power On your
circuit to test it

Schematics
Schematics
Schematics are abstract representations of physical
components. It can be easier to understand how a
circuit functions when represented in schematic
format. Often schematics are used to describe a
circuits netlist in a separate design step. In Virtual
Breadboard (VBB) Schematics and Breadboard

components are merged into one design sheet
creating hybrid designs where all the information
about the design is in one place.
 Components with the same ID are linked
 Components have schematic/breadboard

representations
 When a circuit has a schematic and breadboard

component with the same ID the schematic
component creates the netlist for the breadboard
component.

Edit ‘ID’ property
When a component shares the same ‘ID’ property

the pin the pins of both components are linked with
virtual links.
Award : Edit the property of the LED to be D1

Common ‘ID’ Common Netlist
Components with the same ID share a netlist
between them. To see this copy and paste a
component with the same ID and Show the Nets to
see the hidden links between the components.
Exercise: Duplicate LED D1 and Show Nets

Edit ‘Layout’ property
The Layout property determines which type of view
of the component is rendered. So far you have only
seen the Breadboard layout. Many components also
support a Schematic layout.
Award: Select the duplicate LED and set it’s layout

property to Schematic

Exercise : Repeat the previous steps
Repeat the above steps for the Resistor * Edit the
Resister property to be R1 Copy and Paste the
Resistor Set the duplicate Resistor layout property
to be Schematic

Wire Up the Schematic
When the schematic twins are wired to form valid
circuits the matching Breadboard component twin is
also wired with the same netlist.
Award: Snap the schematic elements together to
form a powered LED circuit

Exercise : ‘Power Up’ and verify
At runtime only the Breadboard component is
activated. The schematic component can be used to
create an understandable netlist but it does not
participate in the runtime circuit.
Note: One advantage of this approach is the
physical Breadboard components can be placed
anywhere without the confusion of connecting
wires running all over the place.
Exercise: ‘Power Up’ the circuit and verify the
LED brightens as powered by the virtual links.

DSO Basics
DSO Basics

The Digital Storage Oscilloscope (DSO) is an
essential tool for visualising and analysing circuits.
In this training you will learn the basic steps of
adding a DSO to your project and linking it to a
probe.
The DSO Design Sheet
The DSO has two elements, the DSO design sheet
and logic probes. The DSO design sheet is used to
visualise the signals and configure the triggers and
timebase view parameters. Probes are Breadboard
components and are inserted into Breadboard
circuits to capture signals and are linked to the DSO
to send and visualise the captured signals.
Award : Add a DSO Design Sheet to the project

Viewing the DSO
Like all Design Sheets the DSO needs to be
dragged and dropped into a view pane to actually
view it. This allows different configurations of
circuits and instrument views to be created and
easily switched between.
Award : Drag and Drop the DSO Design sheet into
the bottom view panel

Attaching a probe
To capture signal data to display in the DSO you
add one or more probes to the circuit.
Award :Add a probe and link it to the frequency
generator

Power On to start tracing
The default mode is Trace Mode which
continuously captures signals with the current
timebase settings. The signal sampled will be the
signal shown. Without a trigger there is no specific
event that starts the sampling and the signal will
appear to jitter.

A Trigger is a specific event that the sampler waits
for before it begins to sample the signal. The effect
of this is to place the signal in known location on
the screen allowing visual comparison with
previous signals better suited for detecting signal
changes.
Triggers are a property of the probes. When
powered up the probes in the Breadboard are
scanned and added to the DSO Triggers panel.
These triggers are logically AND’d together to

create a single filter trigger event

Trigg
er Event Description

Don't
care

Not used in filter

Trigg
er Event Description

Is LOW
True if this signal is
LOW

Is
RISING

True if this signal is
Rising Edge

Is HIGH
True if this signal is
HIGH

Is
FALLIN
G

True if this signal is
Falling Edge

Award :Change the Trigger to Rising Edge to
stabilise the signal

Setting the Timebase
The Time base is the amount of time shown by each
grid unit in the DSO display. Changing the Time
base has the effect of zooming in and out of the
signal.
Award :Change the Time base zooming the display
in and out

Signal Analysis
The DSO is used to sample and display signals to
assist in circuit analysis and troubleshooting. For
example you can use it to visualise and measure the
frequency generated by a frequency generator.
Exercise : Change frequency by sliding the slider of
the frequency generator and visualise the signal
changes in the DSO

