
2.3.1 Student centric methods, such as experiential learning, participative learning and problem solving methodologies are used for enhancing learning experience and teachers use ICT- enabled tools including online resources for effective teaching and learning process

Student centric methods

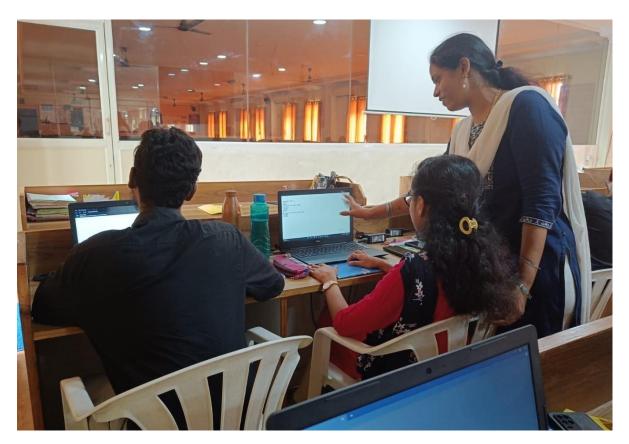
	EXPERIMENTAL LEARNING				
S. No	Method				
1	Practical Oriented Teaching				
2	Model Based				
3	Open House Exhibitions And Idea Presentation				
4	Industrial Visits				
	PARTICIPATIVE LEARNING				
1	Self-Learning Capability by Taking One Credit Courses				
2	Value Added Courses				
3	Swayam/NPTEL Courses				
4	Competitive Examinations				
5	Developing Prototype				
6	Working Models				
7	Professional Societies (Like IEEE, CSI, ISTE, IETE) And Various				
	Club Activities				
8	Participations in Hackathon				
9	Internship				
	PROBLEM SOLVING METHODOLOGIES				
1	Objective Type Questions in Higher Level of Thinking				
2	Real Time Assignments and Case Studies Collaborative Learning				
	Model				
3	3 Simulation Tools and Virtual Labs				

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

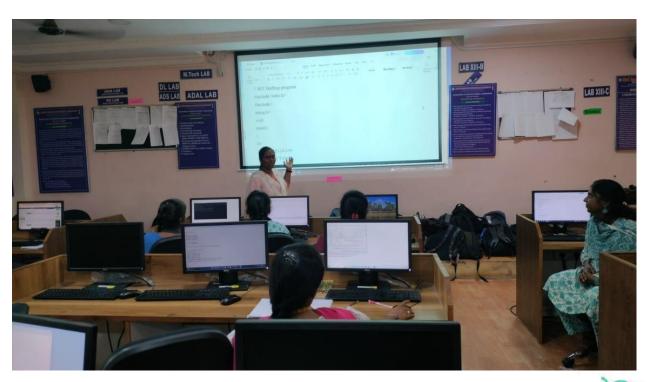
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LABORATORY COURSES (A.Y: 2022-23)

S.No.	YEAR/SEM	COURSE	NAME OF THE LABORATORY
		CODE	
1.	II/I	R22CSE2126	Data Structures Lab
2.	II/I	R22CSE2127	Object Oriented Programming through Java Lab
3.	II/II	R22CSE2226	Operating Systems Lab
4.	II/II	R22CSE2227	Database Management Systems Lab
5.	III/I	R20CSE31L1	Software Engineering Lab
6.	III/I	R20CSE31L2	Web Technologies Lab
7.	III/I	R20HAS31L1	Advanced Communication Skills Lab
8.	III/II	R20CSE32L2	Compiler Design Lab
9.	III/II	R20CSE32L3	Mobile Application Development Lab
10.	IV/I	R20CSE41L1	Cryptography and Network Security Lab


COLLEGE OF COLLEGE OF

PRINCIPAL


xi Indu College of Engineering and Technology

(MID: SHERIGUDA-SO1 SAO,

TOURNAME A P. Diese

Data Structures Lab

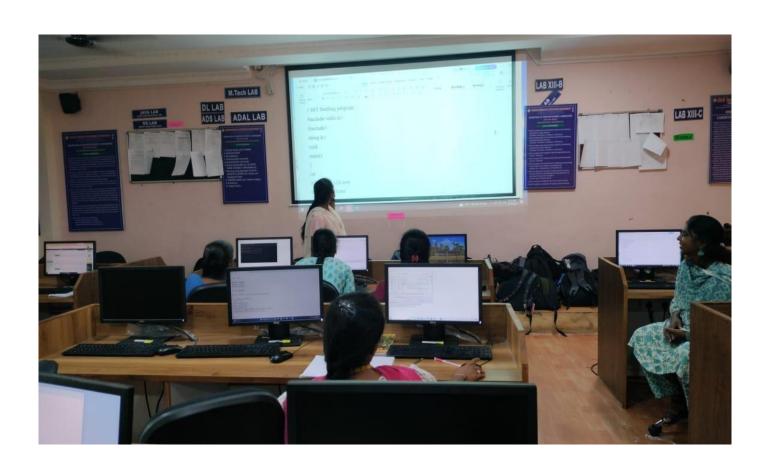
Object Oriented Programming through Java Lab

PRINCIPAL

ori India College of Engineering and Technology

(MID: SHERIGUDA-S01 S80,

Over **Nam(M), R.R.Dist.


Operating Systems Lab

Database Management Systems Lab


Software Engineering Lab

Web Technologies Lab

Advanced Communication Skills Lab

Compiler Design Lab

Mobile Application Development Lab

Cryptography and Network Security Lab

PRINCIPAL

ori Indu College of Engineering and Technology

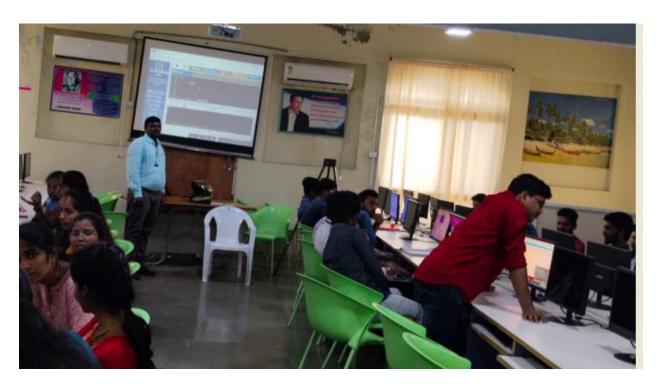
(VIII): SHERIGUDA-501 580,

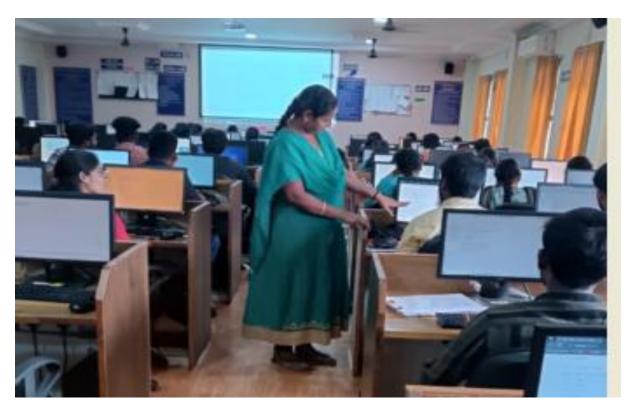
UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF INFORMATION TECHNOLOGY

LABORATORY COURSES

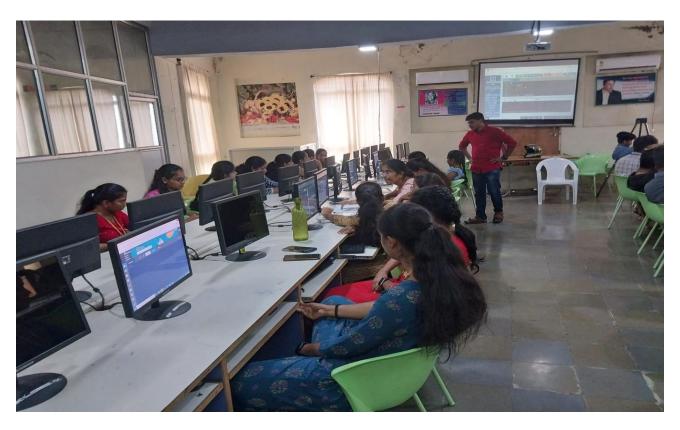
(A.Y: 2022-23)


S.No.	YEAR/SEM	COURSE CODE	NAME OF THE LABORATORY
1.	II/I	R20ECE21L4	Analog Electronics lab
2.	II/I	R20CSE21L1	Data Structures Lab
3.	II/I	R20CSE21L3	C++ Programming Lab
4.	II/I	R20CSE21L2	IT Workshop Lab
5.	II/II	R20CSE22L1	Operating Systems Lab
6.	II/II	R20CSE22L2	Database Management Systems Lab
7.	II/II	R20CSE22L3	Java Programming lab
8.	III/I	R20CSE31L1	Software Engineering Lab
9.	III/I	R20CSE31L2	Computer Networks & Web Technologies Lab
10.	III/I	R20HAS31L1	Advanced Communication Skills Lab
11.	III/II	R20CSE32L1	Machine Learning Lab
12.	III/II	R20INF32L1	Compiler Construction Lab
13.	IV/I	R20INF41L1	Information Security Lab


Data Structures Lab

C++ Programming Lab

Operating Systems Lab


Java Programming lab

Database Management Systems Lab

Software Engineering Lab

Computer Networks & Web Technologies Lab

Machine Learning Lab

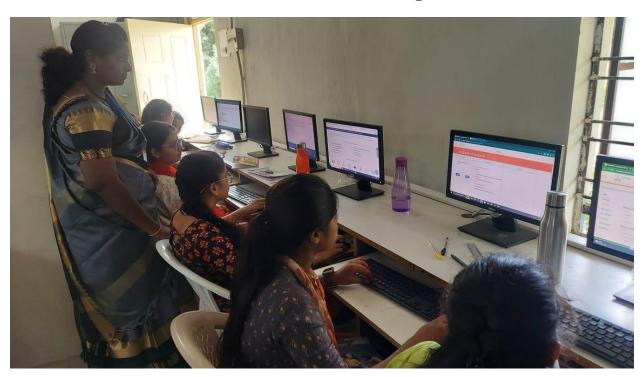
Compiler Construction Lab

Information Security Lab

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF DATA SCIENCE

LABORATORY COURSES


(A.Y: 2022-23)

S.No.	YEAR / SEM	COURSE CODE	NAME OF THE LABORATORY
1.	II/I	R20CSE21L1	Data Structures Lab
2.	II/I	R20CSE21L4	Python Programming Lab
3.	II/II	R20CSE22L1	Operating Systems Lab
4.	II/II	R20CSE22L2	Database Management Systems Lab
5.	II/II	R20CSE22L3	Java Programming Lab
6.	III/I	R20CSE22L4	Computer Networks Lab
7.	III/I	R20CSD31L1	Data Warehousing and Data Mining Lab
8.	III/I	R20CSD31L2	Software Testing CASE Tools Lab
9.	III/II	R20CSE32L1	Machine Learning Lab
10.	III/II	R20CSO32L1	Internet of Things Lab
11.	III/II	R20HAS31L1	Advanced Communication Skills Lab

R20CSE21L4 - Python Programming Lab

R20CSE32L1 - Machine Learning Lab

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

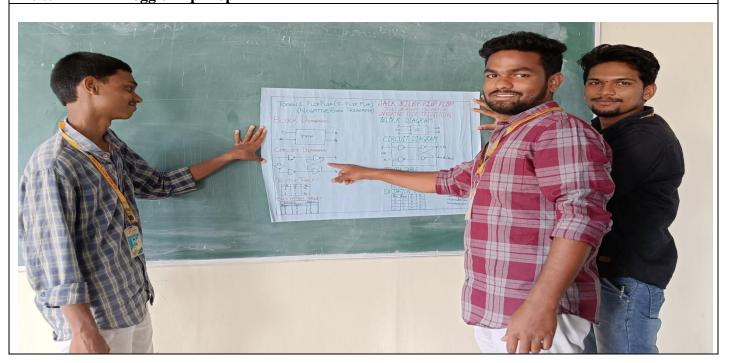
MODEL BASED TEACHING

MODEL BASED TEACHING

- 1. Chart
- 2. Working models
- 3. Animated Videos
- 4. Role Play
- 5. Poster presentation

S.No.	YEAR/SEM	SUBJECT	chart	model	Animated Videos	Role play	Poster
1.	II /I	Analog Electronics	\	1	✓		✓
2.	II /I	Data Structures	\	1	✓	1	✓
3.	II /I	Computer Oriented Statistical Methods	√	1	✓	1	✓
4.	II /I	Computer Organization and Architecture		√	√	1	•
5.	II /I	Object Oriented Programming Using C++	√	√	√	1	√
6.	II/II	Discrete Mathematics	√		1	1	1
7.	II/II	Digital Logic Design	√	1	1		1
8.	II/II	Operating Systems	\	1	1	1	1
9.	II/II	Database management systems	\	√	√	1	√
10.	II/II	Java Programming	\		✓		√
11.	III/I	Business Economics & Financial Analysis	√	_	1	1	✓

12.	III/I	Software Engineering	1		√		√
13.	III/I	Computer Networks	1	1	√	1	1
14.	III/I	Web Technologies			√		√
15.	III/I	Principles of Programming Languages	√	_	✓	✓	√
16.	III/II	Machine Learning		✓	\checkmark	✓	1
17.	III/II	Compiler Design	1		1	_	√
18.	III/II	Design and Analysis of Algorithms		✓	√		√
19.	III/II	Mobile Application Development	√		√		√
20.	III/II	Information Technology Essentials	✓	_	\checkmark		√
21.	IV/I	Data Mining			√		1
22.	IV/I	Cloud Computing	1		✓		1
23.	IV/I	Internet of Things	_	✓	√		1
24.	IV/I	E-Commerce		✓	√		1
25.	IV/I	Cryptography and Network Security	1	✓	√	1	√
26.	IV/II	Organizational Behaviour	_	_	√	1	1
27.	IV/II	Distributed Systems	_		√		1
28.	IV/II	Information Security Fundamentals	1		√	/	√


Course Name: Data structures
Class: II B.Tech. II Sem

Teacher:

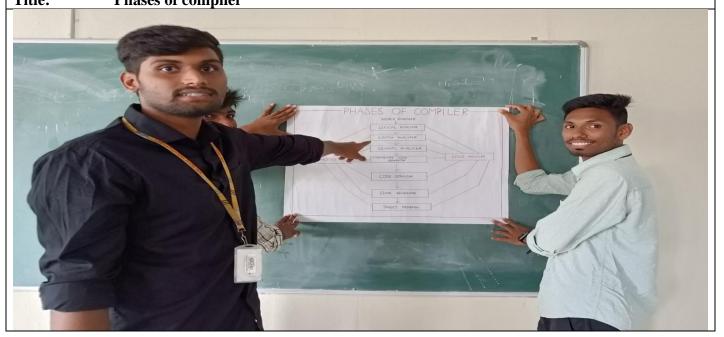
Activity: Chart work Title: BFS,DFS

Course Name: Digital logic design
Class: III B.Tech. I Sem
Teacher: Mr. Ram Mohan
Activity: Chart work
Title: Toggle Flip Flop

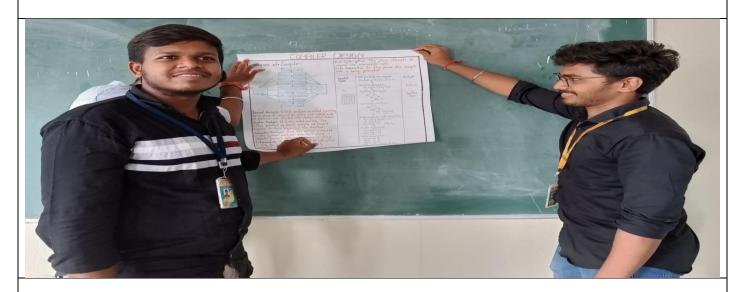
Course Name: Digital logic design
Class: III B.Tech. I Sem
Teacher: Mrs Jyothi
Activity: Chart work
Title: Number systems

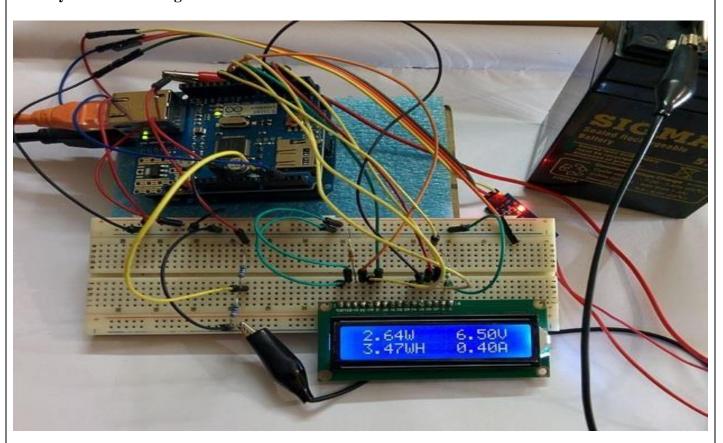
Course Name: Artificial-intelligence Class: III B.Tech. II Sem Teacher: Dr. Kishore Verma

Activity: Chart work Title: Expert system

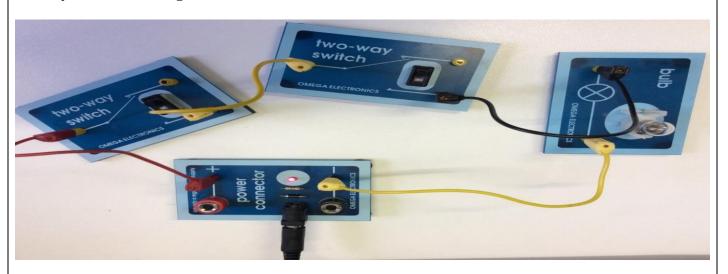


Course Name: Operating system
Class: III B.Tech. II Sem
Teacher: Dr. P. Epsiba
Activity: Chart work


Title: What is Operating Systems?


Course Name: Compiler Design
Class: III B.Tech. II Sem
Teacher: Mrs Kiranmai
Activity: Chart work
Title: Phases of compiler

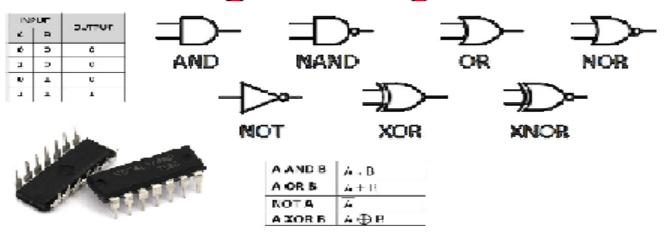
Course Name: Compiler Design
Class: III B.Tech. II Sem
Teacher: Mrs Swarnalatha
Activity: Chart work



Course Name: Analog Electronics
Class: II B.Tech. I Sem
Teacher: Mr. Ram Mohan Rao
Activity: Working Models

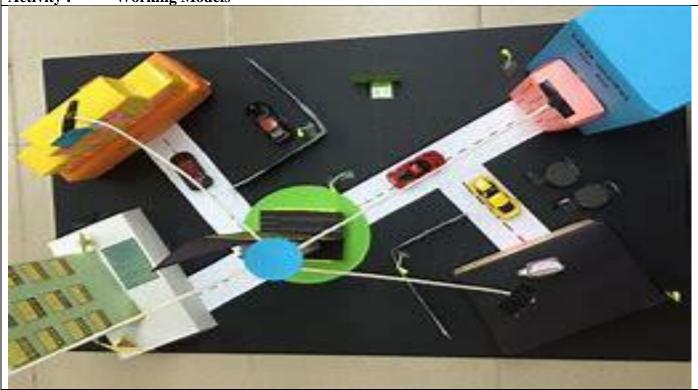
Course Name: Basic electrical engineering

Class: II B.Tech. I Sem Teacher: Mr. Sai Ram Activity: Working Models


Course Name: Digital System Design Class: II B.Tech. I Sem

Teacher: Mr. R. Ram Mohan Rao

Activity: Working Models


Basic Digital Logic Gates

In the course, Digital Logic Design, while explaining about the basics of logic gates and its functions to the students of II Year CSE, the physical device of Logic Gates Trainer Kit was demonstrated to the students to get them a better understanding about the working of the gates and its Truth Table. Similarly the students also practiced with trainer kit to experience practically how the gates are to be operated and also verified the Logic gates Truth Table.

Course Name: Computer network
Class: III B.Tech. I Sem
Teacher: Mrs Navya

Activity: Working Models

Course Name: Operating System (R20CSE2202)
Class: II B.Tech. I Sem
Teacher: Dr. P. Epsiba
Activity: Animated Videos

S.N o.	Un it	Topics	You tube links for Animated Videos for Operating Systems
1	1	Structures of OS	https://www.youtube.com/watch?v=XXPBl20J22w
2	1	System Calls	https://www.youtube.com/watch?v=lhToWeuWWfw
3	1	Operating System Services	https://www.youtube.com/watch?v=TQWERtMoKbI
4	2	fork() and exec() System Calls	https://www.youtube.com/watch?v=IFEFVXvjiHY
5			
6	2	Priority based scheduling algorithm	https://www.youtube.com/watch?v=yKD3pcFvGmY&list=P LBlnK6fEyqRitWSE_AyyySWfhRgyA-rHk&index=11
7	2	Round Robin Scheduling algorithm	https://www.youtube.com/watch?v=7TpxxTNrcTg&list=PL BlnK6fEyqRitWSE_AyyySWfhRgyA-rHk&index=15
8	3	Process Management	https://www.youtube.com/watch?v=OrM7nZcxXZU
9	3	Semaphores	https://www.youtube.com/watch?v=LIzTbA3cAWY
10	3	Deadlock	https://www.youtube.com/watch?v=MYgmmJJfdBg
11	3	Deadlock Handling Methods	https://www.youtube.com/watch?v=OnyOoF_L7zw
12	4	Logical Vs Physical Address	https://www.youtube.com/watch?v=j9rxq-212eU
13	4	Paging	https://www.youtube.com/watch?v=MZvXqIkev7A
14	4	Paging Hardware For Paging Technique In Os	https://www.youtube.com/watch?v=KvqetrhakpY
15	4	Segmentation	https://www.youtube.com/watch?v=vzbcrCRslng

Course Name: Data Structures
Class: II B.Tech. I Sem
Teacher: Mrs Rangamma
Activity: Animated Videos

S.N	Un	Topics You tube links for Animated Videos for Operating		
0.	it		Systems	
1	1	Linked list	Introduction to Linked List - YouTube	
2	2	Hash Table&Hash Function	Hash Tables and Hash Functions - YouTube	
3	3	AVL Tree	AVL Tree Animations Data Structure Visual How - YouTube	
4	4	Merge Sort	Merge Sort Manim Animation [4K] - YouTube	
5	5	Boyer moore algorithm	BOYER MOORE ALGORITHM FOR PATTERN MATCHING - YouTube	

Course Name: Computer Networks
Class: III B.Tech. I Sem
Teacher: Mr. Sandeep
Activity: Animated Videos

S.N	Un	Topics	You tube links for Animated Videos for Operating		
0.	it		Systems		
1	1	The TCP/IP reference models	The TCP/IP Protocol Suite - YouTube		
2	2	Error detection and correction	Error Detection - YouTube		
3	3	Quality of Service	Quality of Service (QoS) Flow Characteristics Reliability		
		-	<u>Delay Jitter Computer Networks - YouTube</u>		
4	4	TCP and UDP protocols	TCP vs UDP Comparison - YouTube		
5	5	SNMP	SNMP - Simple Network Management Protocol - YouTube		

Course Name: Web Technologies
Class: III B.Tech. II Sem
Teacher: Dr. Narashima Chary
Activity: Animated Videos

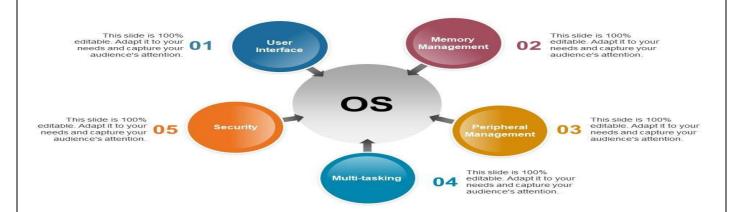
S.N	Un	Topics	You tube links for Animated Videos for Operating
0.	it		Systems
1	1	string operators	2. What is data? Different types of data? Structured Semi-
			structured Unstructured data - YouTube
2	2	XML	What is XML XML Beginner Tutorial Learn XML with Demo in
			10 min - YouTube
3	3	Lifecycle of a servlet	<u>Life Cycle Of A Servlet - 5 Stages with detailed explanation Web</u>
			<u>Technologies - YouTube</u>
4	4	JSP Processing,	JSP Tutorial Life cycle of JSP Advanced Java Mr. Venkatesh -
		_	<u>YouTube</u>
5	5	Javascript	JavaScript Animation Tutorial Animation In JavaScript
		_	<u>JavaScript Tutorial Simplilearn - YouTube</u>

Course Name: Compiler design
Class: IV B.Tech. I Sem
Teacher: Mrs. Kiranmai
Activity: Animated Videos

S.N	Un	Topics	You tube links for Animated Videos for Operating
0.	it		Systems
1	1	Finite Automata,	finite automata - YouTube
2	2	LR Parsing	Introduction to LR Parser Syntax Analyzer Lec 58 #Compiler
		_	<u>Design - YouTube</u>
3	3	Implementing L-Attributed	04 Module 5 Examples of S attributed and L attributed SDT -
		SDD's	<u>YouTube</u>
4	4	Stack Allocation of Space,	6 STACK ALLOCATION OF SPACE 2 - YouTube
5	5	Data-Flow Analysis	DATAFLOW ANALYSIS BASIC TERMINOLOGY PROPERTIES
			FEATURES ADVANTAGES - YouTube

Course Name: Distributed Systems
Class: IV B.Tech. II Sem
Teacher: Mr. Krishna
Activity: Animated Videos

S.N	Un	Topics	You tube links for Animated Videos for Operating
0.	it		Systems
1	1	System models	SYSTEM MODELS FOR DISTRIBUTED&CLOUD COMPUTING VIDEO-
			<u>5 - YouTube</u>
2	2	OSI layer	OSI Model Explained OSI Animation Open System
			Interconnection Model OSI 7 layers TechTerms - YouTube
3	3	Distributed debugging	<u>Debugging Distributed Systems by Donny Nadolny - YouTube</u>
4	4	Atomic commit protocols,	<u>Distributed Transactions: Two-Phase Commit Protocol - YouTube</u>
5	5	Replication	data replication in distributed database Distributed systems
		_	<u>Lec-68 Bhanu Priya - YouTube</u>


Course Name: Computer Organization & Architecture

Class: II B.Tech. I Sem Teacher: Dr. P. Epsiba Activity: Role play

Students role-play parts of a digital computer to accomplish a given task, and follow a given set of rules (their program). Student roles include: a processor, a cache memory controller, main memory, mass storage devices, system buses and input/output devices. Student activities include displaying a multimedia movie, exploring cache memory, and processing an image. Preliminary testing indicates that the Classroom Computer allows students to understand the basic operations of a digital computer

Course Name: Operating systems
Class: II B.Tech. II Sem
Teacher: Dr. P. Epsiba
Activity: Poster Presentation

Operating System User Interface Security Memory

Course Name: Computer Network Class: III B.Tech. I Sem

Teacher: B.Navya

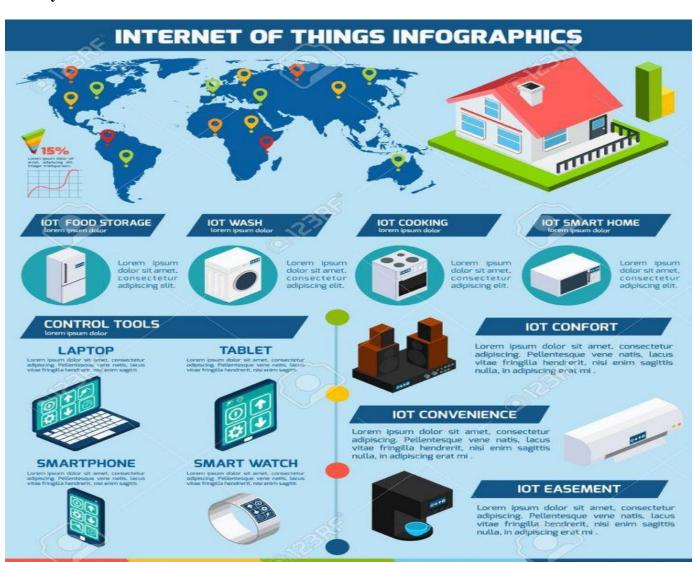
Activity: Poster Presentation

Course Name: ML III B.Tech. II Sem Class: Dr. Kishore Varma **Teacher: Activity: Poster Presentation** 2 > When should I use it? 1 What makes ML? What is it good for?
When the answer to your question could be affected by a large number of factors, or require fine tuning it can be too complex to code simple rules. It can also be used when the size of the problem makes it impractical to use traditional methods. Predictive Analytics Descriptive Pattern Analytics Recognition What is it not good for?
If you can reliably answer your question with simple coded rules or steps you should not use ML— Computational Know your data ← 5 ---Prescriptive **Analytics** do I get my model?

ML Errors:

Type 1 are false positives
Type 2 are false negatives How do I get my model? Your model useful?

Your model can be biased towards:


Precision — out of the returned results how many were correct. If your application cannot afford to be wrong bias for precision

Recall — out of the available items how many were returned. If your application cannot afford to miss anything bias for recall Feature Scored Data Split Data Algorithm Model In your workflow you could combine multiple models to build a quorum ata is either quantitative (measurable distance towen two points) or qualitative (what is your yourite colour?)

Categorical data (e.g. eye colour) the difference has little import but it can be simply grouped. Ordinal data - whilst the difference still does not matter (Monday vs. Thursday) there is an implied order (Thursday after Monday) interval – differences between samples has an impact e.g., 2,4,8. each number it swice the preceding one Ratio – Similar to intervals however they have a known origin – e.g., Temperature cannot fall below Absolute Zero How accurate is your model? Accuracy is the error rate of your predictions e.g., 1 in 5 will be incorrect. Publish You are extremely unlikely to get 100% accuracy 80%+ is considered v. good Beware just because ML gives you results unless you can articulate what they are & why you cannot rely on them it won't tell you when you have taught it wrong! You must understand your data _____ must understand your data _____ results. More data trumps better algorithms!

Course Name: IOT

Class: IV B.Tech. I Sem
Teacher: Sathvik Prasad
Activity: Poster Presentation

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF DATA SCIENCE

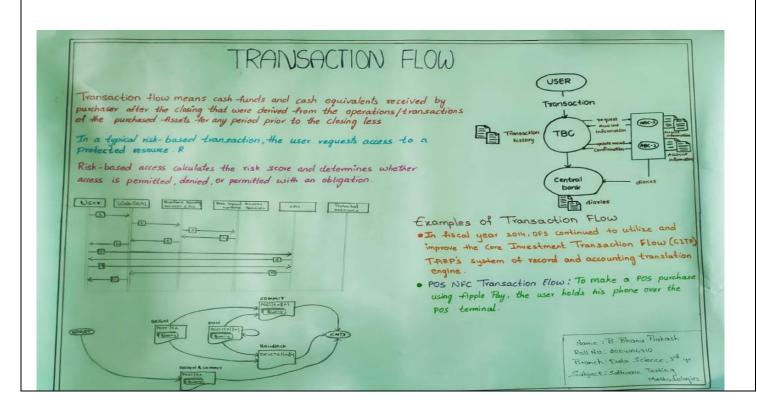
MODEL BASED TEACHING

MODEL BASED TEACHING

- 1. Chart
- 2. Working models
- 3. Animated Videos
- 4. Role Play
- 5. Poster presentation

S.No.	YEAR/SEM	SUBJECT	Chart	Model	Animated Videos	Role play	Poster
1.	II/I	R20CSE2201 – Discrete	$\sqrt{}$	√	$\sqrt{}$		V
		Mathematics					
2.	II/I	R20CSE2101 – Data	$\sqrt{}$	1	V	$\sqrt{}$	
		Structures					
3.	II/I	R20MTH2104 –	$\sqrt{}$	1	V	$\sqrt{}$	V
		Mathematical and Statistical Foundations					
4.	II/I	R20CSE2102 – Computer	$\sqrt{}$	1	V		
		Organization & Architecture					
5.	II/I	R20CSE2104 – Python	$\sqrt{}$	V	$\sqrt{}$		V
		Programming					
6.	II/I	R20MBA2201 – Business	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$
		Economics & Financial					
		Analysis					
7.	II/II	R20CSE2202 – Operating	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
		Systems			,		
8.	II/II	R20CSE2203 – Database	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	
		Management Systems			,		
9.	II/II	R20CSE2204 – Java	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	
		Programming	,	,	,		,
10.	II/II	R20CSE2206 – Formal	$\sqrt{}$	√	$\sqrt{}$		$\sqrt{}$
		Language & Automata Theory		,			,
11.	II/II	R20CSE2207 – Software	$\sqrt{}$	√		$\sqrt{}$	V
		Engineering	,	,	,		,
12.	III/I	R20CSE3231 – Software	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
		Testing Methodologies	1	,		,	,
13.	III/I	R20CSD3101 – Introduction	\checkmark				√

14.	III/I	To Data Science			Videos	play	
	III/I						
15		R20CSC2201 – Fundamentals	V	V	V	V	$\sqrt{}$
15		of Networking					
15.	III/I	R20CSD3102 – Data	$\sqrt{}$	1	V	$\sqrt{}$	√
		Warehousing And Data					
		Mining					
16.	III/I	R20CSE3113 – Principles of	V	$\sqrt{}$	$\sqrt{}$	V	V
		Programming Languages					
17.	III/I	R20CSE4143 – Cloud	$\sqrt{}$	V	V	V	√
		Computing					
18.	III/II	R20CSE3203 – Design and	$\sqrt{}$	V	V	V	
		Analysis of Algorithms					
19.	III/II	R20CSE3201 – Machine		√	V		√
		Learning					
20.	III/II	R20CSE4152 – Internet of		√	V	√	√
		Things					
21.	III/II	R20CSE3232 – Scripting		√	V	√	√
		Languages					
22.	III/II	R20HMS3277 –		√	V	√	
		Fundamentals of					
		Entrepreneurship					
23.	IV/I	R20CSD4101 – Predictive	V	V	V	V	V
		Analytics					
24.	IV/I	R20CSD4102 – Web and	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
		Social Media Analytics		,	T		,
25.	IV/I	R20CSM4103 – Natural	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
26.	IV/I	Language Processing R20CSD4106 – Data Science				V	√
۷۵.	1 V / I	Applications	٧			V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
27.	IV/I	R20INF4185 – E-Commerce		√		√	√


Course Name : R20CSE2101 - Data Structures

Class : II B.Tech. I Sem
Teacher : Dr.SR.Mugunthan
Activity : Working Models

Course Name: R20CSE3231 - Software Testing Methodologies

Class : III B.Tech. I Sem Teacher : Ms.BKN.Priyanka Activity : Chart Works

Course Name : R20CSM4103 - Natural Language Processing

Class : IV B.Tech. I Sem
Teacher : Dr K Gunasekaran
Activity : Animated Videos

Morphology

Select a Root Word

बच्चा 🗸

Fill the add delete table here:

Dele	te	Add		Number	Case	
आ	٧	आ 🗸		sing	dr	
आ	٧	आ	٧	plu	dr	
आ	٧	आ	٧	sing	ob	
आ	٧	आ	v	plu	ob	

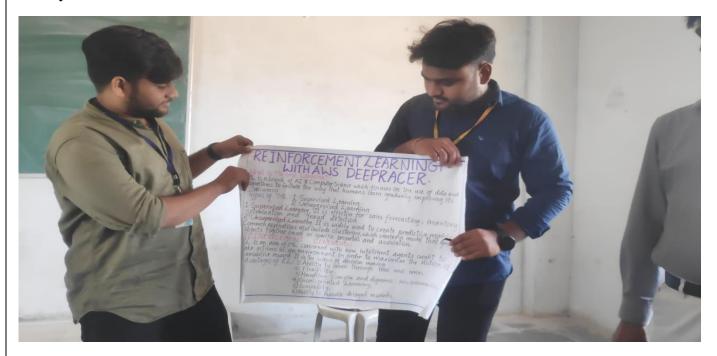
For Example for <mark>লড়কা</mark>:

Delete	Add	Number	Case
आ	आ	sing	dr
आ	Ų	plu	dr
आ	Ų	sing	ob
आ	ओं	plu	ob

Submit

S.No.	Unit	Topics You tube links for Animated Videos for Natural Language Pro		
1	1	Introduction	(754) The Basics of Natural Language Processing - YouTube	
2	1	Tokenization	(754) What is Tokenization? - YouTube	
3	1	Morphology	nlp-iiith.vlabs.ac.in/exp/morphology/simulation/morph/index.html	

Course Name: R20CSE3231 – Software Testing Methodologies


Class : II B.Tech. I Sem
Teacher : BKN. Priyanka
Activity : Role Play

Course Name: Data Science Applications Class: IV B.Tech. I Sem

Class: IV B.Tech. I Sem Teacher: S. Anushna

Activity: Poster Presentation

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF INFORMATION TECHNOLOGY

MODEL BASED TEACHING

MODEL BASED TEACHING

- 1. Chart
- 2. Working models
- 3. Animated Videos
- 4. Role Play
- 5. Poster presentation

S.No.	YEAR/SEM	SUBJECT	CHART	MODEL	ANIMATED VIDEOS	ROLE PLAY	POSTER
1.	II /I	Analog Electronics	/	✓	\checkmark		1
2.	II /I	Data Structures	1	1	✓	1	1
3.	II /I	Probability & Statistical Methods	√	✓	√		✓
4.	II /I	Computer Organization and Architecture	√	✓	√	✓	√
5.	II /I	Object Oriented Programming Using C++	√	✓	√	✓	√
6.	II/II	Discrete Mathematics	/	/	✓	1	√
7.	II/II	Digital Logic Design	√	✓	\	1	√
8.	II/II	Operating Systems	√		✓	1	1
9.	II/II	Database Management Systems	1	✓	✓	✓	✓
10.	II/II	Java Programming	√	✓	✓	1	1
11.	III/I	Business Economics & Financial Analysis	1	✓	√		✓
12.	III/I	Software Engineering	1	✓	1	√	√

13.	III/I	Data Communication & Computer Networks	✓	/	✓	✓	✓
14.	III/I	Web Technologies	√	✓	√	1	✓
15.	III/I	Principles of Programming Languages	√	✓	✓	✓	✓
16.	III/I	Artificial Intelligence	√	1	\checkmark	1	
17.	III/II	Machine Learning	√	/	√		
18.	III/II	Principles of Compiler Construction	√	✓	✓	✓	✓
19.	III/II	Algorithm Design and Analysis	√	✓	✓	✓	✓
20.	III/II	Software Testing Methodologies	√	✓	✓	✓	✓
21.	III/II	Information Technology Essentials	√	✓	✓	✓	\
22.	IV/I	Information Security	1		\checkmark	1	
23.	IV/I	Data Mining	√	✓	√		
24.	IV/I	Cloud Computing	√	✓	√	1	1
25.	IV/I	Internet of Things	√	1	√	1	1
26.	IV/I	E-Commerce	1	1	1	1	1
27.	IV/II	Organizational Behaviour	1	✓	1	1	1
28.	IV/II	Distributed Systems	1	1	√	1	1
29.	IV/II	Information Security Fundamentals	√	✓	√	✓	1

Course Name: Data Structures
Class: II B.Tech. I Sem
Teacher: Mrs. Geetha
Activity: Chart work
Title: Linked List

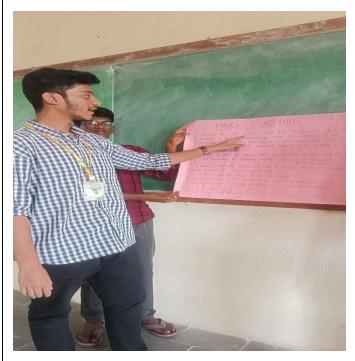
Course Name: Object Oriented Programming

Using C++

Class : II B.Tech. I Sem Teacher : Mrs. Varsha Reddy

Activity : Chart work

Title : Inheritance and its Types


Course Name: Operating Systems
Class: II B.Tech. II Sem
Teacher: Mr. Shakeel
Activity: Chart work

Title : OSI Layers

Course Name: Discrete Mathematics
Class: II B.Tech. II Sem
Teacher: Mrs. Keerthy Reddy

Activity : Chart work
Title : Matrix Relation

Course Name: Database Management System

Class : II B.Tech. II Sem Teacher : Mrs. S Varsha Reddy

Activity : Chart work

Title : Database Architecture

Course Name: Java Programming
Class: II B.Tech. II Sem
Teacher: Mrs. J Sasirekha
Activity: Chart work

Title : Inheritance and its Types

Course Name : Software Engineering

Class : III B.Tech. I Sem Teacher : Mrs. K. Priyanka

Activity : Chart work
Title : Software Myths

Course Name : Principles of Compiler

Construction

Class : III B.Tech. II Sem Teacher : Mrs. J S RADHIKA

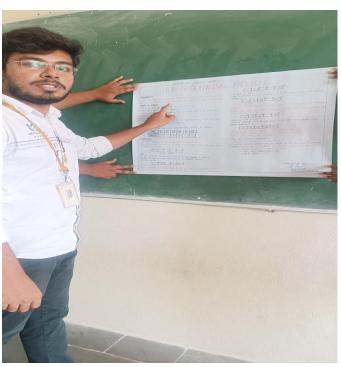
Activity : Chart work

Title : Phases Of Compiler

Course Name: Machine Learning
Class: III B.Tech. I Sem
Teacher: Mrs. J. Sri vidhya

Activity : Chart work

Title : Applications of ML



Course Name: Algorithm Design Analysis

Class : III B.Tech. II Sem Teacher : Mrs. J. Sushmitha

Activity : Chart work

Title : Job Sequencing Problem

Course Name: Software Testing Methodologies

Class : III B.Tech. II Sem Teacher : Mrs. K. Priyanka Activity : Chart work

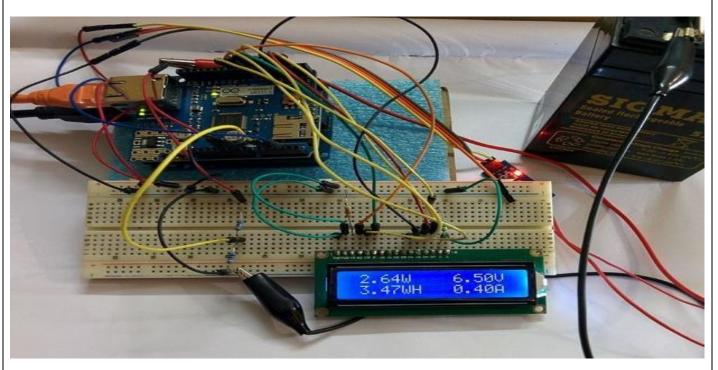
Title : Chart work

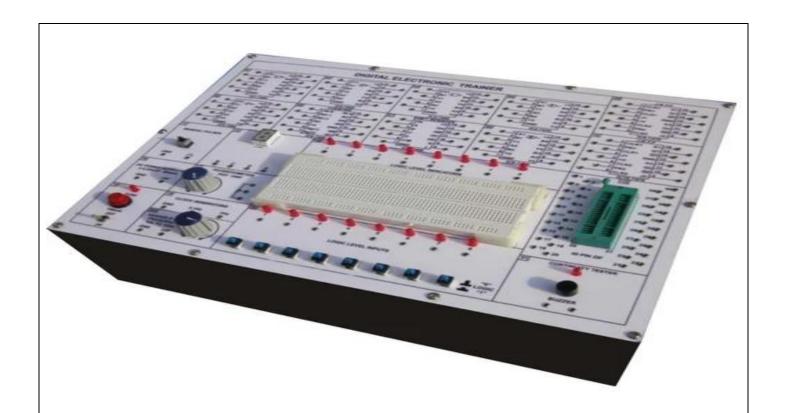
Title : Testing Model

SELECTION OF THE SELECT

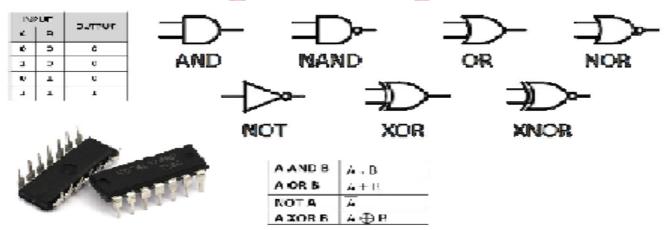
Course Name: Machine Learning
Class: III B.Tech. I Sem
Teacher: Mrs. J. Sri vidhya
Activity: Chart work

Title : Applications of ML

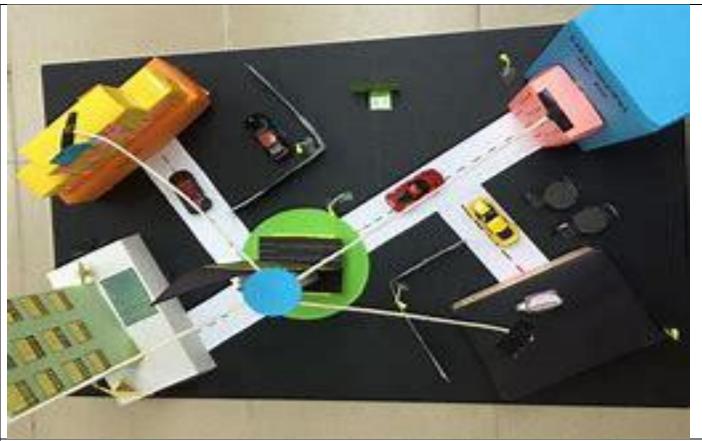

Course Name: Java Programming
Class: II B.Tech. II Sem
Teacher: Mrs. J Sasirekha
Activity: Poster Making
Title: Java Programming



Course Name: Analog Electronics Class: II B.Tech. I Sem


Teacher: Mr. Venu

Activity: Working Models



Basic Digital Logic Gates

In the course, Digital Logic Design, while explaining about the basics of logic gates and its functions to the students of II Year CSE, the physical device of Logic Gates Trainer Kit was demonstrated to the students to get them a better understanding about the working of the gates and its Truth Table. Similarly the students also practiced with trainer kit to experience practically how the gates are to be operated and also verified the Logic gates Truth Table.

Course Name: Computer network
Class: III B.Tech. I Sem
Teacher: Mrs Varsha Reddy
Activity: Working Models

Course Name: Data Structures
Class: II B.Tech. I Sem
Teacher: Mrs. J Sasirekha
Activity: Animated Videos

S.N	Un	Topics You tube links for Animated Videos for Operating		
0.	it	Systems		
1	1	Linked list <u>Introduction to Linked List - YouTube</u>		
2	2	Hash Table&Hash Function Hash Tables and Hash Functions - YouTube		
3	3	AVL Tree Animations Data Structure Visual How - YouTube		
4	4	Merge Sort Manim Animation [4K] - YouTube		
5	5	Boyer moore algorithm	byer moore algorithm <u>BOYER MOORE ALGORITHM FOR PATTERN MATCHING - YouTube</u>	

Course Name: Operating System (R20CSE2202)

Class: II B.Tech. II Sem
Teacher: Dr. P. Epsiba
Activity: Animated Videos

S.N Un Topics		Topics	You tube links for Animated Videos for Operating		
0.	it		Systems		
1	1	Structures of OS	https://www.youtube.com/watch?v=XXPBl20J22w		
2	1	System Calls	https://www.youtube.com/watch?v=lhToWeuWWfw		
3	1	Operating System Services	https://www.youtube.com/watch?v=TQWERtMoKbI		
4	2	fork() and exec() System Calls	https://www.youtube.com/watch?v=IFEFVXvjiHY		
5					
6	2	Priority based scheduling algorithm	https://www.youtube.com/watch?v=yKD3pcFvGmY&list=P LBlnK6fEyqRitWSE_AyyySWfhRgyA-rHk&index=11		
7	2	Round Robin Scheduling algorithm	https://www.youtube.com/watch?v=7TpxxTNrcTg&list=PL BlnK6fEyqRitWSE_AyyySWfhRgyA-rHk&index=15		
8	3	Process Management	https://www.youtube.com/watch?v=OrM7nZcxXZU		
9	3	Semaphores	https://www.youtube.com/watch?v=LIzTbA3cAWY		
10	3	Deadlock	https://www.youtube.com/watch?v=MYgmmJJfdBg		
11	3	Deadlock Handling Methods	https://www.youtube.com/watch?v=OnyOoF_L7zw		
12	4	Logical Vs Physical Address	https://www.youtube.com/watch?v=j9rxq-212eU		
13	4	Paging	https://www.youtube.com/watch?v=MZvXqIkev7A		
14	4	Paging Hardware For Paging Technique In Os	https://www.youtube.com/watch?v=KvqetrhakpY		
15	4	Segmentation	https://www.youtube.com/watch?v=vzbcrCRslng		

Course Name: Computer Networks
Class: III B.Tech. I Sem
Teacher: Mrs. S Varsha Reddy
Activity: Animated Videos

S.N	Un	Topics You tube links for Animated Videos for Operating		
0.	it	Systems		
1	1	The TCP/IP reference models The TCP/IP Protocol Suite - YouTube		
2	2	Error detection and correction <u>Error Detection - YouTube</u>		
3	3	Quality of Service Quality of Service (QoS) Flow Characteristics Reliability		
		<u>Delay Jitter Computer Networks - YouTube</u>		
4	4	TCP and UDP protocols TCP vs UDP Comparison - YouTube		
5	5	SNMP	NMP SNMP - Simple Network Management Protocol - YouTube	
			<u> </u>	

Course Name: Web Technologies
Class: III B.Tech. I Sem
Teacher: Mrs. J Sasirekha
Activity: Animated Videos

S.N	Un	Topics	You tube links for Animated Videos for Operating	
0.	it		Systems	
1	1	String operators	2. What is data? Different types of data? Structured Semi-	
			structured Unstructured data - YouTube	
2	2	XML	What is XML XML Beginner Tutorial Learn XML with Demo in	
			10 min - YouTube	
3	3	Lifecycle of a servlet	<u>Life Cycle Of A Servlet - 5 Stages with detailed explanation Web</u>	
			<u>Technologies - YouTube</u>	
4	4	JSP Processing,	JSP Tutorial Life cycle of JSP Advanced Java Mr. Venkatesh -	
			<u>YouTube</u>	
5	5	Javascript	JavaScript Animation Tutorial Animation In JavaScript	
		_	<u>JavaScript Tutorial Simplilearn - YouTube</u>	

Course Name: Computer Organization & Architecture

Class: II B.Tech. I Sem Teacher: Dr. P. Epsiba Activity: Role play

Students role-play parts of a digital computer to accomplish a given task, and follow a given set of rules (their program). Student roles include: a processor, a cache memory controller, main memory, mass storage devices, system buses and input/output devices. Student activities include displaying a multimedia movie, exploring cache memory, and processing an image. Preliminary testing indicates that the Classroom Computer allows students to understand the basic operations of a digital computer

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

OPEN HOUSE EXHIBITIONS AND IDEA PRESENTATION

(A.Y: 2022-23)

S.No.	Date of the Event	Name of the Activity	No. of Students Participated
1.	15/11/2022	BRIGHT MINDS IDEATHON'22	250
2.	16/12/2022	EXCELLENCIA-2022	260
3.	16/09/2023	SMART INDIA HACKATHON'23	250

BRIGHT MINDS IDEATHON'22

Sri Indu
College of Engineering & Technology
UGC Autonomous Institution
Recognized under 2(f) & 12(8) of UGC Act 1956,
NAAC, Approved by AICTE &
Permanently Affiliated to JMTUH

R.Anup Chakravarth Secretary

Organizes

INNOVATION DAY

Date: 15.11.2022

Event: Bright Minds Ideathon'22

THEMES:

• Artificial Intelligence • Internet of Things • Cyber Security • Robotics

• Embedded Systems • VLSI Design • E-Vehicles • Environment • Agriculture

Coordinators

HOD/CSE

Conveners

Principal

Dr.C.Kotteeswaran, Assoc.Prof Mrs.G.Manasa, Asst.Prof Dr.T.Charan Singh

Dr.K.S.Sadasiva Rao Prof.K.Ashok Babu Dr.G.Suresh

EXCELLENCIA-2022

CSI SICET STUDENT CHAPTER

EXCELLENCIA

SLIDE PLAYER

-WE ARE THE FUTURE

CODE-A-THON

DEPARTMENT OF PRADARSHAN COMPUTER SCIENCE AND ENGINEERING

INDU'S TALENT

ORGANIZER Dr.T.Charan Singh HOD(CSE)

CONVENER Professor &Dean

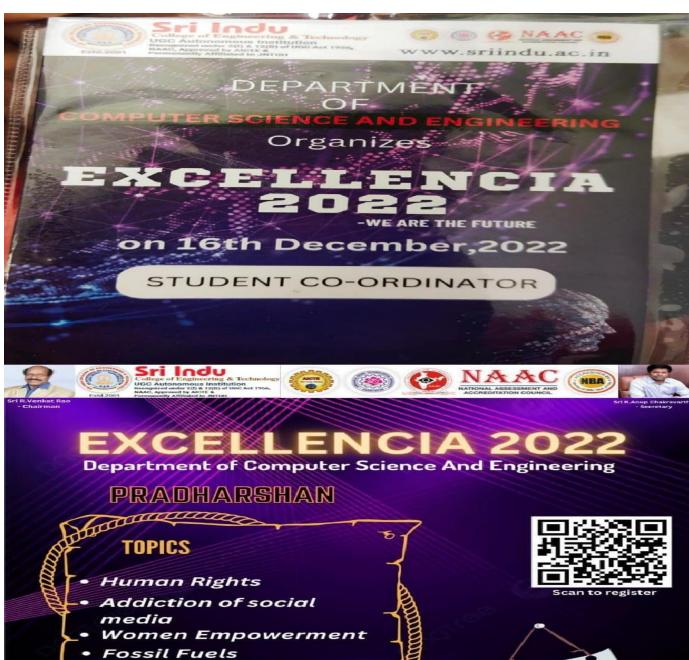
PRINCIPAL Dr.G.Suresh

CO-ORDINATORS Mrs.G.Sirisha Mr.A.Sandeep

Dr.K.S.Sadasiva Rao (CSE & Allied branches)

for organizing the event "Excellencia-2022" during the Academic Year 2022-23 held on 16.12.2022 Organized by Department of CSE, SICET.

Dean


Principal

Sustainable Development

Organised by: M.Shiva Prasad Reddy J.Harshini I. Nikhil Kumar

Ch.Sai Kumar

Contact no: 7793992019 8919594031

Sri Indu

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROBLEM SOLVING

DATE:

16/12/2022 TIME: MAIN BLOCK 1ST FLOOR, LAB XIII SCAN TO REGISTER

Organized by:

C.Satwik Reddy K.Sai Sree Reddy M.Nikhil V.Bhanu Prasad

CONTACT NO: 9492910529,9390661632

NAAC NBA

CELLENCIA

Department of Computer Science And Engineering

SLIDE PLAYER

TOPICS:

- Bio-Hacking
- Safe data management solution
- Virtual Health assitant
- Realities

ORGANISED BY:

J.Pavithra

A.Shashanka

P.Varshitha K.Meghana

Sematic Web

NO ENTRY FEE /

DATE: 16th,December,2022 VENUE: MAIN BLOCK, 2nd FLOOR, SEMINAR HALL

Contact number: 8179014612,7337445945

SMART INDIAHACKATHON'23

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF INFORMATION TECHNOLOGY

OPEN HOUSE EXHIBITIONS AND IDEA PRESENTATION

(A.Y: 2022-23)

S.No.	Date of the Event	Name of the Activity	No. of Students Participated
1.	27/04/2022	TECHNO IT - 2022	150
2.	14/05/2022	TECHNOTSAV - 2022	200
3.	19/11/2022	CYBER CLUB - 2022	260
4.	19/11/2022	TECHNOPHILIA – 2022	260
5.	04/05/2023	NAVA PRADYOGIKI PRADARSHANI - 2023	300

TECHNO IT - 2022

PHOTO GALLERY

Techno IT - Inauguration

Inaugural Speech by Dr. Charan Sigh, HOD of CSE, SICET

Paper Presentation by Harsha (IV Year – IT)

Paper Presentation by Amaan (IV Year – IT)

Prize Distribution: First Prize Won by Ms. Nikitha (III Year – IT)

Prize Distribution: Second Prize Won by Mr. Koushik Reddy (III Year – IT)

TECHNOTSAV - 2022

PHOTO GALLERY

College of Engineering & Technology
UGC Autonomous Institution
Recognized under 2(f) & 12(f) of UGC Act 1956,
NAAC, Approved by AICITE &
Permanently Affiliated to JNTUH

Mail id: Technotsav2k22it@gmail.com Ph.no.: 8186881546

TECHNOTSAV

Departmet of IT

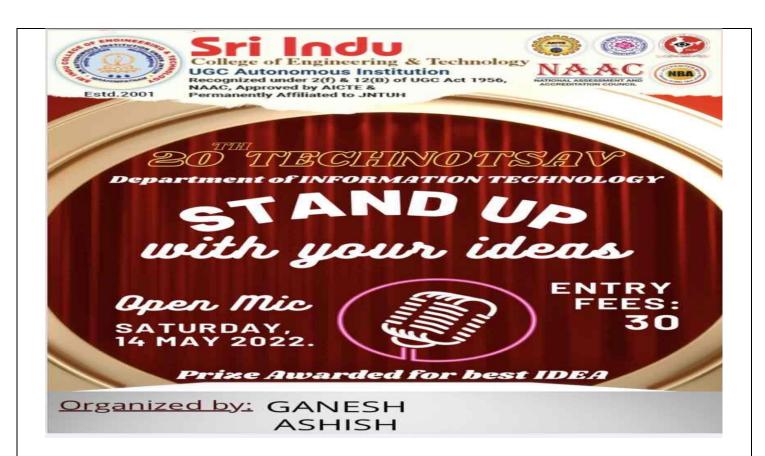
TECHNICAL EVENT

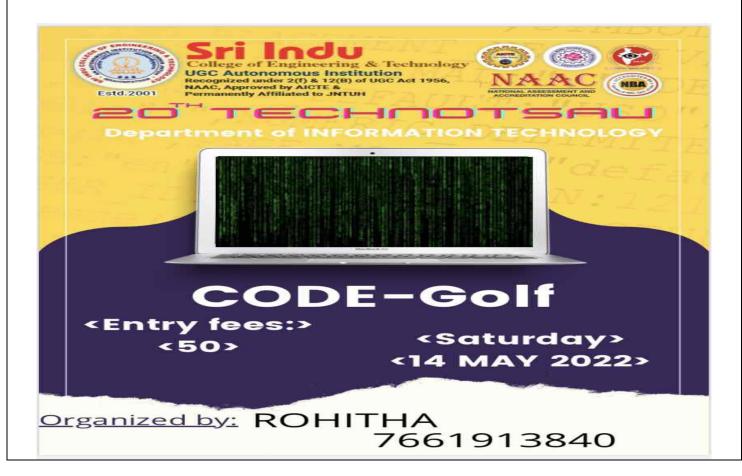
PPT Presentation CODE-Golf Stand-up With your Idea Many more......

NON-TECHNICAL EVENT

Radium Cricket Laser Maze Hold the Brick Dark Room Many more......

Faculty Co-ordinators

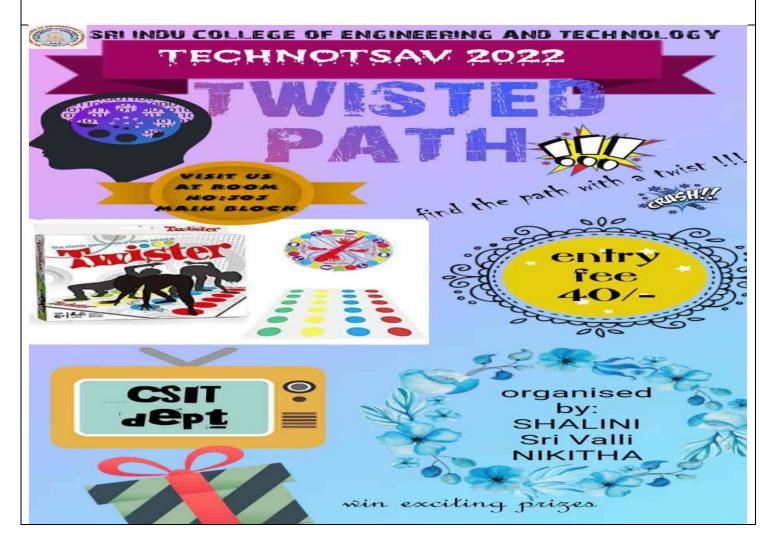

J.S. Radhika M. Ashok


Principal:

Dr. G. Suresh

Convenors:

Dr. K.S. Sadasiva Rao-DEAN B. Surekha- HOD-IT



TECHNOTSAV – 2022 Group Photo

Paper Presentation by Tajudeen (II Year - IT)

Paper Presentation by Amaan (IV Year – IT)

Paper Presentation by Ms. Srivalli (III Year – CSIT)

Prize Distribution: First Prize for Paper Presentation Won by Mr. Abdul Raheem (III Year – IT)

Prize Distribution : Second Prize for Paper Presentation Won by Ms. B. Keerthana (III Year – IT)

Programe Theme: Music Concert

Live Music Concert

TECHNOPHILIA - 2022

PHOTO GALLERY

K.Priyanka

College of Engineering & Technology **UGC Autonomous Institution**

Recognized under 2(f) & 12(B) of UGC Act 1956,

Estd.2001

NAAC, Approved by AICTE & Permanently Affiliated to JNTUH

Sri R. Venkat Rao Chairman

CYBER CLUB

INAUGURATION OF

Sri R. Anup Chakravarthy Secretary

Technical Workshops Hands-on Training Sessions Guest lectures on Cyber Security Project EXPO Sessions Capture-the-flag Events

Convener

Dr. K S Sadasiva Rao (Professor & Dean- CSE & Allied Brances) HOD

Prof. B. Surekha (HOD-IT/CSIT)

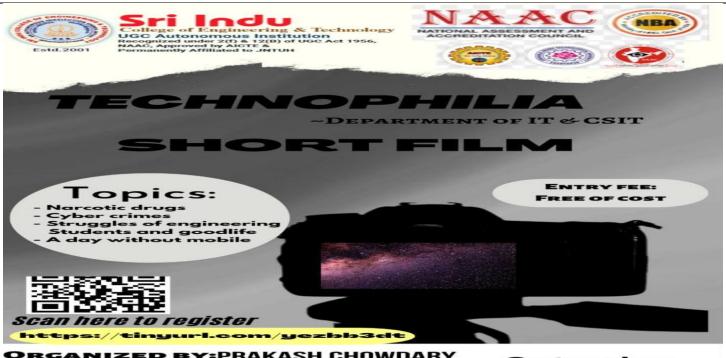
Faculty Coordinator J. Srividya

Student Coordinator T. Shree Valli K. Ratna Prakash

Principal Dr. G Suresh

-Department of IT & CSIT

Technical Paper Presentation


TPS://QRCO.DE/BDV13H

ORGANIZED BY: Pooja Akhila

REGISTRATION FEE

TECHNOPHILIA 2022 – Prize Distribution for Paper Presentation Winners

ORGANIZED BY:PRAKASH CHOWDARY

KAVYA

KUSHAL

+91 81257 51909

Saturday, 19-Nov-2022

₹30

URL.COM/2P9NFZM9

R.Kaushik Reddy Saturday, V.Akhil

19-nov-2022

TECHNOPHILIA 2022 – Prize Distribution for Short Film Winners

SITE

POSTER DA ZIBAO

Grab their attention

OPICS:

- Hyper loop
- Save our planet
- Unity in diversity
 - Robotics Al
 - Quantum computers

https://tinyurl.com/3utrduye

ENTRY FEE:

ORGANIZED BY: B.NIKITHA

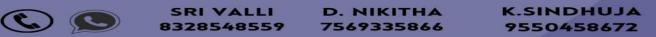
HARSHITHA REDDY MOUNIKA REDDY

Saturday, 19 Nov 2022

Poster Presentation

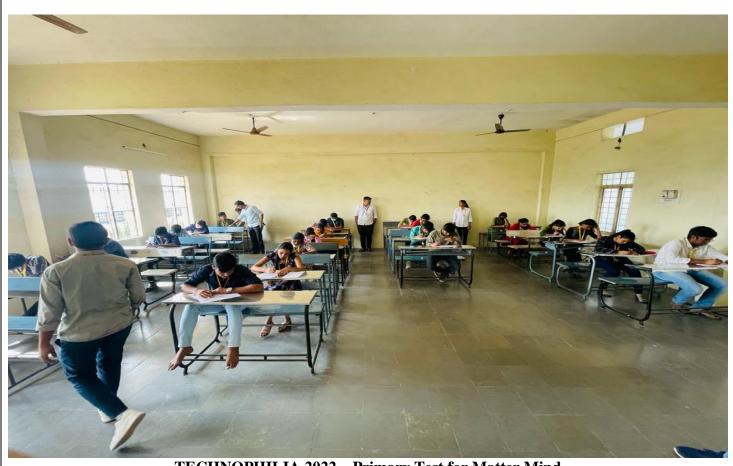
TECHNOPHILIA 2022 – Prize Distribution for Poster Presentation Winners

TECHNOPH ORGANIZED BY IT & CSIT DEPARTMENT


PARACOI

DT: 19/11/2022

REGISTRATION FEE: 30 (RS)



TECHNOPHILIA 2022 – Prize Distribution for Para Coding Winners

TECHNOPHILIA 2022 – Primary Test for Matter Mind

TECHNOPHILIA 2022 – Primary Test for Matter Mind

College of Engineering & Technology
UGC Autonomous Institution
Recognized under 2(f) & 12(B) of UGC Act 1956,
NAAC, Approved by AlCIE &
NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER

TECHNOPH

19/11/2022

STUDENTS OF CSIT PRESENTS

SCAN HERE TO REGISTER

REGISTRATION FEE:
90 (RS)/ TEAM
(TEAM CONSISTS OF 3 MEMBERS)

7036289174

(TO KNOW ABOUT DEBATE FORMAT)

SAI SATWIK GOVIND DIXIT 9390750448

(TO REGISTER YOURSELF AS A TEAM)

VARUN SALVERU 6303276196 (TO KNOW ABOUT COMPETITION RULES)

Discussion on Debate Event

TECHNOPHILIA 2022 – Prize Distribution for Debate Winners

NAVA PRADYOGIKI PRADARSHANI – 2023

PHOTO GALLERY

Project Expo: Chat Box Project done by II Year IT Students

Project Expo: Stock Market Analyzation Project done by III Year IT Students

Project Expo: Rain Water Harvesting Project done by I Year IT Students

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

INDUSTRIAL VISITS (A.Y: 2022-23)

S.No.	Date of	Year/Sem	Name of the Industry Visits	No. of Students
	Visit			
1.	30.9.2023	III/ I	Industrial Visit to C-DAC, Hyderabad	148
2.	12.09.2023	II/II	Industrial Visit to Kalam Institute of youth excellence and foundation	120
3.	17.01.2022	III/II	LEDCHIP INDIA PVT.LTD	140
4.	12.09.2022	III/I	National Institute of Amateur Radio	160

• Organizing Department: Computer Scienceand Engineering

• Name of Activity: Industrial Visit to C-DAC, Hyderabad,

• Date of Activity: 30th Sept 2023,

• No.of Participants: 128

• Participants from: B.Tech (CSE), III Year AND B.Tech (CSIT), III YEAR, SICET

organization of the Ministry of Electronics and Computer Science and Engineering for carrying out R&D in CSE, Electronics and associated areas located at Plot No. 6 & 7, Hardware Park, Sy No. 1/1, Srisailam Highway Pahadi Shareef, Via, Keshavagiri Post, Hyderabad, Telangana 501510. C-DAC has today emerged as a premier R&D organization in CSE (Computer Science and Engineering) in the country working on strengthening national technological capabilities in the context of global developments in the field and responding to change in the market need in selected foundation areas. In that process, C-DAC represents a unique facet working in close junction with MeitY to realize nation's policy and pragmatic interventions and initiatives in Computer Science and Engineering. As an institution for high-end Research and Development (R&D, the Ministry of Electronics and Computer Science and Engineering, Government of India and other stakeholders including funding agencies, collaborators, users and the market-place.

- Outcome of Activity: Students learnt about the emerging/enabling technologies and skill setsto develop and deploy IT products and solutions provided by CDAC for different sectors of the economy
- How it Bridges gap between Industry and Academia: Due to this visit, students learnt in C-DAC
 has been at the forefront of the Computer Science and Engineering (CSE) revolution, constantly
 building capacities in emerging/enabling technologies and innovating and leveraging its expertise,
 caliber, skill sets to develop and deploy IT products and solutions for different sectors of the
 economy

• Photo : INDUSTRIAL VISIT PHOTOS

Organizing Department : Computer Science & Information

Technology,

• Name of Activity : Kalam Institute of youth excellence and foundation, Hyderabad

• **Date of Activity** : 12.09.2023

• No.of Participants : 120

Participants from
 B.Tech III Year (CSE), SICET.
 Details of Activity
 INDUSTRIAL VISIT PHOTOS

INDUSTRIAL VISIT BRAHMOS AEROSPACE

Kanchan Bagh, Hyd.

On 12th September 2023

KWALITY PHOTONICS PRIVATE LIMITED

LEDCHIP INDUS PRIVATE LIMITED

29A&B, Elelctronics Complex, Kushaiguda, Hyderabad-500 062 Naresh-8179409843 Mail: nareshledchip@gmail.com Website: www.ledchipindus.com www.kwalityphotonics.com

Hyderabad,

05/01/2021.

То

From SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

Sub: Industrial Visit for sri indu college of engineering & technology

Respected Sir/Madam,

Kwality Photonics Pvt Ltd. would like to inform you that industrial visit proposal for your students is accepted on 07^{th} JAN-2022 100students and faculty has visited factory. Rs 2000 Visit Chagres

Thanking you,

Yours sincerely,

For Kwality Photonics Pvt. Ltd.

R

LEDchip Indus Pvt Ltd.

INDUSTRIAL TRAINING / FIELD VISIT FOR STUDENTS

List of Industrial Visits A

AY: 2021-22	A	Y	:	2	0	2	1.	-2	1
-------------	---	---	---	---	---	---	----	----	---

S.No	List of Industries	Offered by Industry	Beneficiary	Duration
1	WileyNxt	Students Training	100	1 Day
2	Eleation	Self- Learning Training and Virtual Industrial Internship	150	1 Day
3	Imarticus	Data Science	100	1 Day
4	VDL Auto products	IOT	200	1 Day
5	SAP Labs India	SAP Module Training	190	1 Days

Impact analysis of industrial training

- Gain Valuable Work Experience
- Have an edge in the job market.
- Transition into a Job
- Decide if this is the Right Career for You
- Networking Opportunities
- Apply Classroom Knowledge
- Gain Confidence

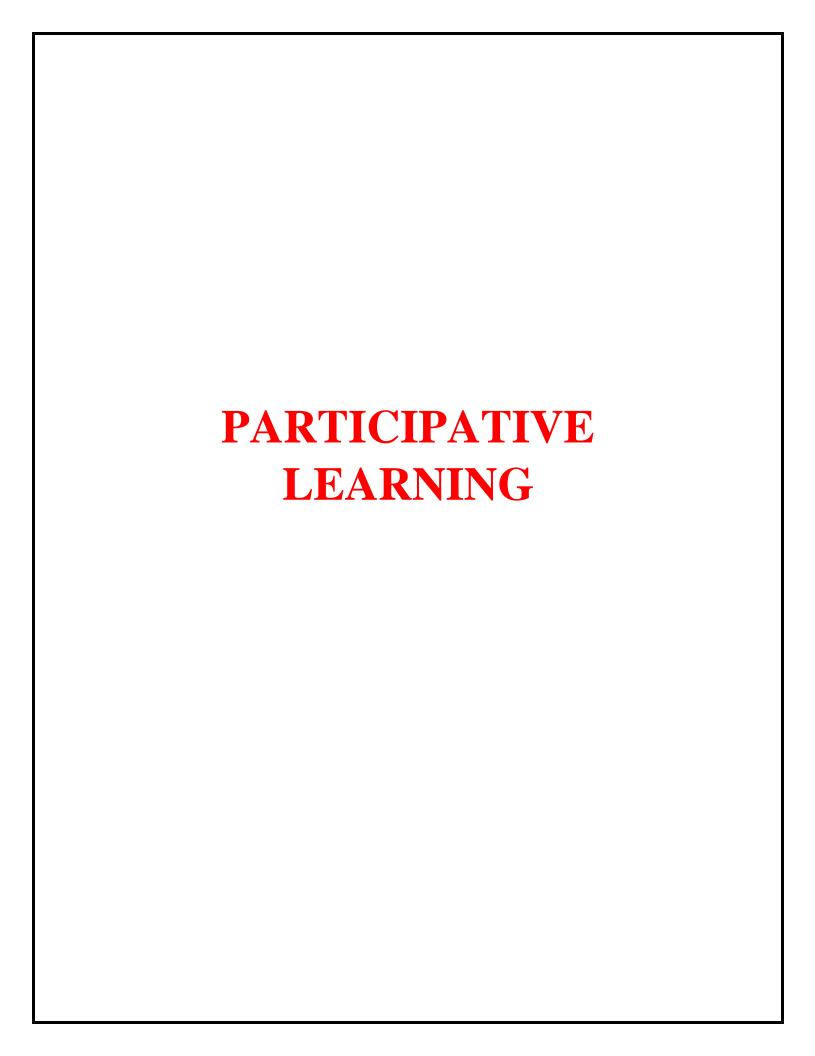
Students Feedback

		Date : 20/01/20
Name of the Organization	Grepthor Software	Solutions PVE Lited.
Whether the number of a Whether hands on session	was in accordance with the schedule days provided was adequate ons were given in this internship	: YESNO : YESNO : YESNO : YESNO
Student Name: Hack	Branch: C	SE Year: IV
3. Communical 4. Reasoning 5. Verbal Ho 5. Logical R	inking is problem solviers of skills.	
Any other Comments:	third some more	Lachnology.
	Highlights	Signature of the Student
Logica		

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INDUSTRIAL VISIT/TRAINING/INTERNSHIP

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INDUSTRIAL VISIT/TRAINING/INTERNSHIP

IMPACT ANALYSIS


Name of the Industry: MANAC Infotech Pvt. Ltd.

Type of Association with the Industry	Identified Domain	Effectiveness	Impact
		Assessment Conducted (MCQ)	Scored more than 90% in the Relevant field.
		Programming Skills	Complex Programming Assignments.
Training/Skill	Machine Learning &	Problem Analytical Skills in Machine Learning	Problem Analysis using Machine Learning.
Development/Project Development	BIG Data	Projects Developed	BIGMART SALES USING MACHINE LEARNING WITH
		Placement in Relevant Field	DATA ANALYSIS Students get placed in companies which
			are relevantly working in the same area.

Kaeulty-In-Charge

Hon

Principal

(An Autonomous Institution under UGC, New Delhi)
Recognized under 2(f) and 12 (B) of UGC Act 1956
NBA & NAAC Accredited, Approved by AICTE and Permanently Affiliated to JNTUH.
Sheriguda(V), Ibrahimpatnam(M), R.R Dt.

SWAYAM NPTEL LOCAL CHAPTER

YEAR WISE ENROLLMENT DETAILS

S.No	Year	Subjects Enrollments	Registered For Exam	Certificates Received
1	JULY-DECEMBER 2022	1945	70	56
2	JAN-APRIL 2022	3236	48	41
3	JULY-DECEMBER 2021	467		41
4	JAN-APRIL 2021	2512	18	10
5	JULY-DECEMBER 2020	462	2	10
6	JAN-APRIL 2020	4600	19	C.F.
7	JULY-DECEMBER 2019	2832	106	65
8	JAN-APRIL 2019	4130	174	100
9	JULY-OCT 2018	3130	4	182
10	JAN-APRIL 2018	541	1	

SPOC

SWAYAM NPTEL LOCAL CHAPTER

PRINCIPAL

Sri Indu College of Engineering & Technology (Approved by AICTE & Affiliated to JNTUH) Sheriguda, Ibrahimpatnam, R.R. Dist-501 510

(An Autonomous Institution under UGC, New Delhi)
Recognized under 2(f) and 12 (B) of UGC Act 1956
NBA & NAAC Accredited, Approved by AICTE and Permanently Affiliated to JNTUH.
Sheriguda(V), Ibrahimpatnam(M), R.R Dt.

SWAYAM NPTEL LOCAL CHAPTER

STUDENTS- YEAR WISE ENROLLMENT DETAILS

S.No	Year	Subjects Enrollments	Registered For Exam	Certificates Received
1	JULY-DECEMBER 2022	1494	29	25
2	JAN-APRIL 2022	2880	23	18
3	JULY-DECEMBER 2021	391		
4	JAN-APRIL 2021	2089	15	6
5	JULY-DECEMBER 2020	415	2	0
6	JAN-APRIL 2020	4158	15	37
7	JULY-DECEMBER 2019	2279	61	37
8	JAN-APRIL 2019	3587	120	122
9	JULY-DECE 2018	438	2	122
10	JAN-APRIL 2018	2886	1	

STAFF- YEAR WISE ENROLLMENT DETAILS

S.No	Year	Subjects Enrollments	Registered For Exam	Certificates Received
1	JULY-DECEMBER 2022	451	41	34
2 .	JAN-APRIL 2022	356	25	22
3	JULY-DECEMBER 2021	77		23
4	JAN-APRIL 2021	424	4	_
5	JULY-DECEMBER 2020	47		4
6	JAN-APRIL 2020	443	4	
7	JULY-DECEMBER 2019	554	45	28
8	JAN-APRIL 2019	544	55	
9	JULY-DECE 2018	99	2	60
10	JAN-APRIL 2018	244		30
	100 m.			

SPOC SWAYAM NPTEL LOCAL CHAPTER

PRINCIPAL PRINCIPAL

Sri Indu College of Engineering & Technology (Approved by AICTE & Affiliated to JNTUH) Sheriguda, Ibranimpatnam, R.R. Dist-501 510

Sheriguda(V), Ibrahimpatnam(M), R. R Dt.

SWAYAM NPTEL LOCAL CHAPTER

BRANCH WISE RECEIVED MOOCs CERTIFICATES STUDENTS

			ACADEMIC YEAR					
S.No	Branch	2018-19	2019-20	2020-21	2021-22	2022-23	TOTAL	
1	ECE	83	16	1	2	1	103	
2	CSE	34	13	5	· 1	5	58	
3	IT	3	6		17		9	
4	MECH	2	2				4	
5	AI&ML				9	3	12	
6	CS				3	9	12	
7	IOT				2	7	9	
8	CIVIL	I.			1		1	
	TOTAL	122	37	6	18	25	208	

STAFF

			ACADEMIC YEAR					
S.No	Branch	2018-19	2019-20	2020-21	2021-22	2022-23	TOTAL	
1	ECE .	45	18	1	16	21	101	
2	CSE	2	4			3	9	
3	ΙΤ	4	1			3	8	
4	MECH	5	5	1	3		14	
5	H & S	4		2	4	1	11	
6	AIML					2	2	
7	IOT					3	3	
8	AI&DS					1	1	
	TOTAL	60	28	4	23	34	149	

SPOC SWAYAM NIPTEL LOCAL CHAPTI

SWAYAM NPTEL LOCAL CHAPTER

PRINCIPAL PRINCIPAL

Sri Indu College of Engineering & Technology (Approved by AICTE & Affiliated to JNTUH) Sheriguda, Ibrahimpatnam, R.R. Dist-501 510

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY
(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12 (B) of UGC Act 1956 NBA & NAAC Accredited, Approved by AICTE and Permanently Affiliated to JNTUH. Sheriguda(V), Ibrahimpatnam(M), R.R Dt.

BRANCH WISE STAFF RECEIVED MOOCS CERTIFICATES **COURSERA COURSES**

S.No	Brach	2020-21	2021-22	TOTAL
1	- ECE	686	297	983
2	CSE	169	68	237
3	IT	22	8	30
4	EEE	14	19	33
5	MECH	37	4	41
. 6	CIVIL	6		6
7	HS	60	65	125
- 10	TOTAL	994	461	1455

PRINCIPAL

Sul brake College of Engineering and Technology

(MII): SHERIGUDA-501 540. IbeahtriputnamAM, R.R.Dist

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY
(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12 (B) of UGC Act 1956
NBA & NAAC Accredited, Approved by AICTE and Permanently Affiliated to JNTUH. Sheriguda(V), Ibrahimpatnam(M), R.R Dt.

BRANCH WISE STUDENTS RECEIVED MOOCs CERTIFICATES **COURSERA COURSES**

S.No	Brach	2020-21	2021-22	TOTAL
1	ECE	856 /	458	1314
2	CSE	686	490	1176
3	IT	116	115	231
4	EEE	144	191	335
5	MECH	193	203	396
6	CIVIL	80	178	258
7	1ST YEAR (Y) 3	34	536	570
	TOTAL	2109	2171	4280

Sai Indu College of Engineering and Technology (VIII): SHERIGUDA-501 510,

Ibrahimpatnam(M), R.R.Dist.

(An Autonomous Institution under UGC, New Delhi) Recognized under 2(f) and 12 (B) of UGC Act 1956

NBA & NAAC Accredited, Approved by AICTE and Permanently Affiliated to JNTU, Hyderabad. Sheriguda(V), Ibrahimpatnam(M), R.R Dt.

STUDENTS – Received MOOCs, NPTEL/SWAYAM Certificates ACADEMIC YEAR 2022-23

C N a	Course Name	Nome	Dell No	Final	Contificate Toma
S.No	Course Name	Name	Roll No	Score	Certificate Type
	CSE				Elite+gold
1	Programming In Java	Mangi Nikhil	21D45A0512	90	Topper of 5%
2	Programming In Java	Md Althaf Ahmed	20D41A05D5	83	Elite+Silver
3	Data Base Management System	Mangi Nikhil	21D45A0512	69	Elite
4	Big Data Computing	Mandava Tirumala Chowdari	20D41A05C6	65	Elite
					Successfully
5	Data Base Management System	MARKAPUDI TINESH KUMAR	21D45A0513	55	completed
	CYBER SECURITY				
1	Programming In Java	VANAMA THARUN KUMAR	20D41A6255	80	Elite+Silver
2	The Joy of Computing using Python	GANDRA AKHIL	20D41A6221	82	Elite+Silver
3	Programming In Java	K Laxmi Narasimha Reddy	20D41A6230	83	Elite+Silver
4	Cryptography And Network Security	MADDI SRINIDHI	20D41A6233	69	Elite
5	Cryptography And Network Security	SELIVERU PAVANI	20D41A6246	60	Elite
6	Cloud Computing	VALLAKONDA HYNDAVI	20D41A6254	73	Elite
		ANNEDLA SHYAMSUNDAR			Successfully
7	Cryptography And Network Security	REDDY	20D41A6208	49	completed
0	Country and National Country		2004146225	42	Successfully
8	Cryptography And Network Security	MUDAVATH NEERAJA	20D41A6235	43	completed Successfully
9	Cryptography And Network Security	MUPPIDI ANJALI	20D41A6236	55	completed
	AIML				
	Programming, Data Structures And				
1	Algorithms Using Python	Akshay Kumar Kona	20D41A6601	71	Elite
2	Cloud Computing	KAKIREDDY VAMSHIDAR REDDY	21D45A6602	71	Elite
					Successfully
3	Introduction To Internet Of Things	A SAINATH REDDY	20D41A6602	58	completed
	ЮТ				
1	Programming In Java	T.Ankitha	20D41A6949	79	Elite+Silver
2	Programming In Java	Manthena Rajitha	20D41A6929	85	Elite+Silver
3	Programming In Java	K Sai Prathik	20D41A6920	78	Elite+Silver
4	Programming In Java	Rachamalla sai sheran	20D41A6941	78	Elite+Silver
5	Programming In Java	SAYAMONI SAI KIRAN	20D41A6954	78	Elite+Silver
6	Programming In Java	Tanguturi Venkata Sai Sharath	20D41A6946	72	Elite
7	Programming In Java	baikani vamshi	20D41A6903	69	Elite
	ECE				
1	Introduction To Machine Learning - KGP	IDIKUDA MANI RAJ	20D41A0476	58	Successfully completed

NPTEL GOLD

NPTEL Online Certification

(Funded by the MoE, Govt. of India)

MANGI NIKHIL

for successfully completing the course

Programming in Java

with a consolidated score of

90

%

Online Assignments

24.66/25 Programming Assignment

25/25

Proctored Exam

40/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022 (12 week course) Prof. Debjani Chakraborty
Coordinator, NPTEL
IIT Kharagpur

Indian Institute of Technology Kharagpur

No. of credits recommended: 3 or 4

Roll No: NPTEL22CS102S63695150

To validate the certificate

Elite

Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

MD ALTHAF AHMED

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments

22.53/25 Programming Assignment

25/25

Proctored Exam

35.42/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS102S63694730

No. of credits recommended: 3 or 4

Elite

(Funded by the MoE, Govt. of India)

This certificate is awarded to

SAYAMONI SAI KIRAN

for successfully completing the course

Programming in Java

with a consolidated score of

24.94/25 Programming Assignment Online Assignments

25/25

Proctored Exam

28/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022 (12 week course) Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

K SAI PRATHIK

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments

24.72/25 Programming Assignment

25/25

Proctored Exam

28/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022

(12 week course)

Prof. Debiani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS102S53690554

No. of credits recommended: 3 or 4

Elite

(Funded by the MoE, Govt. of India)

This certificate is awarded to

RACHAMALLA SAI SHERAN

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments | 24.72/25 | Programming Assignment

25/25

Proctored Exam

28.5/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

MANTHENA RAJITHA

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments

24.94/25 Programming Assignment

25/25

Proctored Exam

35/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS102S53690428

To validate the certificate

No. of credits recommended: 3 or 4

Elite

(Funded by the MoE, Govt. of India)

This certificate is awarded to

TANKITHA

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments

21/25

Programming Assignment

25/25

Proctored Exam

32.75/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022 (12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

GANDRA AKHIL

for successfully completing the course

The Joy of Computing using Python

with a consolidated score of

Online Assignments

23.63/25 Programming Assignment

25/25

Proctored Exam

33/50

Total number of candidates certified in this course: 9957

Prof. Devendra Jalihal Chairperson. Centre for Outreach and Digital Education, IITM

Jul-Oct 2022

(12 week course)

Indian Institute of Technology Madras

Roll No: NPTEL22CS122S63693236

To validate the certificate

No. of credits recommended: 3 or 4

Elite

Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

K LAXMI NARASIMHA REDDY

for successfully completing the course

Programming in Java

with a consolidated score of

Online Assignments | 24.75/25 | Programming Assignment

25/25

%

Proctored Exam

33.34/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022 (12 week course) Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Online Certification (Funded by the MoE, Govt. of India)

This certificate is awarded to

VANAMA THARUN KUMAR

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments

24.72/25 Programming Assignment

25/25

Proctored Exam

30.5/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022 (12 week course) Prof. Debjani Chakraborty
Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS102S53692662

Online Certification (Funded by the MoE, Govt. of India)

This certificate is awarded to

MANGI NIKHIL

for successfully completing the course

Data Base Management System

with a consolidated score of

69

%

Online Assignments | 20.42/25 | Proctored Exam

48.75/75

Total number of candidates certified in this course: 3478

Aug-Oct 2022 (8 week course) Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS91S43695639

To validate the certificate

No. of credits recommended: 2 or 3

Elite

line Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

MANDAVA TIRUMALA CHOWDARI

for successfully completing the course

Big Data Computing

with a consolidated score of

65

Online Assignments | 24.58/25 | Proctored Exam

%

40.5/75

Total number of candidates certified in this course: 2264

Prof. B. V. Ratish Kumar Chairman, Centre for Continuing Education IIT Kanpur

Aug-Oct 2022 (8 week course) Prof. Satyaki Roy NPTEL Coordinator IIT Kanpur

Indian Institute of Technology Kanpur

Roll No: NPTEL22CS65S33694695

To validate the certificate

No. of credits recommended: 2 or 3

(Funded by the MoE, Govt. of India)

This certificate is awarded to

MARKAPUDI TINESH KUMAR

for successfully completing the course

Data Base Management System

with a consolidated score of

55

Online Assignments

Proctored Exam

34.5/75

Total number of candidates certified in this course: 3478

20/25

Aug-Oct 2022

(8 week course)

Prof. Debjani Chakraborty
Coordinator, NPTEL
IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS91S33694747

To validate the certificate

No. of credits recommended: 2 or 3

Elite NPTEL Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

AKSHAY KUMAR KONA

for successfully completing the course

Programming, Data Structures and Algorithms Using Python

with a consolidated score of

1

Online Assignments 25/25 Programming Assignment

25/25

%

Proctored Exam

21.25/50

Total number of candidates certified in this course: 1825

Devendra galihal

Prof. Devendra Jalihal
Chairperson,
Centre for Outreach and Digital Education, IITM

Jul-Sep 2022 (8 week course) Prof. Andrew Thangaraj NPTEL, Coordinator IIT Madras

Elite **Online Certification**

(Funded by the MoE, Govt. of India)

This certificate is awarded to

KAKIREDDY VAMSHIDAR REDDY

for successfully completing the course

Cloud Computing

with a consolidated score of

Online Assignments | 23.66/25 | Proctored Exam

47.45/75

Total number of candidates certified in this course: 9640

Jul-Oct 2022

(12 week course)

Prof. Debiani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS87S53691988

No. of credits recommended: 3 or 4

Elite Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

BAIKANI VAMSHI

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments | 24.41/25 | Programming Assignment

25/25

Proctored Exam

20/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

NPTEL Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

TANGUTURI VENKATA SAI SHARATH

for successfully completing the course

Programming in Java

with a consolidated score of

%

Online Assignments

25/25

Programming Assignment

25/25

Proctored Exam

22/50

Total number of candidates certified in this course: 6899

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS102S53694413

To validate the certificate

No. of credits recommended: 3 or 4

Elite

ertification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

SELIVERU PAVANI

for successfully completing the course

Cryptography and Network Security

with a consolidated score of

Online Assignments | 19.38/25 | Proctored Exam

40.5/75

Total number of candidates certified in this course: 1810

Jul-Oct 2022 (12 week course) Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Elite NPTEL Online Certification (Funded by the MoE, Govt. of India)

This certificate is awarded to **MADDI SRINIDHI**

for successfully completing the course

Cryptography and Network Security

with a consolidated score of

Online Assignments | 24.06/25 | Proctored Exam

45/75

Total number of candidates certified in this course: 1810

Jul-Oct 2022

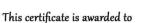
(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS90S33692754

To validate the certificate



No. of credits recommended: 3 or 4

Elite

(Funded by the MoE, Govt. of India)

for successfully completing the course

Cloud Computing

with a consolidated score of

Online Assignments

25/25

Proctored Exam

47.7/75

Total number of candidates certified in this course: 9640

Jul-Oct 2022 (12 week course) Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

(Funded by the MoE, Govt. of India)

This certificate is awarded to

MUPPIDI ANJALI

for successfully completing the course

Cryptography and Network Security

with a consolidated score of

55

Online Assignments | 20.31/25 | Proctored Exam

34.5/75

Total number of candidates certified in this course: 1810

Jul-Oct 2022

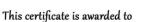
(12 week course)

Prof. Debiani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS90S43693202

To validate the certificate



No. of credits recommended: 3 or 4

NPTEL Online Certification

(Funded by the MoE, Govt. of India)

MUDAVATH NEERAJA

for successfully completing the course

Cryptography and Network Security

with a consolidated score of

43

Online Assignments | 11.88/25 | Proctored Exam

31.5/75

Total number of candidates certified in this course: 1810

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

(Funded by the MoE, Govt. of India)

This certificate is awarded to

ANNEDLA SHYAMSUNDAR REDDY

for successfully completing the course

Cryptography and Network Security

with a consolidated score of

Online Assignments | 19.38/25 | Proctored Exam

30/75

Total number of candidates certified in this course: 1810

Jul-Oct 2022

(12 week course)

Prof. Debiani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS90S33692499

To validate the certificate

No. of credits recommended: 3 or 4

NPTEL Online Certification

(Funded by the MoE, Govt. of India)

This certificate is awarded to

IDIKUDA MANI RAJ

for successfully completing the course

Introduction to Machine Learning

with a consolidated score of

58

Online Assignments

22.5/25 | Proctored Exam

35.21/75

Total number of candidates certified in this course: 2034

Jul-Sep 2022

(8 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

(Funded by the MoE, Govt. of India)

This certificate is awarded to

A SAINATH REDDY

for successfully completing the course

Introduction to Internet of Things

with a consolidated score of

58

Online Assignments | 22.47/25 | Proctored Exam

36/75

Total number of candidates certified in this course: 9793

Jul-Oct 2022

(12 week course)

Prof. Debjani Chakraborty Coordinator, NPTEL IIT Kharagpur

Indian Institute of Technology Kharagpur

Roll No: NPTEL22CS96S43692989

To validate the certificate

No. of credits recommended: 3 or 4

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

PARTICIPATIVE LEARNING (A.Y: 2022-23)

(A.1. 2022-23)

Congratulations,

Kothur Lokesh Reddy

on successfully completing the course,

BUILD YOUR OWN STATIC WEBSITE

Issue Date: August 14, 2022

Alshe CEO, NxtWave

Certificate of Completion

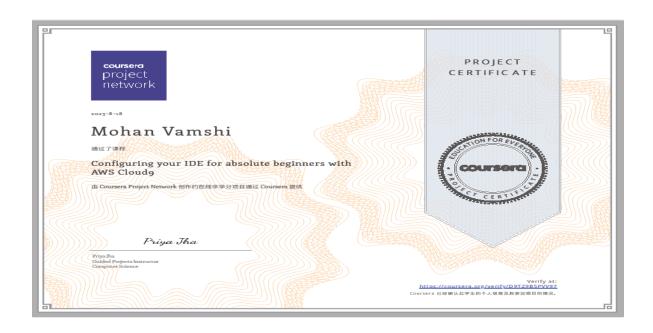
is hereby awarded to

Mohan Vamshi

for successfully completing the course of **Domestic Data Entry Operator - English**

Acquire Skills - A Enrollment ID

Date of Issuance


974510

18/01/22

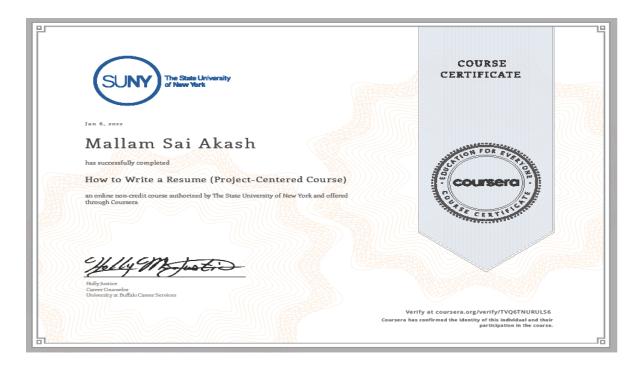
Vikrant Abrol

(Director, Unifiers Social Ventures Pvt Ltd)

1. VALUE ADDED COURSES

CERTIFICATE OF COMPLETION

Presented to


Mohan Vamshi

For successfully completing a free online course Front End Development - HTML

Provided by

Great Learning Academy

(On May 2023)

Competitive Examinations

TELANGANA STATE LEVEL POLICE RECRUITMENT BOARD INTIMATION LETTER FOR CERTIFICATES VERIFICATION / EDITING OF APPLICATION DATA

	Registration Number			
SCT PC Civil and / or Equiv	1586942			
Name of the Candidate	Dhanavath shilpa			
Registered Mobile Number	7661975175	Date of Birth	12/07/2003	1000
Local Candidate of Telangana	Yes	Gender	Female	
Community	ST	ABO ST Status	No	1
EWS	NA	ExServicemen	NA	D. Slips
Date and Venue	of Certificate Verif	ication / Editing of Ap	plication Data	ese
Venue Dormitory Hall, Police Head Quarters, Nalgonda - 508001				100
Date	19-06-2023	Time	08:00AM	■ (¥#:

List of relevant Certificates / Documents to be submitted by the Candidate in Original

along with Self-Attested Photocopies

- 1. Transaction Form of Edit / Modify Online Application (by all Candidates who applied for Edit / Modify)
- 2. Print-Out of the Part-II Application
- 3. Andhaar Card
 - Academic Qualifications Related:
- 4. Educational Qualification Certificates for relevant Post(s)
- Apr. Related (Date of Birth):
- 5. SSC or Matriculation Certificate or equivalent Certificate
- Local Candidature Related:
- 6. Study / Bonafide Certificates (from 1st to 7th Classes)
- Residence Certificate (in case where the Candidate has not studied in any educational institution) for last 4 /7 years stay prior to completion of 7th Class Reservation Benefits Related:
- 8. Economically Weaker Section Category Certificate Issued by the Competent Authority of Government of Telangana (on or after 1st April 2021)
- 9. Community Certificate Issued by the Competent Authority of Government of Telangana (on or after 2nd June 2014)
- 10. Non-Creamy Layer Centificate (for BC Candidates only) issued by the Competent Authority of Government of Telangana (on or after 1st April 2021)
- 11. Agency Arca (Local Schoduled Tribe) Certificate issued as per G.O.Ms.No.24, dt.12-06-2018 of Govt, of Telangana
- 12. PPO / Discharge Book for Ex-Servicemen Candidates
- 13. No Objection Certificate (for in-Service Personnel of Amsy, Navy & Air Force) issued by the concerned Unit Commanding Officer duly indicating his Personal Number, Rank, Name, Unit and likely date of setisement or retirement order, if not yet retired
- MSP Certificate(s) International / Multi-National Competition (Category-1) or National Competition (Category-2) or Inter-University Competition at National level / Zonal level / Regional level (Category-3) for participation in the Sports / Games as per GO Ms No. 74, YATC (Sports) Department, dated 9-8-2012 wherever applicable
 - Age Relaxation Related;
- 15. NCC Instructor Certificate
- 16. Service Certificate (In case of Telangana State Government Employee)
- 17. Retrenched Temporary Employee Certificate in the State Census Department
- 18. In case of Widow, Death Certificate of her husband together with the Affidavit that she has not remarried since (for the Posts of SCT PCs and / or equivalent
- 19. In case of Divorced Women and Women Judicially Separated, Certified Copy of the Judgment / Decree along with an Affidavit that she has not re-married since (for the Posts of SCT PCs and / or equivalent only)
- Harizontal Resevation Benfits Related: 20. NCC Certificato(s) (A B & C), wherever applicable
- 21. Home Guard Certificate (for Age relaxation and reservation)
- 22, CPF/CDI/CSPF/CJP Certificate
- 23. Police Executive/Police Ministerial / Member of Special Protection Force Certificate (for SCT SIs Civil and / or equivalent Posts) Driving License Relatest:
- 24. LMV (Transport) / HMV Driving License Continuously for a period of complete 2 (two) years and above as on the date of Notification (25-04-2022) For SCT
- 25. HMV Driving License continuously for a period of two years and above as on date of the Notification (20-05-2022) For Driver Operator only
- 26. Permanent Light Motor Vehicle Driving License as on the date of notification For SCT PCs (AR / SARCPL/TSSP), Constable in SPF and Transport Constables
- 27. Driving License Information (Grant of Issue of Driving License) issued by concerned RTA
- 28. Any other relevant Certificate(s) as perapplication

Sri Indu College of Engineering & Technology

NBA, NAAC Accredited UGC Autonomous Institution

Recognized under 2(f) and 12(B) of UGC Act 1956 & Permane In association with Rajiv Gandhi National Institute of Intellectual Property Management (RGNIIPM)

Government of India, Nagpur (Under National Intellectual Property Awareness Mission)

Online Workshop on

"Intellectual Property Rights

DATE: 26.10.2022 TIME: 11:00am to 1.00pm VENUE: Placement Auditourium

Resource Person:

Dr. Dasari Ayodhya, Group-A Gazetted Officer,

Examiner of Patents and Designs, Intellectual Property Rights, Patent office, Chennai, India

Organized By:

Department of CSE & Allied Branches in Association with R&D cell

Convener Dr K S Sadasivarao ((Professor & Dean - OSE & Allied Branches))

Organizer Coordinators

ar Asst Profilot il. AsstlProf/MBA

HOD: GSE HODINGSIT

Principal Dr.G.Suresh

Sri Indu College of Engineering & Technology NBA, NAAC Accredited UGC Autonomous Institution
Recognized under 2(f) and 12(B) of UGC Act 1956 & Permanently Affiliated to JNTUH

Certificate of Participation

This certificate is proudly presented to

R. Thrisha, Student of Al & DS

For actively participated in

A Two Day Workshop On

"Python Programming with Realtime Applications"

22nd & 23rd June, 2023 Organized By: Department of CSE & Allied Branches under CSI Student Local Chapter

Seeg Principal Dr. G. Suresh

Mohan vamshi

PROUDLY AWARDED TO

for participating in the CODE GEEKS contest

conducted by

JNTU-GV CEV(A) ACM Student Chapter

on 6th November 2022

HOD-IT

VICE PRINCIPAL CEV(A), JNTU-GV

PRINCIPAL

Participations In Events (TECHNOUTSAV, SHUB, HACKTHON)

CONSORTIUM-22

A NATIONAL LEVEL STUDENTS' TECHNICAL FEST

CERTIFICATE OF PARTICIPATION

This is to certify that Mr/Ms Nagapuri Sanjay had particip

Teens Den - BGMI event conducted on November 24-25 in the Consortium 2022, a National Level Students' Technical Fest.

Dr. D Shobha Rani Convener

Dr. LV Narasimha Prasad
Principal

INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED TO BE UNIVERSITY) tredited "A" Grade By NAAC | 12B Status By UCC | Approved By AICTE

www.sathyabama.ac.in

STARS

School of Science and Humanities Department of Visual Communication

Certificate of Participation

This is to certify that Mr/Mrs/Ms/Dr.

B.Nithya Vaishnavi

has actively participated in the National level Virtual Seminar on "INNOVATIVE TECHNOLOGIES AND JOB OPPORTUNITIES IN WEB 3.0, METAVERSE AR&VR AND LIVE STREAMING MEDIA by Mr. VICKY, Founder, Tamil Pokkisham, YouTube Channel, on 15th April 2023 organized by the Department of Visual Communication, Sathyabama Institute of Science and Technology, Chennai

Dr. N. Raja Assistant Professor, Convenor

College of Engineering & Technology UGC Autonomous Institution Recognized under 2(f) & 12(8) of UGC Act 1956, NAAC, Approved by AIGTE & Permaneurity Affiliated to JACTE &

CERTIFICATE OF PARTICIPATION

Ref:NPP180

This is to Certify that Mr. / Ms. R Deepak Naidu, Department of AIDS, from Sri Indu College of Engineering and Technology has presented Reinforcement learning in "Project Expo 2.0 - 2023" held on 4th May 2023 to 10th May 2023. Organised by S-HUB at Sri Indu College of Engineering and Technology, Sheriguda.

Mr. E. Parusha Ramu Co-ordinators

Prof.K.Ashok Babu Convener

Dr.G.Suresh Principal

CERTIFICATE

PARTICIPATION

This is to certify that Mr./Ms. Eximants bloody Years Branch Tinevos
participated in Aptitude Test/Cooling Contest/MAFER PRESENTATION/FOSTER PRESENTATION/GUIL
in the technical convention on the occasion of TEEE MONTH.
held on October 21st 2022

Organizer

Hrof K Ashok Babu Dean&Convener Dr.G.Suresh Principal

INTERNSHIP

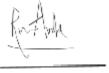
Date: 17/08/2023 ID:CS07WX46805

Dear.

Y Mohan Vamshi

We would like to congratulate you on being selected for the "Web Development" internship position with "CodSoft". We at CodSoft are excited that you will join our team.

The duration of the internship will be of 4 weeks, starting from 20 August 2023 to 20


September 2023 The internship is an educational opportunity for you hence the primary focus is on learning and developing new skills and gaining hands-on knowledge. We believe that you will perform all your tasks/projects.

As an intern, we expect you to perform all assigned tasks to the best of your ability and follow any lawful and reasonable instructions provided to you.

We are confident that this internship will be a valuable experience for you, we look forward to working with you and helping you achieve your career goals.

Best of Luck!

Thank You!

Founder (CodSoft)

MSME Registered

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY

UGC Autonomous Institution
Approved by AICTE and permanently affiliated to JNTU,
Hyderabad, T.S.501 510.

DEPARTMENT OF INFORMATION TECHNOLOGY

PARTICIPATIVE LEARNING (A.Y: 2022-23)

VALUE ADDED COURSES

Name of the student	Course Name	Course Duration	Place of Course
E. VISHNU VARDHAN REDDY	Data Structures In Java	4 Months	Online
E. VISHNU VARDHAN REDDY	Introduction to Java	2 Months	Online
C. AKSHAYA	Programming Foundation with Javascript, HTML & CSS	2 Months	Online
C. AKSHAYA	Positive Psychology	2 Months	Online

Certificate Of Completion

is awarded to

EPPA VISHNU VARDHAN REDDY

for successfully completing the training on

Career Camp | Data Structures in JAVA

conducted from August 2022 to November 2022

Alis

Ankush Singla Mentor / Instructor

certificate.codingninjas.com/verify/880725079cfec769

Manisha Khattar Mentor / Instructor

Certificate Of Excellence

is awarded to

EPPA VISHNU VARDHAN REDDY

for successfully completing the course

Introduction to JAVA

conducted from July 2022 to August 2022


certificate.codingninjas.com/verify/ea15a76930c1cd5

Top Performer

Mourisus.

Manisha Khattar

INTERNSHIP OFFER LETTER

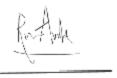
Date: 17/08/2023 ID:CS07WX46805

Dear,

Y Mohan Vamshi

We would like to congratulate you on being selected for the "Web Development" internship position with "CodSoft". We at CodSoft are excited that you will join our team.

The duration of the internship will be of 4 weeks, starting from 20 August 2023 to 20


September 2023 The internship is an educational opportunity for you hence the primary focus is on learning and developing new skills and gaining hands-on knowledge. We believe that you will perform all your tasks/projects.

As an intern, we expect you to perform all assigned tasks to the best of your ability and follow any lawful and reasonable instructions provided to you.

We are confident that this internship will be a valuable experience for you, we look forward to working with you and helping you achieve your career goals.

Best of Luck!

Thank You!

MSME Registered

Name of the student	Course Name	Course Duration	Place of Course
MOGILI ARCHANA	Python Full Stack	December 2022-May 2023	NSDC
PADALA JASHWANTH	Python Full Stack	December 2022-May 2023	NSDC
Y.RAKESH REDDY	Python Full Stack	December 2022-May 2023	NSDC
CHIDURALA AKSHAYA	Python Full Stack	December 2022-May 2023	NSDC
ANIL KUMAR	Python Full Stack	December 2022-May 2023	NSDC
B.HARSHITH	Python Full Stack	December 2022-May 2023	NSDC

CERTIFICATE

This is to Certify that

MOGILI ARCHANA

from SRIINDU COLLEGE OF ENGINEERING AND TECHNOLOGY

in appreciation or your successful completion of Intern Training on

"PYTHON FULL STACK"

from December 2022- May2023

Authorised Signature

SSKUMAY Dr.SUKUMAR SENTHILKUMAR

REG. Number : IHRD10SAEP

Institution Name: Technology Learning Center (TLC GROUP)

CERTIFICATE

This is to Certify that

PADALA JASHWANTH

from SRIINDU COLLEGE OF ENGINEERING AND TECHNOLOGY

in appreciation or your successful completion of Intern Training on

"PYTHON FULL STACK"

from December 2022- May2023

Authorised Signature

REG. Number : IHRD10SAEP

Institution Name: Technology Learning Center (TLC GROUP)

CERTIFICATE

This is to Certify that

ANIL KUMAR

from SRIINDU COLLEGE OF ENGINEERING AND TECHNOLOGY

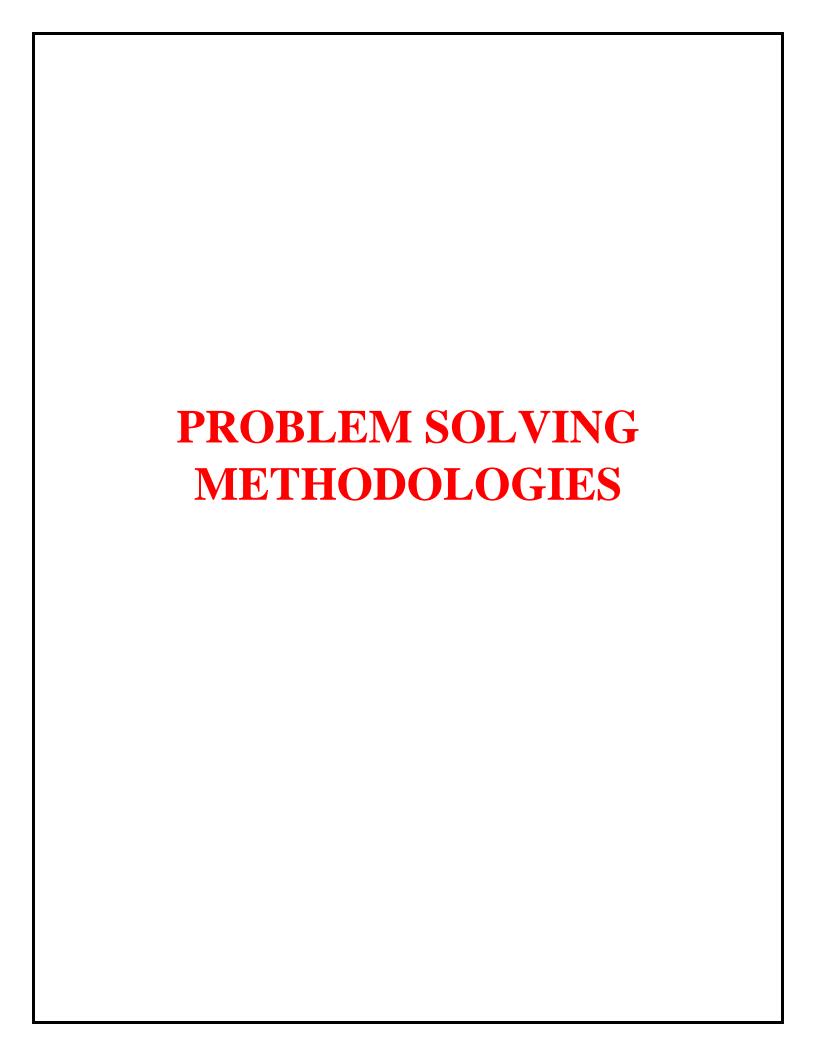
in appreciation or your successful completion of Intern Training on

"PYTHON FULL STACK"

from December 2022- May2023

Authorised Signature

SSKUMAY Dr.SUKUMAR SENTHILKUMAR Reviewer


REG. Number : IHRD10SAEP

Institution Name: Technology Learning Center (TLC GROUP)

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

D4

Recognized under 2(f) and 12(B) of UGC Act 1956
NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH
Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

BR-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Objective Type Questions In Higher Level Of Thinking (A.Y: 2022-23)

- 1. Gate Questions
- 2. Subject wise MCQs
- 3. Quiz
- 4. Competitive exam papers

S.No.	YEAR/SEM	SUBJECT	GQ	MCQ	QUIZ	CEP
1.	II/I	Analog Electronics	√	√	✓	✓
2.	II/I	Data Structures	√	√	✓	✓
3.	II/I	Computer Oriented Statistical Methods	√	✓	✓	✓
4.	II/I	Computer Organization & Architecture	✓	√	✓	✓
5.	II/I	Object Oriented Programming using C++	✓	✓	✓	✓
6.	II/II	Discrete Mathematics	✓	✓		
7.	II/II	Digital Logic Design	✓	✓	✓	✓
8.	II/II	Operating Systems	✓	√	✓	✓
9.	II/II	Database Management Systems	✓	✓	✓	✓
10	II/II	Java Programming	✓	√	✓	✓
11	III-I	Business Economics & Financial Analysis	✓	✓	✓	
12	III-I	Software Engineering	✓	√	√	✓
13	III-I	Computer Networks	✓	√	√	✓
14	III-I	Web Technologies	✓	✓	✓	✓
15	III-I	Principles of Programming Languages	√			

16.	III-II	Machine Learning	✓	✓	✓	
17.	III-II	Compiler Design	✓	✓	✓	
18.	III-II	Design and Analysis of Algorithms	✓	✓	✓	✓
19.	III-II	Mobile Application Development	✓	✓	✓	
20.	III-II	Information Technology Essentials		✓		
21.	IV-I	Cloud Computing	✓	✓	✓	
22.	IV-I	Data Mining	✓	✓	✓	✓
23.	IV-I	Cryptography And Network Security	✓	✓	✓	✓
24.	IV-I	Internet Of Things	✓		✓	
25.	IV-I	E-Commerce	✓	✓	✓	
26.	IV-II	Organizational Behaviour	✓		✓	
27.	IV-II	Distributed Systems		✓	√	
28.	IV-II	Information Security System Fundamentals	✓	✓		

1. Gate Exam (Model papers Subject wise)

GATE EXAM

SUBJECT: COMPUTER NETWORKS

DURATION:25-MIN

- 1) What is the protocol data unit (PDU) for the application layer in the Internet stack?
- a. Frameb. Datagramc. Segmentd. Message
- 2) Which among this is not a client-server application?
- a. Pingb. Web-browsingc. Internet Chatd. Email
- 3)If an Internet Service Provider (ISP) has the following chunk of CIDR-based IP addresses available with it:245.248.128.0/20 and the ISP wants to give half of this chunk of address to Organization A, and a quarter to Organization B, while retaining the remaining with itself. Then, which among the following is a valid allocation of addresses to A and B?
- a. 245.248.132.0/22 and 245.248.132.0/21
- b. 245.248.136.0/21 and 245.248.128.0/22
- c. 245.248.128.0/21 and 245.248.128.0/22
- d. 245.248.136.0/22 and 245.248.132.0/21
- 4) The pairs of OSI protocol layer/sub-layer and its functionality are given below, the INCORRECT pair from among these are:
 - a. Data Link Layer and Bit synchronization
 - b. Network Layer and Routing
 - c. Medium Access Control sub-layer and Channel sharing
 - d. Transport Layer and End-to-end process communication
- 5) A firewall is installed at the point where the secure internal network and untrusted external network meet, which is also known as
 - a. Secure point
 - b. Meeting point
 - c. Chock point
 - d. Firewall point
- 6) What does DHCP stand for?
 - a. Dynamic Host Configuration Protocol
 - b. Dynamic Host Configuration Provider
 - c. Digital Host Communication Provider
 - d. Digital Host Communication Protocol
- 7) The growth of congestion window occurs_

 - a. Infinitelyb. Up to timeout

 - c. Up to threshold d. Up to the size of receiver's window
- 8) When was Aloha developed?
 - a. In 1990
 - b. In 1980
 - c. In 1970
 - d. In 1960
- 9) Which of these is a Transmission media that can be used in LAN?

a. fibre optics
b. coaxial cable c. microwave
d. satellite
10) Which of these protocols given below uses UDP as transport protocol
a. DNS b. Telnet
c. HTTP d. SMTP
11) LANs can be connected by a device known as
a. Ethernet card b. Modems
c. Routers
d. Bridges
12) What is the bit rate In Ethernet when Map a. Same as the baud rate
b. Twice the baud rate c. Half the baud rate
d. None of these
13) What is slot time for gigabit F a. 0.612
b. 0.512 c. 0.412
d. 0.312
14) Radio waves are a. direction
b. bidire
d. y
15) The
c. Signal element
d. Both b and c
16) Which architecture is FTP built on?
a. P2P
b. Client-server
c. Both the above
d. None of these
17) What is the address resolution protocol (ARP) used for?
 a. Finding the IP address of the default gateway b. Finding the MAC address that corresponds to an IP address
 Finding the IP address that corresponds to a MAC address
d. Finding the IP address from the DNS
18) Which of the following are not true characteristics of NetBEUI?
a. Fast for small networks to Self-tuning b. Little configuration required
c. Routable
d. Highly customizable
19) Identify the correct option for the given assertion and reason
a. Assertion and Reason, both are true
b. Assertion and reason are false
c. Assertion is true and reason is false
d. Assertion and reason are true, but this is not the correct reason for the given assertion
20)Consider that a computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16 Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps?

a. 8 seconds

b. 5 second
c. 2 seconds d. 1.6 seconds
21) In Unicast Routing, we use shortest path tree method for finding shortest path of
a. Nodes
b. Networks
c. Packets
d. Frames
22) Which is the network that provides high speed connectivity?
a. Internetwork
b. WAN
c. LAN d. MAN
23) What is the maximum number of subnets and the maximum number of hosts in each subnet, if the address of a class B host is to be split into subnets with a 6-bit subnet number?
a. 64 subnets and 262142 hosts
b.62 subnets and 262142 hosts
c. 64 subnets and 1024 hosts
d. 62 subnets and 1022 hosts
24) Which of the following statements about HTTP are false?
 HTTP describe the structure of web page
b. HTTP run over TCP
 HTTP can be used to test the validity of hyper link test
d. HTTP allows information to be stored in url
25) What is an anticipated result from multi programming operations?
a. Handling of more jobs
b. Reduced computer idle time
c. Better scheduling of work
d. All of the above

SUBJECT: SOFTWARE ENGINEERING

1 Match the following:

List I	List II
(P) Condition coverage	(i) Black-box testing
(Q) Equivalence class partitioning	(ii) System testing
(R) Volume testing	(iii) White-box testing
(S) Alpha testing	(iv) Performance testing

A P - ii, Q - iii, R - i, S - iv

BP-iii, Q-iv, R-ii, S-i

C Correct Answer

P - iii, Q - i, R - iv, S - ii

DP-iii, Q-i, R-ii, S-iv

2 A software requirements specification (���) document should avoid discussing which one of the following?

A User interface issues

B Non-functional requirements

C Correct Answer

Design specification

D Interfaces with third party software

3 Consider the basic ����� model where � is the effort applied in person-months, � is the development time in chronological months, ���� is the estimated number of delivered lines of code (in thousands) and �����,��,��,�� have their usual meanings. The basic ����� equations are of the form

A Correct Answer ����(���)exp(��),����(�)exp(��)

B �=��(���)exp(��),�=��(�)exp(��)

 $C \diamondsuit = \diamondsuit \diamondsuit \exp(\diamondsuit \diamondsuit), \diamondsuit = \diamondsuit \diamondsuit (\diamondsuit \diamondsuit \diamondsuit \diamondsuit) \exp(\diamondsuit \diamondsuit)$

 $D \diamondsuit = \diamondsuit \diamondsuit \exp(\diamondsuit \diamondsuit), \diamondsuit = \diamondsuit \diamondsuit (\diamondsuit \diamondsuit \diamondsuit \diamondsuit) \exp(\diamondsuit \diamondsuit)$

4 Consider a software project with the following information domain characteristics for calculation of function point metric.

Number of external inputs (I)=30

Number of external outputs (�)=60

Number of external inquiries (�)=23

Number of files (�)=08

Number of external interfaces (4)=02

It is given that the complexity weighting factors for $\diamondsuit,\diamondsuit,\diamondsuit,\diamondsuit$ and \diamondsuit are 4,5,4,10 and 7, respectively. It is also given that, out of fourteen value adjustment factors that influence the development effort, four factors are not applicable, each of the other four factors have value 3, and each of the remaining factors have value \$\$4.\$ The computed value of function point metric is _____.

Answer

Correct answer is 612 to 613

4.Consider a software program that is artificially seeded with 100 faults. While testing this program, 159 faults are detected, out of which 75 faults are from those artificially seeded faults. Assuming that both real and seeded faults are of same nature and have same distribution, the estimated number of undetected real faults is

Answer

C Correct Answer

Prototyping is a method of requirements validation.

D Requirements review is carried out to find the errors in system design.

7. A company need to develop digital signal processing software for one of its newest inventions. The software is expected to have 4000 lines of code. The company needs to determine the effort in person months needed to develop this software using basic **** model. The multiplicative factor for this model is given as 2.8 for the software development on embedded systems. While the exponentiation factor is given as 1.20. What is the estimated effort in person months?

A Correct Answer 234.25

B 932.50

C 287.80

D 122.40

8 Which of the following is NOT desired in a good Software Requirement Specifications (���) document?

A Functional Requirements

B Non Functional Requirements

C Goals of Implementation

D Correct Answer Algorithms for software Implementation

9.A company needs to develop a strategy for Software Product development for which it has a choice of two programming language \$1 and \$2. The number of lines of code (\$\phi \phi \phi\$) developed using \$2\$ is estimated to be twice the \$\phi \phi\$ developed with \$1\$ the product will have to be maintained for five years. Various parameters for the company are given in the table below.

Total cost of the project includes cost of development & maintenance. What is the *** for *1 for which the cost of the project using *1 is equal to the cost of the project using *2

A 4000

B Correct Answer 5000

C 4333

D 4667

10. The Cyclomatic complexity of each of *3 is the cyclomatic complexity of the seside?

A Correct Answer 19

B 21

C 20

D 10

- 1. The number of tuples in an extended Non Deterministic Finite Automaton:
- a) 5
- b) 6
- c) 7
- d) 4

Answer: a

Explanation: For NFA or extended transition function on NFA, the tuple elements remains same i.e. 5.

2. Choose the correct option for the given statement: Statement: The DFA shown represents all strings which

Statement: The DFA shown represents all strings which has 1 at second last position.

- a) Correct
- b) Incorrect, Incomplete DFA
- c) Wrong proposition
- d) May be correct

Answer: c

Explanation: The given figure is an NFA. The statement contradicts itself.

3. What is wrong in the given definition?

Def: ({q0, q1, q2}, {0,1}, 5, q3, {q3})

- a) The definition does not satisfy 5 Tuple definition of NFA
- b) There are no transition definition
- c) Initial and Final states do not belong to the Graph
- d) Initial and final states can't be same

Answer: c

Explanation: q3 does not belong to Q where Q= set of finite states.

4. If δ is the transition function for a given NFA, then we define the for the DFA accepting the same language would be:

Note: S is a subset of Q and a is a symbol.

- a) $\delta'(S, a) = U_{pea} \delta(p, a)$
- b) δ ' (S, a) = $U_{prts} \delta$ (p, a)
- c) δ ' (S, a) = $U_{pes} \delta(p)$
- d) δ (S) = $U_{p \neq s} \delta(p)$

Answer: a

Explanation: According to subset construction,

5. What is the relation between DFA and ? computational power?

- a) DFA > NFA
- b) NFA > DFA
- c) Equal
- d) Can't be said

Answer: c

Explanation: DFA is so that exists for a given

6. If a string S is

where s_iε∑ an/

that ō(r(i), 5

- a) initial 9'
- b) trans
- c) acr
- d) ?

Explanation: r(n) is the final state and accepts the string S after the string being traversed through r(i) other states where $I \in 01,2...(n-2)$.

- 7. According to the given table, compute the number of transitions with 1 as its symbol but not 0:
- a) 4
- b) 3
- c) 2
- d) 1 Answer: d

Explanation: The transition graph is made and thus the answer can be found

- 8. From the given table, $\delta^*(q0, 011) = ?$
- a) {q0}
- b) {q1} U {q0, q1, q2}
- c) {q2, q1}
- d) {q3, q1, q2, q0} Answer: b

Explanation: $\delta^*(q0,011) = U_n \delta^*(q0,01) \delta(r, 1) = \{q0, q1, q2\}.$

- Number of times the state q3 or q2 is being a part of extended 6 transition state is
- a) 6
- b) 5
- c) 4
- d) 7 Answer: a

Explanation: According to the question, presence of q2 or q1 would count so it does and the answer according to the diagram is 6.

10. Predict the missing procedure:

```
i.\Delta(Q0, \epsilon) = \{Q0\},

ii.\Delta(Q0, 01) = \{Q0, Q1\}

iii.\delta(Q0, 010) = ?

a) \{Q0, Q1, Q2\}
```

- b) {Q0, Q1}
- c) {Q0, Q2}
- d) {Q1, Q2}

Answer: c

Explanation: According to given table and extended transition state implementation, we can find the state at which it rests.

11. Subset Construction method refers to:

- a) Conversion of NFA to DFA
- b) DFA minimization
- c) Eliminating Null references
- d) ε-NFA to NFA

Answer: a

Explanation: The conversion of a non-deterministic automata into a deterministic one is a process we call subset construction or power set construction.

12. Given Language:

 $L_n = \{x \in \{0,1\} * | |x| \ge n, \text{ nth symbol from the right in } x \text{ is } 1\}$ How many state are required to execute L_3 using NFA?

- a) 16
- b) 15
- c) 8
- d) 7

Answer: b

Explanation: The finite automaton for the given language is made and thus, the answer can be obtained.

13. In NFA, this very state is like dead-end non final state:

- a) ACCEPT
- b) REJECT
- c) DISTINCT
- d) START

Answer: b

Explanation: REJECT state will be like a halting state which rejects a particular invalid input.

14. We can represent one language in more one FSMs, true or false?

- a) TRUE
- b) FALSE
- c) May be true
- d) Cannot be said

Answer: a

Explanation: We can represent one language in more one FSMs, example for a same language we have a DFA and an equivalent NFA.

15. The production of form non-terminal $-> \epsilon$ is called:

- a) Sigma Production
- b) Null Production
- c) Epsilon Production
- d) All of the mentioned

Answer: b

Explanation: The production of form non-terminal $\rightarrow \epsilon$ is call null production.

16. Which of the following is a regular language?

- a) String whose length is a sequence of prime numbers
- b) String with substring ww' in between

- c) Palindrome string
- d) String with even number of Zero's

Answer: d.

Explanation: DFSM's for the first three option is not possible; hence they aren't regular.

17. Which of the following recognizes the same formal language as of DFA and NFA?

- a) Power set Construction
- b) Subset Construction
- c) Robin-Scott Construction
- d) All of the mentioned

Answer: d

Explanation: All the three option refers to same technique if distinguishing similar constructions for different type of automata.

18. Which of the following does the given NFA represent?

- a) {11, 101} * {01}
- b) {110, 01} * {11}
- c) {11, 110} * {0}
- d) {00, 110} * {1}

Answer: c

19. The number of transitions required to convert the following into equivalents DFA:

- a) 2
- b) 3

c) 1 d) 0

Answer: a Explanation:

20. If L is a regular language, L' and L' both will be:

- a) Accepted by NFA
- b) Rejected by NFA
- c) One of them will be accepted d) Cannot be said

Answer: a

2. MCQ'S Sample papers

Machine Learning Unit - II MCQ * Indicates required guestion 1. Name * 1 point Roll Number * T point Class and year * 1 point What strategies can help reduce overfitting in decision trees? 1 point (i) Enforce a maximum depth for the tree (ii) Enforce a minimum number of samples in leaf nodes (iii) Pruning (iv) Make sure each leaf node is one pure class Mark only one oval. (A) All (B) (i), (ii) and (iii) (C) (i), (iii), (iv)

(D) None

5.	2. Which of the following is a disadvantage of decision trees? *	0.3	T point
	Mark only one oval.		
	(A) Decision trees are prone to be overfit		
	(B) Decision trees are robust to outliers		
	(C) Factor analysis		
	(D) None of the above		
6.	3. What is perceptron? *		1 point
	Mark only one oval.		
	(A) A single layer feed-forward neural network with pre-processing		
	(B) A neural network that contains feedback		
	(C) A double layer auto-associative neural network		
	(D) An auto-associative neural network		
7.	Which of the following is true for neural networks? *** *** *** *** *** ** ** *	10	1 point
	(i) The training time depends on the size of the network.		
	(ii) Neural networks can be simulated on a conventional computer.(iii) Artificial neurons are identical in operation to biological ones		
	Mark only one oval.		
	(A) All		
	(B) Only (ii)		
	(C) (I) and (II)		
	(D) None		

8.	computers? (i) They have the ability to learn by example. (ii) They are more fault tolerant. (iii) They are more suited for real time operation due to their high 'computational' rates. Mark only one oval. (A) (i) and (ii) (B) (i) and (iii) (C) Only (i)	Tpoint
	(D) All	
	(E) None	
9.	6. Which is true for neural networks? *	1 point
	Mark only one oval.	
	(A) Each node computes it's weighted input	
	(B) Node could be in excited state or non-excited state	
	(C) It has set of nodes and connections	
	(D) All of the above	
10.	7. What is the objective of backpropagation algorithm?*	1 point
	Mark only one oval.	
	(A) To develop learning algorithm for multilayer feedforward neural network, so network can be trained to capture the mapping implicitly	that
	(B) To develop learning algorithm for multilayer feedforward neural network	
	(C) To develop learning algorithm for single layer feedforward neural network	
	(D) All of the above	

11.	8. What is true regarding backpropagation rule? *	T point
	Mark only one oval.	
	(A) Error in output is propagated backwards only to determine weight up	pdates
	(B) There is no feedback of signal at nay stage	
	(C) It is also called generalized delta rule	
	(D) All of the above	
12.	9. What of the following is true regarding backpropagation rule? *	1 paint
	Mark only one oval.	
	(A) Hidden layers output is not all important, they are only meant for sur input and output layers	pporting
	(B) Actual output is determined by computing the outputs of units for ex- layer	ach hidden
	(C) It is a feedback neural network	
	(D) None of the above	
13.	10. The general limitations of back propagation rule is/are *	"I point
	Mark only one oval.	
	(A) Scaling	
	(B) Slow convergence	
	(C) Local minima problem	
	(D) All of the above	

14.	11. Advantage of Decision Trees *	T point
	Mark only one oval.	
	(A) Possible Scenarios can be added	
	(B) Use a white box model if given result is provided by a model	
	(C) Worst, best and expected values can be determined for different scena	arios
	(D) All of the above	
15.	12. Which of the following is the consequence between a node and its predecessors while creating bayesian network?	* 1 point
	Mark only one oval.	
	(A) Conditionally independent	
	(B) Functionally dependent	
	(C) Both Conditionally dependant & Dependant	
	(D) Dependent	
16.	13. Which of the following provided by the Bayesian Network? *	7 point
	Mark only one oval.	
	(A) Complete description of the problem	
	(B) Partial description of the domain	
	(C) Complete description of the domain	
	(D) All of the above	

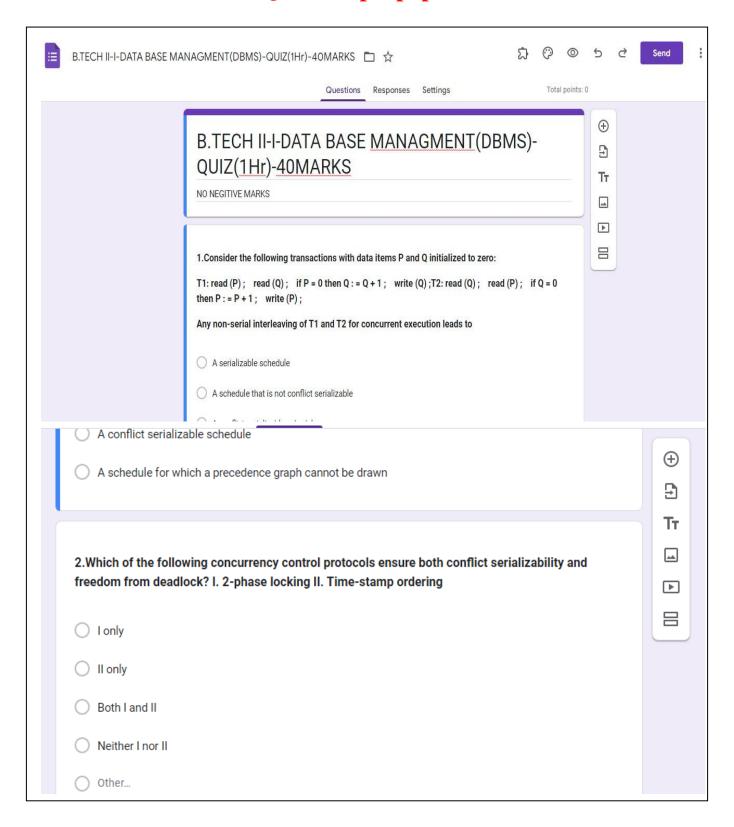
17.	14. Probability provides a way of summarizing the that comes from * 1 point our laziness and ignorances.
	Mark only one oval.
	(A) Bellief
	(B) Uncertaintity
	(C) Joint probability distributions
	(D) Randomness
18.	15. The bayesian network can be used to answer any query by using:-* 1 point
	Mark only one oval.
	(A) Full distribution
	(B) Joint distribution
	(C) Partial distribution
	(D) All of the above
19.	16. A statement whose validity is tested on the basis of a sample is called? ★ ¬ point
	Mark only one oval.
	a) Null Hypothesis
	b) Statistical Hypothesis
	o) Simple Hypothesis
	d) Composite Hypothesis

20.	17. The rejection probability of Null Hypothesis when it is true is called as? * 1 point
	Mark only one oval.
	a) Level of Confidence
	b) Level of Significance
	c) Level of Margin
	d) Level of Rejection
21.	18. A statement made about a population for testing purpose is called? * 1 point
	Mark only one oval.
	a) Statistic
	b) Hypothesis
	c) Level of Significance
	d) Test-Statistic
	This content is neither created nor endorsed by Google,
	Google Forms

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

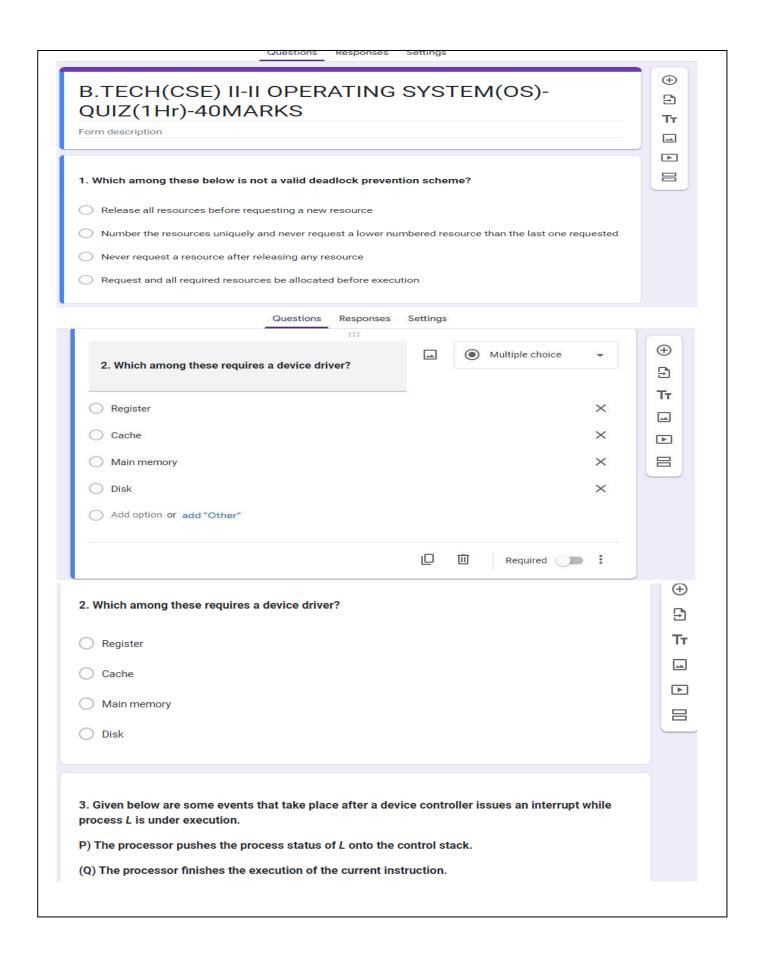
	0	B. Windows Explorer
	0	C. Red Hat
	0	D. Solaris
2.	Which of t	the following is not a product of Microsoft?
	0	A. Ubuntu
	0	B. XP
	0	C. Vista
	0	D. ME
3.		Operating System?
	0	A. It is an interface between the user and the hardware.
		B. It is the first software that runs when the computer boots up.
	0	C. It provides a platform for the user to run applications.
	-	D. All of the above.
4.	Which of	the following is an example of Single Programming Operating System?
	0	A. MS-DOS B. Unix C. Windows D. Limix
_	Which of	the following is not the function of Operating System?
Э.		A. Process Management
		B. Memory Management
		C. Device Management
		D. Clock Management
6	A process	
	-	A. Operating system itself.
		B. A complete software package
		C. Program in execution
		D. Interrupt handler
7.		ting state, a process can only enter into
		A. Running state
	0	B. Ready state
	0	C. New state
	0	D. Terminated state
8.	The full fo	orm of PCB is:
	٥	A. Public Control Block
	0	B. Process Control Box
	0	C. Process Creating Block
	-	D. Process Control Block
9.	-	ess has its own PCB.
		A. True
	0	B. False

1. Which of the following in not an Operating System?


A. Mac OS

10.	There can be more than one process in running state at any given time.
	o A. True
	o B. False
11.	The state of a process is stored in its
	o A. Registers
	o B. PCB
	C. Source code
	D. Memory
12.	All the processes which are ready to execute reside in
	A. I/O queue
	B. Waiting queue
	。 C. Ready queue
	D. Running queue
13.	The ready queue is maintained by
	o A. Array
	B. Stack
	。 C. Tree
	D. Linked list
14.	What is the function of short-term scheduler?
	 A. Selects a process from secondary storage device and allocates it to the CPU.
	 B. Selects a process from memory and swaps out to secondary storage.
	 C. Selects a process from ready queue and assigns it to the CPU.
	 D. Selects a process from I/O queue to moves it to ready queue.
15.	The function of long-term scheduler is to:
	 A. Move the process from secondary storage to ready queue.
	B. Move the process from ready queue to CPU.
	 C. Move the process from memory to secondary storage. D. Move the process between different queues.
14	D. Move the process between different queues. What is the function of mid-term scheduler?
10.	
	 A. It moves the process from ready queue to CPU. B. It swaps out the idle process from memory to secondary storage.
	C. It moves the process between different queues.
	D. It helps the CPU in executing the process.
17	Which scheduler maintains the Degree of Multiprogramming?
1	A. Short-Term Scheduler
	B. Mid-Term Scheduler
	C. Long-Term Scheduler
	D. None of the Above
18	The switching of CPU between different processes is called .
-	A. Swapping
	B. Organizing
	C. Context Switching
	D. Multiple Switching
19.	Which of the following scheduling algorithm comes under preemptive scheduling?

- o A. FCFS
- B. Round Robin
- C. Multilevel Queue Scheduling
- D. Largest Job First
- Turnaround time is:
 - A. The interval from the time of submission of a process to the time of completion.
 - B. The sum of periods spent waiting in the ready queue.
 - C. The sum of periods spent executing on CPU.
 - D. The time when the process first responds.
- 21. Which of the following scheduling algorithms use Time Quantum?
 - A. FCFS.
 - B. SJF
 - C. Round Robin
 - D. Priority Scheduling
- 22. In Preemptive Priority Scheduling, if a high priority process arrives in the ready queue and a low priority process is executing then what will happen? Note: 1 is considered as high priority.
 - A. The currently executing process will be preempted and the new process will be assigned to the CPU.
 - B. The CPU will keep on executing the current process and the new process has to wait in the ready queue.
 - C. The new process will be shifted to I/O queue.
 - D. The system will crash.
- 23. One of the major problem with priority scheduling is:
 - A. Swapping
 - B. Context Switching
 - C. Aging
 - D. Starvation.
- 24. Aging is a technique in which:
 - A. The priority of a process decreases after sometime. (moves away from 1)
 - B. The priority of a process increases after sometime. (moves closer to 1)
 - C. The priority remains constant.
 - D. The process becomes old and doesn't execute.
- 25. The processes are executed in the following manner in Round Robin Algorithm.
 - A. The process coming first is executed first without preemption.
 - B. The processes are executed according to their priority.
 - C. The process having the smallest burst time is executed first.
 - D. The process is executed for a time quantum and when the time quantum expires, the process enters into waiting state.


3. Quiz Sample papers

3. J. In which of the following gates the output is 1 if and only if at least one input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Blue time Decay time Propagation time Charging time 5. S. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three Four		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three		
input is 1 Mark only one oval. AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Trwo Three	3.	3 In which of the following gates the output is 1 if and only if at least one
AND NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two		
NOR NAND OR 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		Mark only one oval.
A. 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		AND
4. 4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
4. The time required for a gate or inverter to change its state is called Mark only one oval. Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
Mark only one oval. Rise time Decay time Propagation time Charging time 5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		O OR
Mark only one oval. Rise time Decay time Propagation time Charging time 5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three	4.	4. The time required for a gate or inverter to change its state is called
Rise time Decay time Propagation time Charging time 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
Decay time Propagation time Charging time 5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
Propagation time Charging time 5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
5. 5. What is the minimum number of two input NAND gates used to perform the function of two input OR gates? Mark only one oval. One Two Three		
function of two input OR gates? Mark only one oval. One Two Three		
function of two input OR gates? Mark only one oval. One Two Three	-	
One Two	٥.	
One Two		
Two		Mark only one oval.
Three		
Four		
		Four

	6. Odd parity of word can be conveniently tested by
	Mark only one oval.
	OR gate
	b AND gate
	NAND gate
	XOR gate
7.	7. The number of full and half adders are required to add 16-bit number i
	Mark only one oval.
	8 half adders, 8 full adders
	1 half adders, 15 full adders
	16 half adders, 0 full adders
	4 half adders, 12 full adders
8.	8. Which of the following will give the sum of full adders as output?
	Mark only one oval.
	Three point major circuit
	Three bit parity checker
	Three bit comparator
	Three bit counter
9.	9. 10. Which of the following gate is known as coincidence detector?
i.	9. 10. Which of the following gate is known as coincidence detector? Mark only one oval.
9.	
Э.	Mark only one oval.
0.	Mark only one oval. AND gate
0.	Mark only one oval. AND gate DR gate
	Mark only one oval. AND gate OR gate NOR gate NAND gate
	Mark only one oval. AND gate OR gate NOR gate NAND gate
	Mark only one oval. AND gate OR gate NOR gate NAND gate 10.An OR gate can be imagined as
	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate Mark only one oval.
	Mark only one oval. AND gate OR gate NOR gate NAND gate Mark only one oval. Switches connected in series
	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10.An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel MOS transistor connected in series
	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10.An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel
10.	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10. An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel MOS transistor connected in series BJT transistor connected in series
10.	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10. An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel MOS transistor connected in series BJT transistor connected in series
9.	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10. An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel MOS transistor connected in series BJT transistor connected in series BJT transistor connected in series
10.	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10. An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel MOS transistor connected in series BJT transistor connected in series 11. How many full adders are required to construct an m-bit parallel adder? Mark only one oval.
10.	Mark only one oval. AND gate OR gate NOR gate NAND gate NAND gate 10.An OR gate can be imagined as Mark only one oval. Switches connected in series Switches connected in parallel MOS transistor connected in series BJT transistor connected in series 11. How many full adders are required to construct an m-bit parallel adder? Mark only one oval. m/2

15.	15. The NOR gate output will be high if the two inputs are
	Mark only one oval.
	00
	01
	10
	11
	16 How many two-input AND and OR gates are required to realize Y = CD+EF+G?
	Mark only one oval.
	2,2
	3,3
	3,2
	3,2
	17. A universal logic gate is one which can be used to generate any logic function. Which of the following is a universal logic gate?
	Mark only one oval.
	OR OR
	AND
	XOR
18.	XOR
18.	XOR NAND
18.	NAND 18. A full adder logic circuit will have
18.	NAND 18. A full adder logic circuit will have Mark only one oval.
18.	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output
18.	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs
	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs
	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs Three inputs and two outputs Three inputs and two outputs Three inputs and two outputs
	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs Three inputs and two outputs Three inputs and two outputs Three inputs and two outputs Three inputs and two outputs 19. How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB?
	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs Three inputs and two outputs Three inputs and two outputs Three inputs and two outputs 19. How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB? Mark only one oval. 3, 2
	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs Three inputs and two outputs Three inputs and two outputs 19. How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB? Mark only one oval. 3, 2 4, 2
	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs Three inputs and two outputs Three inputs and two outputs Three inputs and two outputs 19. How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB? Mark only one oval. 3, 2
19.	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and three outputs Two inputs and two outputs Three inputs and two outputs Three inputs and two outputs 19. How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB? Mark only one oval. 3, 2 4, 2 1, 1
19.	NAND 18. A full adder logic circuit will have Mark only one oval. Two inputs and one output Three inputs and two outputs Two inputs and two outputs Three inputs and two outputs 19. How many two input AND gates and two input OR gates are required to realize Y = BD + CE + AB? Mark only one oval. 3, 2 4, 2 1, 1 2, 3
19.	NAND 18. A full adder logic circuit will have
19.	NAND 18. A full adder logic circuit will have
19.	NAND 18. A full adder logic circuit will have
19.	NAND 18. A full adder logic circuit will have

3. Given below are some events that take place after a device controller issues an interrupt while	5
process L is under execution.	Т
P) The processor pushes the process status of L onto the control stack.	
(Q) The processor finishes the execution of the current instruction.	D
(R) The processor executes the interrupt service routine.	
(S) The processor pops the process status of L from the control stack.	E
The formation of the control of the	
(T) The processor loads the new PC value based on the interrupt.	
Choose from the options below for the correct order in which the events above occur.	
O ATRICO	
O QTPRS	
O QTPRS PTRSQ	
	(+)
	Φ
O PTRSQ	₽
PTRSQ 4. A system has 6 identical resources and N processes competing for them. Each process can request at most 2 resources. Name the following values of N that could lead to a deadlock.	
PTRSQ 4. A system has 6 identical resources and N processes competing for them. Each process can	₽
PTRSQ 4. A system has 6 identical resources and N processes competing for them. Each process can request at most 2 resources. Name the following values of N that could lead to a deadlock.	9 Tr
4. A system has 6 identical resources and N processes competing for them. Each process can request at most 2 resources. Name the following values of N that could lead to a deadlock.	E Tr
PTRSQ 4. A system has 6 identical resources and N processes competing for them. Each process can request at most 2 resources. Name the following values of N that could lead to a deadlock. 1 2	Tr

4. Competitive exam papers

Computer Science includes

- Banking sector exams (SBI PO, RBI Grade B)
- Defense exams (NDA, Combined Defence Service Examination (CDS)
- Railway exams (RRB NTPC, RRB JE)

Sample competitive Exam Question papers

N.D.A. & N.A. EXAM(T)-2023 जब तक आपको यह परीक्षण पुन्तिका खोलने को न कहा नाए तब तक न खोलें टी. बी. सी. : ASGT-F-ENG परीक्षण पुस्तिका अनुक्रम क्रम संख्या परीक्षण पुस्तिका 1406925 सामान्य योग्यता परीक्षण समय : दो घण्टे और तीस मिनट पुणांक : 600 अनुदेश परीक्षा प्रारम्भ होने के तुरना बाद, आप इस परीक्षण पुस्तिका की पड़ताल अवश्य कर लें कि इसमें कोई बिना छपा. फटा या छुटा हुआ पुष्ठ अथवा प्रश्नांश, आदि न हों । यदि ऐसा है, तो इसे सही परीक्षण पुस्तिका से बदल लीजिए । कृपवा ध्वान रखें कि OMR उत्तर-पत्रक में, उचित स्थान पर, रोल नम्बर और परीक्षण पुस्तिका अनुक्रम A, B, C या D को, ध्वान से एवं विना किसी चुक या विसंगति के भरने और कूटबद्ध करने की जिम्मेदारी उम्मीदवार की है। किसी भी प्रकार की चूक/विसंगति की स्थिति में उत्तर-पत्रक निरस्त कर दिया जाएगा । 3. इस परीक्षण पुस्तिका पर साथ में दिए गए कोच्डक में आपको अपना अनुक्रमांक लिखना है । परीक्षण पुस्तिका पर और कुछ न लिखें । 4. इस परीक्षण पुस्तिका में 150 प्रश्नांश (प्रश्न) दो भागों में दिए गए हैं : भाग - A और भाग - B । *भाग - B में प्रत्येक* प्रश्नांश हिन्दी और अंग्रेज़ी दोनों में छपा है । प्रत्येक प्रश्नांश में चार प्रत्युत्तर (उत्तर) दिए गए हैं । इनमें से एक प्रत्युत्तर की युन लें, जिसे आप उत्तर-पत्रक पर अंकित करना चाहते हैं । यदि आएको ऐसा लगे कि एक से अधिक प्रत्युत्तर सही हैं, तो उस प्रत्युत्तर को अंकित करें जो आपको सर्वोत्तम लगे । प्रत्येक प्रश्नांश के लिए **क्षे***वाल एक ही* **प्र**त्युत्तर चुनना है । आपको अपने सभी प्रत्युत्तर अलग से दिए गए उत्तर-पत्रक पर ही अंकित करने हैं । उत्तर-पत्रक में दिए गए निर्देश देखिए । सभी प्रश्नांशों के अंक समान हैं। इससे पहले कि आप परीक्षण पुस्तिका के विभिन्न प्रश्नांशों के प्रत्युत्तर उत्तर-पत्रक पर अंकित करना शुरू करें, आपको प्रवेश प्रमाण-पत्र के साथ प्रेषित अनुदेशों के अनुसार कुछ विवरण उत्तर-पत्रक में देने हैं । आप अपने सभी प्रत्युत्तरों को उत्तर पत्रक में भरने के बाद तथा परीक्षा के समापन पर *क्षेत्राल उत्तर-पत्रक* अधीक्षक को सींप दें । आपको अपने साथ परीक्षण पुस्तिका ले जाने की अनुमति है । कच्चे काम के लिए पत्रक, परीक्षण पुस्तिका के अंत में संलप्न हैं। 10. गुलत उत्तरों के लिए दंड : वस्तुनिष्ठ प्रश्न-पत्रों में उम्मीदवार द्वारा दिए गए ग़लत उत्तरों के लिए दंड दिया जाएगा । प्रत्येक प्रश्न के लिए बार वैकल्पिक उत्तर हैं । उम्मीट्यार द्वारा प्रत्येक प्रश्न के लिए दिए गए एक गुलत उत्तर के लिए प्रश्न हेत् निवत किए गए अंकों का एक-तिहाई दंड के रूप में काटा जाएगा । बदि कोई उम्मीदवार एक से अधिक उत्तर देता है, तो इसे गुलत उत्तर माना जाएगा, बद्धपि दिए गए उत्तरों में से एक उत्तर सही होता है, फिर भी उस प्रश्न के लिए उपयुंकानुसार ही, उसी तरह का दंड दिया जाएगा । (iii) यदि उम्मीदवार द्वारा कोई प्रश्न इल नहीं किया जाता है, अर्थात् उम्मीदवार द्वारा उत्तर नहीं दिया जाता है, तो उस प्रश्न के लिए कोई दंड नहीं दिया जाएगा । जब तक आपको यह परीक्षण पृश्तिका खोलने को न कहा जाए तब तक न खोलें

Note: English version of the instructions is printed on the back cover of this Booklet.

PART - A

Spotting Errors

Directions: Each item in this section has a sentence with three underlined parts labelled (a), (b) and (c).

Read each sentence to find out whether there is any error in any underlined part. Indicate your response in

the Answer Sheet against the corresponding letter i.e., (a) or (b) or (c). If you find no error, your response

should be indicated as (d).

(a)		(b)		(e)	
No Error					
(d)					
When a gas is	cooled down it tu	n it turns into a liquid from a p		process called condensation	
(a)	(b)		(6)	
No Error					
(d)					
	o know the news	you can read a no	ewspaper. No Err	or .	
	know the news	you can read a no (c)	wspaper, No Err	or	
If you want to	Vans.	(e)	(d)		
If you want to	(b)	(e)	(d)		
If you want to (n) Columbus man	(b)	(c) e from Europe to	(d) America on 1492.		

5.	Whoseness the observe		and the state of	on to the oil	3. V. P	
	(a)	is clear, you can s	ee the sti	(e)	(d)	
6.	I'm not working to	morrow, so I don't	had to gr	et up early.	No Error	
	(a)	(b		(e)	(d)	
7.		ybody about her p	-			
	(a) (b)) (e)	(1	i)		
	She wouldn't have	has an accident,	if she had	driven care	fully.	
	(a)	(b)		(e)		
	No Error					
	(d)					
1	I will watch film	f I finish the work	in time.	No Error		
	(a)	(b)	(e)	(d)		
0.	In 1989, the govern	ment did an abou	t-face and	Iran restore	ed it's family planning p	rogram.
	(a)		(b)		(c)	
	No Error					
	No Error (d)					

Synonyms

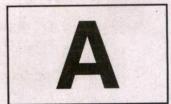
Directions: Each item in this section consists of a sentence with an underlined word followed by four options, (a), (b), (c) and (d). Select the option that is nearest in meaning to the underlined word and mark your response in your Answer Sheet accordingly.

- During the pandemic the <u>indigent</u> people had to suffer a lot.
 - (a) very poor
 - (b) opulent
 - (c) solvent
 - (d) prosperous
- She had no idea what made him angry in one minute and jovial the next.
 - (a) aggrieved
 - (b) melancholic
 - (c) doleful
 - (d) mirthful
- It is sheer <u>lunacy</u> to drive a car in this frosty weather.
 - (a) prudence
 - (b) normalcy
 - (c) insanity
 - (d) sanity
- Operating on a child with cancer needs meticulous planning and teamwork.
 - (a) strong
 - (b) long
 - (c) playful
 - (d) scrupulous
- The thrill of over-speeding the vehicle can be exhilarating, but it is important not to take the consequences lightly.
 - (a) humdrum
 - (b) dreary
 - (e) exciting
 - (d) agitating

- The <u>redemption</u> will now depend on his new strategy of inclusiveness.
 - (a) retrieval
 - (b) forfeiture
 - (c) corporation
 - (d) desecration
- Only three candidates are now in contention for the title.
 - (a) involved in dispute
 - (b) in agreement with each other
 - (c) chance of winning
 - (d) amiable to each other
- 18. All my fishing paraphernalis is in the car.
 - (a) boxes
 - (b) accessories
 - (c) fuel
 - (d) food
- The public watched in <u>astonishment</u> as he took a sudden jump from the bridge.
 - (a) anticipation
 - (b) hurriedly
 - (c) wonderment
 - (d) calmness
- Drinking inordinate amount of liquor is not good for health.
 - (a) temperate
 - (b) exorbitant
 - (c) moderate
 - (d) regular

N.D.A. & N.A. EXAM (1)-2022

जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें


टी.बी.सी.: SDFR-S-HTM

परीक्षण पुस्तिका अनुक्रम

क्रम संख्या

0629701

परीक्षण पुस्तिका गणित

समय : दो घण्टे और तीस मिनट

पूर्णांक : 300

अनुदेश

- 1. परीक्षा प्रारम्भ होने के तुरन्त बाद, आप इस परीक्षण पुस्तिका की पड़ताल अवश्य कर लें कि इसमें कोई बिना छपा, फटा या छूटा हुआ पृष्ठ अथवा प्रश्नांश आदि न हो । यदि ऐसा है, तो इसे सही परीक्षण पुस्तिका से बदल लें ।
- 2. कृपया ध्यान रखें कि OMR उत्तर-पत्रक में, उचित स्थान पर, रोल नम्बर और परीक्षण पुस्तिका अनुक्रम A, B, C या D को, ध्यान से एवं बिना किसी चूक या विसंगति के भरने और क्टबद्ध करने की जिम्मेदारी उम्मीदवार की है। किसी भी प्रकार की चूक/विसंगति की स्थिति में उत्तर-पत्रक निरस्त कर दिया जाएगा।
- इस परीक्षण पुस्तिका पर साथ में दिए गए कोष्ठक में आपको अपना अनुक्रमांक लिखना है । परीक्षण पुस्तिका पर और कुछ न लिखें ।
- 4. इस परीक्षण पुस्तिका में 120 प्रश्नांश (प्रश्न) दिए गए हैं। प्रत्येक प्रश्नांश हिन्दी और अंग्रेजी दोनों में छपा है। प्रत्येक प्रश्नांश में चार प्रत्युत्तर (उत्तर) दिए गए हैं। इनमें से एक प्रत्युत्तर को चुन लें, जिसे आप उत्तर-पत्रक पर अंकित करना चाहते हैं। यदि आपको ऐसा लगे कि एक से अधिक प्रत्युत्तर सही हैं, तो उस प्रत्युत्तर को अंकित करें जो आपको सर्वोत्तम लगे। प्रत्येक प्रश्नांश के लिए केवल एक ही प्रत्युत्तर चुनना है।
- 5. आपको अपने सभी प्रत्युत्तर अलग से दिए गए उत्तर-पत्रक पर ही अंकित करने हैं । उत्तर-पत्रक में दिए गए निर्देश देखें ।
- 6. सभी प्रश्नांशों के अंक समान हैं।
- 7. इससे पहले कि आप परीक्षण पुस्तिका के विभिन्न प्रश्नांशों के प्रत्युत्तर उत्तर-पत्रक पर अंकित करना शुरू करें, आपको प्रवेश प्रमाण-पत्र के साथ प्रेषित अनुदेशों के अनुसार कुछ विवरण उत्तर-पत्रक में देने हैं।
- 8. आप अपने सभी प्रत्युत्तरों को उत्तर-पत्रक में भरने के बाद तथा परीक्षा के समापन पर केवल उत्तर-पत्रक अधीक्षक को सौंप दें। आपको अपने साथ परीक्षण पुस्तिका ले जाने की अनुमित है।
- 9. कच्चे काम के लिए पत्रक परीक्षण पुस्तिका के अन्त में संलग्न हैं।
- 10. गलत उत्तरों के लिए दण्ड:

वस्तुनिष्ठ प्रश्न-पत्रों में उम्मीदवार द्वारा दिए गए गलत उत्तरों के लिए दण्ड दिया जाएगा।

- (i) प्रत्येक प्रश्न के लिए चार वैकल्पिक उत्तर हैं । उम्मीदवार द्वारा प्रत्येक प्रश्न के लिए दिए गए एक गलत उत्तर के लिए प्रश्न हेतु नियत किए गए अंकों का एक-तिहाई दण्ड के रूप में काटा जाएगा ।
- (ii) यदि कोई उम्मीदवार एक से अधिक उत्तर देता है, तो इसे गलत उत्तर माना जाएगा, यद्यपि दिए गए उत्तरों में से एक उत्तर सही होता है, फिर भी उस प्रश्न के लिए उपर्युक्तानुसार ही उसी तरह का दण्ड दिया जाएगा।
- (iii) यदि उम्मीदवार द्वारा कोई प्रश्न हल नहीं किया जाता है, अर्थात् उम्मीदवार द्वारा उत्तर नहीं दिया जाता है, तो उस प्रश्न के लिए कोई दण्ड नहीं दिया जाएगा ।

जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें

Note: English version of the instructions is printed on the back cover of this Booklet.

1. If
$$\Delta_1 = \begin{vmatrix} 1 & p & q \\ 1 & q & r \\ 1 & r & p \end{vmatrix}$$
 and $\Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ q & r & p \\ r & p & q \end{vmatrix}$

where $p \neq q \neq r$, then $\Delta_1 + \Delta_2$ is

- (a) 0
- (b) always positive
- (c) always negative
- (d) positive if p, q, r are positive else negative
- 2. If (a-b)(b-c)(c-a) = 2 and abc = 6, then what is the value of

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}$$
?

- (a) 3
- (b) 12
- (c) 14
- (d) 15
- 3. Under which of the following conditions does the determinant

1.
$$a+b+c=0$$

2.
$$a^3 + b^3 + c^3 = 3abc$$

3.
$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$

Select the correct answer using the code given below:

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

4. Consider the following in respect of the matrices:

$$A = [m \ n], B = [-n - m] \text{ and } C = \begin{bmatrix} m \\ -m \end{bmatrix}$$

- 1. CA = CB
- 2. AC = BC
- 3. C(A+B) = CA + CB

Which of the above statements is/are correct?

- (a) 1 only
- (b) 2 only
- (c) 2 and 3
- (d) 1 and 2

5. If
$$A = \begin{bmatrix} 2\sin\theta & \cos\theta & 0 \\ -2\cos\theta & \sin\theta & 0 \\ -1 & 1 & 1 \end{bmatrix}$$
, then

what is A(adjA) equal to?

- (a) Null matrix
- (b) -I
- (c) I
- (d) 2I

where I is the identity matrix.

6. For what value of k is the matrix

$$\begin{bmatrix} 2\cos 2\theta & 2\cos 2\theta & 6 \\ 1-2\sin^2\theta & 2\cos^2\theta - 1 & 3 \\ k & 2k & 1 \end{bmatrix}$$

singular?

- (a) 0 only
- (b) 1 only
- (c) 2 only
- (d) Any real value

Question

Directions (1-5): In the questions given below, there is a sentence in which one part is given in bold. The part given in bold may or may not be grammatically correct. Choose the best alternative among the four given which can replace the part in bold to make the sentence grammatically correct. If the part given in bold is already correct and does not require any replacement, choose option (e), i.e. "No replacement required" as your answer.

- Q1. Nobody can deny the fact that Indian economy is very different than American economy.
- (a) are very different than
- (b) is so much different than
- (c) are very different from
- (d) is very different from
- (e) No replacement required
- Q2. Accurate statistics with regards to the area occupied in different forms of cultivation are difficult to obtain.
- (a) statistic with regards to
- (b) statistics with regard to
- (c) statistic with regard to
- (d) statistics in regards to
- (e) No replacement required
- Q3. Seldom if ever was there any training or instructions in such tactics for either the tank crews or the infantry formations.
- (a) Seldom or never
- (b) Seldom if never
- (c) Seldom or ever
- (d) Seldom has ever
- (e) No replacement required
- Q4. As soon as I opened the front door of my house, than I smelled the distinctive aroma of fresh coffee.
- (a) then I smelled
- (b) that I smelled
- (c) I smelled
- (d) I smell
- (e) No replacement required

Q5. Although he had fewer supporters among the governing class, but he was able to get the popular
vote. (a) he was able
(a) ne was able (b) and he was able
(c) else he was able
(d) or he was able
(e) No replacement required
(e) 140 replacement required
Q6. The party explicitly denies that they are not involved in mainstream politics.
(a) denied that they are not
(b) denies that they were
(c) denied that they are
(d) deny that they are not
(e) No replacement required
Q7. I would rather be a poor man in a garret with plenty of good books to read than a king who did
not loved reading.
(a) who do not loved
(b) who did not love
(c) whom did not loved
(d) whom did not love
(e) No replacement required
Q8. The relatively static lattice in a diamond ensures that the scattering is at a minimum and the thermal
conductivity is exceptional good.
(a) are exceptional
(b) was exceptional
(c) are exceptionally
(d) is exceptionally
(e) No replacement required
Directions (9-13): Select the phrase/connector (it must be at the start) from the given three options
which can be used to form a single sentence from the two sentences given below, implying the same meaning as expressed in the statement sentences.
meaning as expressed in the statement sentences.
Q9. We see ourselves repeating our ordinary routine. We realize how much wealth surrounds our
life.
(i) When we see ourselves
(ii) Our ordinary routine
(iii) Realizing how much wealth
(a) Only (i)
(b) Both (ii) and (iii)
(c) Only (iii)
(d) Only (ii)
(e) None of these

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

Recognized under 2(f) and 12(B) of UGC Act 1956 NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH D4

BR-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Real Time Assignments and Case Studies (A.Y: 2022-23)

S. No.	List of Real Time Assignments and Case studies
1.	Face Detection
2.	College website development
3.	Online Auction system
4.	Evaluation of Academic performance
5.	E- Authentication system
6.	Cursor movement on Object motion
7.	Crime rate prediction
8.	Android battery Saver system
9.	Symbol Recognition
10.	Public news droid
11.	Search Engine
12.	Online e-book maker
13.	Mobile wallet with merchant payment

SAMPLE DOCUMENTS OF REAL TIME & CASE STUDIES

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TITLE: Android Battery Saver System

Student s name	S.Ramya - 21D41A05M2
	T.Swetha -21D41A05N9
	T.Bhargavi -21D41A05P2
Faculty in Charge	K.Vijayalakshmi

ABSTRACT

This System is an innovative Application allowing the System to take the usage from Build-in classes and put a list in front of the user for him to review. The List also consists of the applications taking the battery usage and also determines the battery level. If the Battery level is low and the consumption of apps is more the system will trigger an alarm telling the user to force stoporclosetheapps. This System uses Android Studio as its front end and doesn't use any backend as this type of application doesn't need one since it uses the data from the phone itself and projects to the user.

So basically the system helps the user to refrain certain apps to consume more battery power and drain it quickly and user can take some actions on it.

Advantages

- The user gets a list of applications usage in a single place.
- The system notifies the user if the battery is low and indicates which app is using more power.
- · The consumption rate is accurate
- Also indicates which app consumes more power.

Disadvantages

- This system doesn't use any backend.
- The system provides with less information then the phones build in app.

System Description

The system comprises 1 major module with their sub-modules as follows:

USER:

• App list

- The user can view a list of applications with the highest usage application from the top.

Battery

- The system will display the battery level and status of the battery.

App details

- The user can click on the app details to get more details about it.

Notification

- It will send a notification if an app is consuming too much battery.

This application can help android users in reducing power consumption slightly.

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TITLE: Crime Rate Prediction

Student s name	A.Shashanka - 20D41A0510
	A.Triveni - 20D41A0530
	CH.Roopasree -20D41A0536
Faculty in Charge	B.Navya

ABSTRACT

Analysis of crime is a methodological approach to the identification and assessment of criminal patterns and trends. In a number of respects cost our community profoundly. We have to go many places regularly for our daily purposes, and many times in our everyday lives we face numerous safety problems such as hijack, kidnapping, and harassment. In general, we see that when we need to go anywhere at first, we are searching for Google Maps; Google Maps show one, two, or more ways to get to the destination, but we always choose the shortcut route, but we do not understand the path situation correctly. Is it really secure or not that's why we face many unpleasant circumstances; in this job, we use different clustering approaches of data mining to analyze the crime rate of Bangladesh and we also use K-nearest neighbor (KNN) algorithm to train our dataset. For our job, we are using main and secondary data. By analyzing the data, we find out for many places the prediction rate of different crimes and use the algorithm to determine the prediction rate of the path. Finally, to find out our safe route, we use the forecast rate. This job will assist individuals to become aware of the crime area and discover their secure way to the destination.

The domain contains many clustering algorithms. There is widespread use and acceptance of the K-means partitioning method. Apart from the K-means strategy, the Linear regression algorithm is the one we used because it enables consumers to determine the number of clusters based on those values Naïve Bayes is also pretend good result but above two are provides the best accuracy

Multi-linear regression is a sort of mathematical approach to finding a relation between the dependent variables (Victim age) and a set of independent variables those input values gathered from the crime spot. This methodology predicts the Era of the victims age values based on the input characteristics indicate in the metadata column. The multi-linear regression is:

$$Y = \beta 0 + \beta 1x1 + \beta 2x2 + \cdots + \beta p \times p (1)$$

Here, Y performs as the reliant variable X performs the independent variable β represent the coefficient formula function of regression.

The sparsity of crime in many areas complicates the application of the prediction rate area-specific modeling. We used the Machine Learning algorithm in that work to create and test age, sex, year, moment, month prediction of crime. In that job we use three types machine learning algorithms Linear regression, Naïve Bayes and Knearest neighbor among which we discover distinct precision in different instances some linear operates good and provides better precision but the general situation K-nearest neighbor provides the appreciated accuracy other than that's why we use K-nearest neighbor for our Crime Prediction scheme. By using these predict systems we will discover the stronger precision in the future and also by using this precision we will identify and discover the hot zone region in crime rate. In order to finish this job, we would like to use the CNN algorithm to analyze picture information and add the Google API for viewing the hot zone.

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TITLE: EVALUATION OF ACADEMIC PERFORMANCE

Student s name	G.Kiranmai -19D41A0560				
	A.Srikar -19D41A0512				
	A.Kavya -19D41A0504				
Faculty in Charge	Dr.P.Epsiba				

ABSTRACT

Students' academic success is evaluated by their performance in exams conducted by the institutes or Universities. This system evaluates students' academic performance with fuzzy logic based performance evaluation method. In this method, we consider three parameters attendance, internal marks and external marks which are considered to evaluate student's final academic performance. The fuzzy inference system has also been used to obtain Performance of Students for different input values student attendance, marks.

Advantages

- · This evaluation system is more accurate than conventional methods.
- Student Information uploaded once should not be lost and errors can be corrected.
- This system is very beneficial for education institutes or universities for academic performance evaluation of student efficiently.

Disadvantages

 Wrong data entry for attendance or marks may causes problems in accuracy of academic performance.

Student Module:

- Student register: Registration with basic details for student account.
- Student Login: Login with valid username and password.
- View Academic performance: Student can view his/her academic performance based on attendance and marks.

Admin Module:

- · Admin Login: login with valid username and password.
- Fill Student Details: Insert proper details of attendance, marks of registered student.
- Evaluate Performance: Attendance and marks details of student get applied with fuzzy logic methods and give the final academic performance result.

SRI INDU COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TITLE: FACE DETECTION

Student s name	B.Srivani - 20D41A0515
	B.Komali -20D41A0517
	B.Saikrishna-20D41A0516
Faculty in Charge	Mrs. G.Swarnalatha

ABSTRACT

Face detection in unrestricted conditions has been a trouble for years due to various expressions, brightness, and coloration fringing. Recent studies show that deep learning knowledge of strategies can acquire spectacular performance inside the identification of different gadgets and patterns. This face detection in unconstrained surroundings is difficult due to various poses, illuminations, and occlusions. Figuring out someone with a picture has been popularized through the mass media. However, it's miles less sturdy to fingerprint or retina scanning. The latest research shows that deep mastering techniques can gain mind-blowing performance on those two responsibilities. In this paper, I recommend a deep cascaded multi-venture framework that exploits the inherent correlation among them to boost up their performance. In particular, my framework adopts a cascaded shape with 3 layers of cautiously designed deep convolutional networks that expect face and landmark region in a coarse-to-fine way. Besides, within the gaining knowledge of the procedure, I propose a new online tough sample mining method that can enhance the performance robotically without manual pattern choice.

A multi-task cascaded convolutional network (MTCNN) is a framework developed as an answer for both face detection and face alignment. The manner includes 3 degrees of convolutional networks that can apprehend faces and landmark places which include eyes, nostrils, and mouth. The paper proposes MTCNN as a way to integrate both tasks (reputation and alignment) and the usage of multi-challenge studying. Inside the first degree, it uses a shallow CNN to quickly produce candidate home windows. Inside the 2d level, it refines the proposed candidate

home windows through a greater complicated CNN. And lastly, inside the third stage, it makes use of a third CNN, extra complex than the others, to similarly refine the result and output facial landmark positions.

After making use of my dataset to the MTCNN procedure, I determined the face of the images for approximately a hundred videos at a rate of 99%-100%. Right here, the end result suggests that a great final result has been finished: the use of multiventure cascaded Convolutional networks.

Face recognition systems are part of facial image processing applications and their significance as a research area are increasing recently. Implementations of system are crime prevention, video surveillance, person verification, and similar security activities. The face recognition system implementation will be part of humanoid robot project at Atılım University. The goal is reached by face detection and recognition methods. Knowledge-Based face detection methods are used to find, locate and extract faces in acquired images. Implemented methods are skin color and facial features. Neural network is used for face recognition. RGB color space is used to specify skin color values, and segmentation decreases searching time of face images. Facial components on face candidates are appeared with implementation of LoG filter. LoG filter shows good performance on extracting facial components under different illumination conditions.

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

(An Autonomous Institution under UGC, New Delhi)
Recognized under 2(f) and 12(B) of UGC Act 1956
NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH
Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

BR-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Collaborative Learning Model (A.Y: 2022-23)

OBJECTIVE:

Learn how to work cooperatively and support each other. Develop effective teamwork and communication (including interpersonal and cross cultural awareness) skills. Assimilate multiple views to deepen knowledge and promote critical thinking. Foster individual accountability to the team.

Role of Teachers:

Group the students to perform the given task. Framing assignments or group activities for the students that improve their creative and soft skills. Giving feedback to student for their improvement..

- 1. Group Assignments
- 2. Students Seminar
- 3. Team collaboration in practical session

SAMPLE DOCUMENTS

GROUP ASSIGNMENTS

Course Name: OPERATING SYSTEMS

Teacher: Date: 20 - JUNE - 2023 **Activity: Group Assignments**

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY, Sheriguda (V), R.R.Dist. (An Autonomous Institution under UGC)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ASSIGNMENT -2

YEAR / SEM : II YEAR D SEC / II SEM A.Y:2022-2023

SUB.CODE/NAME : R20CSE2202 / OPERATING SYSTEM Date: 20.6.2023

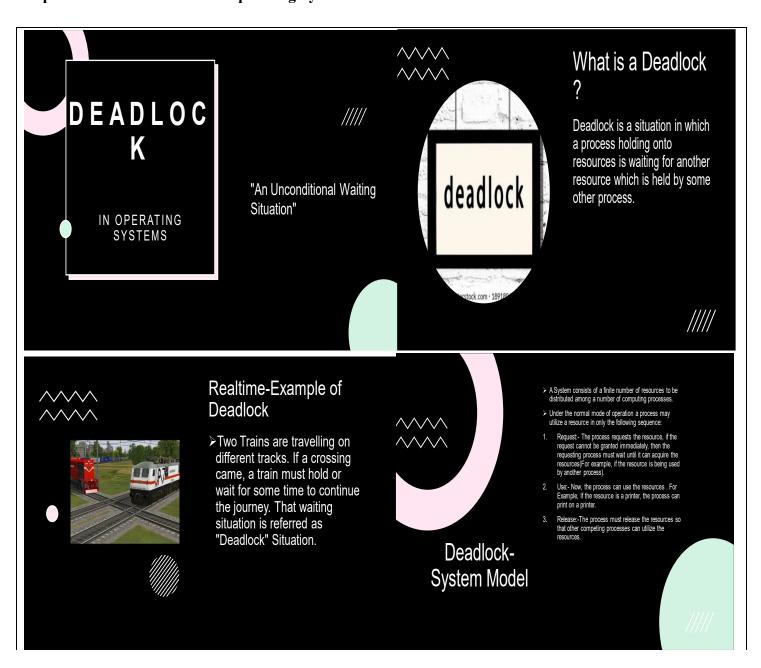
Batch	Assignment Questions	Register
. No		Number
	a. How will you handle synchronization problem using hardware? Discuss. b. A variable portion memory system has at some point in time the following box sizes in the order 20k,15k,40k,60k,10k,25k, a new process is to be loaded which block will be filled using best fit, first fit, worst fit respectively. c. Discuss the structure of directory and its implementation in detail.	to 21D41A05L0
2.	a. Explain critical section problem and discuss various algorithm to solve synchronization problem. List advantages and disadvantages of each. b. Given 5 memory partitions of 100 KB,500KB,200KB,300KB and 600KB how would the best fit, first fit, worst fit algorithm place processes of 310KB,589KB,96KB and 116 KB? Which algorithm makes the most efficient use of memory? c. Explain the different methods for allocating disk space to files.	21D41A05L1 to 21D41A05L5
	Examine dining philosopher's problem and develop a solution using monitors. Explain LRU page replacement algorithm with this example. Consider the following reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 c. Explain about sequential and indexed file access methods.	21D41A05L7 to 21D41A05M 1
4.	a. Explain the basic method of paging scheme. Show the hardware support for it with a diagram. b. Consider the following reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 How many page faults would occur for the Optimal replacement algorithms? c. How Files System are organized with UNIX? Explain with an example.	21D41A05M 2 to 21D41A05M 6

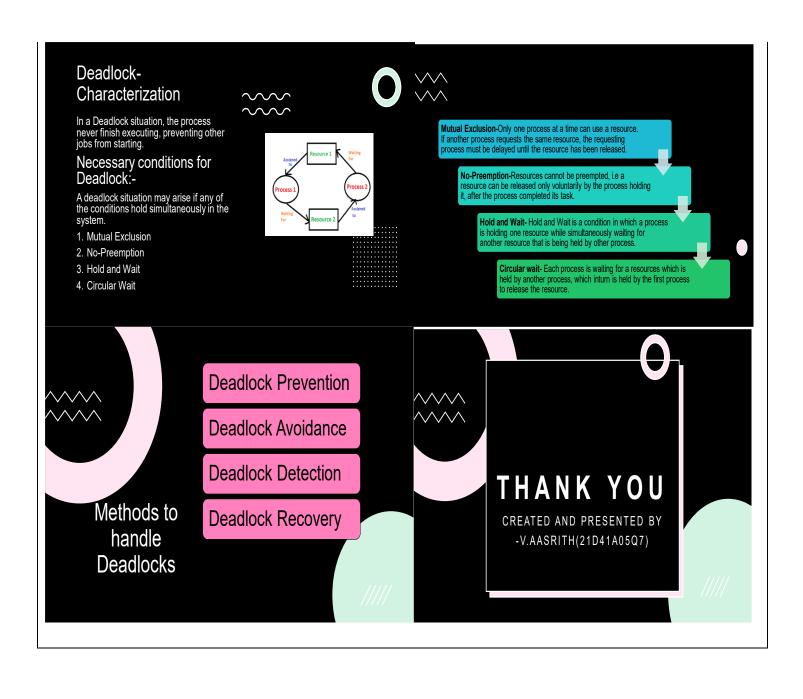
_	_													_
5.	a. Examine Re													21D41A05M
	 b. A variable j 											lowin	E	7 to
	box sizes in the order 20k,15k,40k,60k,10k,25k, a new process of													
	5k,28k,16k,55k,12k is to be loaded which block will be filled using best fit, first										21D41A05N			
	fit, worst fit respectively. c. Discuss Contiguous. Linked. Indexed disk block allocation method with their											1		
	merits and den		.шкес	ı, ma	ewea	OISK	DIOCE	ащо	Cathor	ı met	noa v	WILL T	neur	
6.	a. What is virtual memory? What hardware supports is needed to implement												21D41A05N	
0.	a. What is virtual memory? What hardware supports is needed to implement virtual memory? Explain with the help of an example that FIFO page										2			
	replacement algorithm may encounter more number of page faults encountered											2		
	by LRU page replacement algorithm.											to		
	b. Draw the dia	agram of s	truch	ire of	page	e table	2.							
	c. Discuss abou	ut the acce	ss rig	hts a	nd m	anage	emen	t simu	ıltanı	ous a	icces	5.		21D41A05N
			_	-		_								6
	***												_	20 1 20 4 2 4 A A A A
7.	 a. What are the different types 												t are	21D41A05N
	b. Consider the						m typ	es Of	oper	armig	syste	:MINE		7
	1.2.3.4.2.1.5.0					15-								to
	How many pag					the FI	FO r	eplac	emer	t alex	with	ns?		10
	c. Explain the													21D41A05P1
	•													
8.										21D41A05P2				
	Resource type R1 has 7 instances, Resource type R2 has 7 instances and													
	Resource type R3 has 10 instances. The following snap shot of the system has been taken. Find out safe state										to			
	oeen taken.	Process		llocar	tion	1	M	ax	\neg					21D41A05P6
		FIUCESS		R2		R			12					
		Pl	2	2	3	3	6							
		P2	2	0	3	4	3	3						
		P3	ī	2	4	3	4	4						
	b. Write the di													
	c. Explain vari	ous directo	ory st	ructu	res III	sed ir	ı ope	rating	syst	em fo	cr stoo	ring f	iles	
	give													
	its merits and o			-		1		_						
9.	a. Consider the				ofth			nas be	een tz		-			21D41A05P7
	Proc		catio		R4	Max		TD 2	R4		ilabli Do		TO 4	to
	S	R 1	B.Z	E.S	B.4	KI	KA	K.3	IX. T	R.I	EC.	R3	R4	vo.
	PO	0	0		9	0	0	_	2	1	5	2	0	21D41A05Q
	Pl	1	0	0	0	1	7	5	0	-		-	M	1
	P2	i	3	5	4	2	3	5	6				\vdash	
	P3	ō	6	3	2	0	6	5	2					
	P4	0	0	1	4	0	6	5	6					
		hat is the	conte	nt of	matr	ix ne	ed?							
	ií) I	is the syste	em is	in sai	fe star	te?								

b. System consists of 5 processes. P1,P2,P3,P4,P5 and 3 resources (R1,R2,R3). Resource type R1 has 10 instances, Resource type R2 has5 instances and Resource type R3 has 7 instances. The following snapshot of the system has been taken. Find out safe state.	41A05Q to 41A05Q											
merits and demerits. c. Discuss in detail about functions of files. 10. a. Explain how buffering is used with respect to storage devices. b. System consists of 5 processes. P1,P2,P3,P4,P5 and 3 resources (R1,R2,R3). Resource type R1 has 10 instances, Resource type R2 has5 instances and Resource type R3 has 7 instances. The following snapshot of the system has been taken. Find out safe state. Process Allocation Max Available R1 R2 R3 R1 R3 R1 R3 R1 R3 R1 R3 R3	to											
C. Discuss in detail about functions of files. 21D	to											
10. a. Explain how buffering is used with respect to storage devices. b. System consists of 5 processes. P1,P2,P3,P4,P5 and 3 resources (R1,R2,R3). Resource type R1 has 10 instances, Resource type R2 has 5 instances and Resource type R3 has 7 instances. The following snapshot of the system has been taken. Find out safe state. Process Allocation Max Available R1 R2 R3 R1 R2 R3 R1 R2 R3	to											
R1,R2,R3 Resource type R1 has 10 instances, Resource type R2 has 5 instances and Resource type R3 has 7 instances. The following snapshot of the system has been taken. Find out safe state. Process Allocation Max Available R1 R2 R3 R1 R3 R3												
Instances and Resource type R3 has 7 instances. The following snapshot of the system has been taken. Find out safe state. 21D-												
System has been taken. Find out safe state. 21D												
Process Allocation Max Available R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 P2 R3 R1 R2 R3 R3 R2 R3 R1 R2 R3 R3 R3 R2 R3 R1 R2 R3 R1 R2 R3 R3 R3 R2 R3 R1 R2<	41A05Q											
R1 R2 R3 R1 R2 R3 R1 R2 R3 P1 0 1 0 7 5 3 3 3 2 P2 2 0 0 3 2 2 P3 3 0 2 9 0 2 P4 2 1 1 2 2 2 2	·											
P1 0 1 0 7 5 3 3 3 2 P2 P3 3 0 2 9 0 2 P4 2 1 1 2 2 2 2												
P2 2 0 0 3 2 2 P3 P4 2 1 1 2 2 2 2												
P3 3 0 2 9 0 2 P4 2 1 1 2 2 2 2												
P4 2 1 1 2 2 2 1												
c. Explain about swapping in memory management.												
	41A05Q											
Process Allocation Max Available 7												
R1 R2 R1 R2 R1 R2 P1 7 2 9 5 2 1	to											
P2 1 3 2 6 2 1												
P3 1 1 2 2 2 2 21D	41A05R1											
P4 3 0 5 0												
i) What is the content of matrix need?												
ii) Is the system is in safe state? b. Explain the basic method of paging scheme. Show the hardware support for it												
 Explain the basic method of paging scheme. Show the hardware support for it with a diagram. 												
c. Explain the different methods for allocating disk space to files.												
	41A05R2											
allocations.	to.											
b. What are the various security requirements for the operating system? What are different types of security policies for different types of operating system?	to											
c. Consider the following reference string:	41A05R6											
12442156215376321236												
How many page faults would occur for the FIFO and LRU replacement												
algorithms? 13. a. What is meant by demand paging? Explain in detail. 21D-	41 A05R7											
b. Explain the Usage of open, create, read, write, close, Iseek, stat, ioctl system	+1.HUDK./											
calls.	to											
c. System consists of 5 processes. Pl, P2, P3 and 3 resources (R1, R2, R3).	41A0520											
Resource type R1 has 7 instances, Resource type R2 has 7 instances and Resource type R3 has 10 instances. The following snap shot of the system has	+1.HU0.20											
heen taken. Find out safe state												
Process Allocation Max												
R1 R2 R3 R1 R2 R3												

		Pl P2	2	2	3	3	5	8	-	
		P3	1	2	4	4	4	4	<u> </u>	
14.	relevant diagra b. Consider th Assume there reference aboveandfindo nt	m. e follow are thr uthowm etail and	ring re ee fra anypag l also ti	ferenc mes. efont	e stri Appl sarepi asible	ing 7, y LR roduc imple	0,1,2, U re ed Illi	0,3,0,4 placen istrate ation o	eadlock detection with 4,2,3,0,3,2,1,2,0,1,7,0,1 nent algorithm to the string theLRUpagereplaceme of the LRU algorithm.	21D41A0521 to 21D41A0527

STUDENTS SEMINAR


S.No	YEAR/S EM	Roll. No.	Name of the student	SUBJECT	TOPIC
1.	II/I	21D41A05G7	M.SaiKiran	COA	Addressing Modes
2.	II/I	21D41A05B5	K.Hanshu	OOPS Using C++	Dynamic Binding
3.	II/I	21D41A05N6	S.Sandhya	DS	B+ Trees
4.	II/II	21D41A0516	M.Srilaxmi	DM	Graph Theory
5.	II/II	21D41A05M2	S.Ramya	DBMS	Normal Forms
6.	II/II	21D41A05Q7	V.Aasrith	OS	DeadLock
7.	III/I	20D41A0535	C.Pranavi Reddy	SE	Data Modeling
8.	III/I	20D41A0501	P.Aashritha	WT	CSS
9.	III/I	20D41A0587	J.Sandeep	ML	Supervised & Unsupervised Learning
10	III/II	20D41A0572	G.Dinesh Babu	CD	Parsing
11.	III/II	20D41A0588	J.Rakshitha	DAA	Sorting Techniques
12.	IV/I	19D41A0546	D.Saikiran	IOT	Access Management
13.	IV/I	19D41A0504	A.Kavya	C&NS	Cryptography, Security Attacks
14	IV/II	19D41A0557	G.Arunkanth	ISF	Firewalls, AES,DES
15.	IV/II	19D41A0506	A.Surya	DS	Client –Server Systems


Course Name: OPERATING SYSTEMS

Class: II B.Tech. I Sem
Teacher: Dr. P. Epsiba
Date: 5-MAY-2023
Activity: Students Seminar

Student Name: V.Aasrith(21D41A05Q7)

Topic: Dead lock in Operating Systems

Course Name: DataBaseManagementSystems

Class: II B.Tech. II Sem Teacher: K.Vijayalakshmi Date: 9-MAY-2023

Activity: Students Seminar

Student Name: S.Ramya (21D41A05M2)
Topic: Normal Forms in DBMS

Course Name: Software Engineering

Class : III B.Tech. I Sem Teacher : Mrs G.SwarnaLatha

Date : 9-MAY-2023

Activity : Students Seminar

Student Name: C.Pranavi Reddy (20D41A0535)

Topic : Data Modeling in Software Engineering

TEAM COLABORATION IN PRACTICAL SESSION

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

Recognized under 2(f) and 12(B) of UGC Act 1956

NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH

Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

BR-22

DEPARTMENT OF INFORMATION TECHNOLOGY

Collaborative Learning Model (A.Y: 2022-23)

OBJECTIVE:

Learn how to work cooperatively and support each other. Develop effective teamwork and communication (including interpersonal and cross cultural awareness) skills. Assimilate multiple views to deepen knowledge and promote critical thinking. Foster individual accountability to the team.

Role of Teachers:

Group the students to perform the given task. Framing assignments or group activities for the students that improve their creative and soft skills. Giving feedback to student for their improvement..

- 1. Group Assignments
- 2. Students Seminar
- 3. Team collaboration in practical session

GROUP ASSIGNMENTS

DEPARTMENT OF INFORMATION TECHNOLOGY

SAMPLE DOCUMENTS

Course Name: Java Programming Class: II B.Tech. II Sem Teacher: Mrs. J Sasirekha Date: 30 - JUNE - 2023 **Activity: Group Assignments**

Batch	Assignment Questions	Roll. No
No		
	1. Explain about multithreading in java.	
1	2. Write a short note about java thread model.	1201 – 1205
1	3. Differentiate process-based multitasking and thread-based multitasking.	1201 - 1205
	4. Explain about java linked list class with example.	
	1. What are the states are there in thread life cycle.	
2	2. How to create threads in java.	1206 - 1210
	3. Write a java program using multithreading.	1200 - 1210
	4. Explain Hash set class with example.	
2	1. Explain about runnable interface with examples.	1011 1015
3	2. List out the thread class methods with examples.	1211 - 1215

	3. Explain about java thread priority with example.	
	4. Explain about tree set class with example.	
4	 Explain about thread synchronization with example. Explain about synchronized block with example. Briefly explain inter thread communication. Explain about scanner class with example. 	1216 - 1220
5	 Explain about java collection framework. Explain about collection interface with example. Explain about array list class with example. Explain about formatter class with example. 	1221 - 1225
6	 Explain about priority queue class with example. Explain about array dequeue class with example. Explain about java collection iterator. Explain about random class with example. 	1226 - 1230
7	 Explain about map interface in java. Explain about hash map with example. List out the comparators in java. Explain about calendar class with example. 	1231 - 1235
8	 Explain about array class in java Explain about dictionary class in java. Explain about hashtable class in java. Explain about date class with example. 	1236 - 1240
9	 Explain about stack class with example. Explain about vector class with example. Explain about string tokenizer class with example. Explain about bitset class with example. 	1241 - 1245
10	 Explain about applet programming. Differentiate AWT & Swing. List out the AWT event listener interfaces with example. Explain about applet class with example. 	1246 - 1250
11	 Define GUI with its applications. Explain about AWT Tools with example(label,text field,button) Explain about java AWT hierarchy with example. Explain about event deligation model with neat diagram. 	1251 - 1255
12	 Explain about window adapter class and anonymous inner class with example. List out the event and listener in java event handling with example. Write a java program using AWT text area, checkbox, checkbox group with example. Explain about keyboard event handling methods with example. 	1256 - 1260
13	 Write a java program using AWT listbox, choice, canvas with example. Explain about mouse event handling methods with example Explain about different types of layouts with example. Write a program to implement calculator using grid layout. 	1261 - 1265
14	 Explain about swing components with example. Write a java program using JScroll Pane, JDialoge and Swing Menu. Explain about JTabbedPane with example. Explain about JToggleButton with example 	LE 01 - 07

GROUP ASSIGNMENTS

Course Name: OPERATING SYSTEMS

Class: II B.Tech. II Sem
Teacher: Mr. Shek Shakeel
Date: 27 - JUNE - 2023
Activity: Group Assignments

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY, Sheriguda (V), R.R.Dist. (An Autonomous Institution under UGC)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ASSIGNMENT -2

YEAR / SEM : II YEAR D SEC / II SEM A.Y:2022-2023

SUB.CODE/NAME : R20CSE2202 / OPERATING SYSTEM Date: 20.6.2023

Batch No.	Assignment Questions	Register Number
		Number
1.	a. How will you handle synchronization problem using hardware? Discuss.	21D41A05K
	b. A variable portion memory system has at some point in time the following box sizes in the order 20k,15k,40k,60k,10k,25k, a new process is to be loaded which	6
	block will be filled using best fit. first fit. worst fit respectively.	to
	c. Discuss the structure of directory and its implementation in detail.	
		21D41A05L0
2.	a. Explain critical section problem and discuss various algorithm to solve	21D41A05L1
	synchronization problem. List advantages and disadvantages of each. b. Given 5 memory partitions of 100 KB,500KB,200KB,300KB and 600KB how	to
	would the best fit, first fit, worst fit algorithm place processes of	10
	310KB,589KB,96KB and 116 KB? Which algorithm makes the most efficient	21D41A05L5
	use of memory?	
3	c. Explain the different methods for allocating disk space to files.	21D41A05L7
5.	Examine dining philosopher's problem and develop a solution using monitors. Explain LRU page replacement algorithm with this example.	
	Consider the following reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1	21D41A05M
	c. Explain about sequential and indexed file access methods.	21D41A05M
		•
4.	a. Explain the basic method of paging scheme. Show the hardware support for it	21D41A05M
	with a diagram. b. Consider the following reference string:	2
	1.2.3.4.2.1.5.6.2.1.2.3.7.6.3.2.1.2.3.6	to
	How many page faults would occur for the Optimal replacement algorithms?	
	c. How Files System are organized with UNIX? Explain with an example.	21D41A05M
		6
L		

5.	a. Examine Readers/Writers problem with suitable algorithm.										21D41A05M			
	b. A variable p											lowin	Ε	7 to
	box sizes in the													
	5k,28k,16k,551			oadeo	l whi	ch bl	ock w	rill be	e fille	d usii	ng be	st fit,	first	21D41A05N
	fit, worst fit re				_			_			_			1
	c. Discuss Contiguous, Linked, Indexed disk block allocation method with their										heir			
	merits and demerits. a. What is virtual memory? What hardware supports is needed to implement										01504140537			
6.	a. What is virtual memory	iai memor ·2 Escalaio	y: w	nat n the b	araw olo o	are si	ippor	TS 15 I	needs oo 171	90, 10 1 ECO	mpie	ment		21D41A05N
	replacement al											tor	and a	2
	by LRU page r					MIC I	нишиос	er wrij	hate	EDULIUS.	emu	MILLION CO.	EM.	to
	b. Draw the dia					table	8							10
	c. Discuss abou	The Control of the Co						cima	ultane	MATERIA 2	errae:			21D41A05N
	C. Discuss acc.													6
7.	a. What are the	various s	есшті	ty req	uirer	nents	for t	ne op	erati	ıg sys	tem?	Wha	t are	21D41A05N
	different types	of security	y poli	cies i	or di	fferer	at typ	es of	oper	ating	syste	m?		7
	b. Consider the					ıg:								
	1,2,3,4,2,1,5,0	5,2,1,2,3,7	,6,3,2	2,1,2,	3,6			_				,		to
	How many pag										orithn	ns?		0154140051
	c. Explain the	different n	netho	ds for	allo	catin	g disk	spac	e to	filles.				21D41A05P1
8.	a. System con	ciete of S	mroc	00000	D1	DO.	D2 3	nd 3	TREO	unces	OR 1	RO.	P3)	21D41A05P2
٥.	Resource ty													ZIDTIAUJEZ
	Resource ty													to
	been taken.											,		
		Process		llocar	ion		M	ax.						21D41A05P6
			$\mathbb{R}\mathbb{I}$	R2	R3				B					
		Pl	2	2	3	3	6	-						
		P2	2	0	3	4	3	3						
		P3	1	2	4	3	4	4						
	b. Write the di						The state of the s							
	c. Explain vari	ous directo	ory st	ructu	res u	sed in	ı opei	rating	syst	em fo	r stor	ning fi	ıles	
	give	lama de la												
9.	its merits and o			د د داند د			dans 1	L.		.l				21D41A05P7
9.	a. Consider the				OITI	ne sys Maa		MS 00	een 17		ilable	•	1	21D41A05P/
	PT00	es Aire R		n R3	D/I	RI	_	R3	R4				R4	to
]	1	10-25	16.20	DCT	15.1	15.25	n.o	10.77	IA.I	10-40	20	10.77	none:
	P0	0	0	1	2	0	0	1	2	1	5	2	0	21D41A05Q
	Pl	1	0	0	0	1	7	5	0	4		-	M	1
	P2	1	3	5	4	2	3	5	6				\vdash	
	P3	0	6	3	2	0	6	5	2				$\vdash \vdash \vdash$	
	P4	0	0	1	4	Ō	6	5	6					
		hat is the		•		-			-		<u> </u>		<u>. </u>	
	and the second s	s the syste												
	aj to the system to an ante state.													

		iii)If the	e remi	est fi	om pr	ocess	P1 ar	nives :	for (0	420	Doan f	he red	nest	
	iii)If the request from process P1 arrives for (0,4,2,0)can the request be granted immediately													
	b. Discuss Contiguous, Linked, Indexed disk block allocation method with their													
	merits and demerits.													
	c. Discuss in detail about functions of files.													
10.											21D41A05Q			
	b. System consists of 5 processes. P1,P2,P3,P4,P5 and 3 resources (R1.R2.R3). Resource type R1 has 10 instances. Resource type R2 has5										2			
		K3) . Keso s and Reso											4	
		s anu rceso vas been ta		60 M				s. The	ыощо	wing	snaps	101 01	me	to
	system i	us oeen u	hell. F	шач	Juli San	e stati								21D41A050
	Г	Proces	R.	A	llocati	on		Max		A	kvailat	ile	1	6
			-	Rl	R2	R3	R.I	R2	R3	RI	R2	R3		
		Pl		0	1	0	7	5	3	3	3	2		
		P)		2	0	0	3	2	2					
		P3		3	0	2	9	0	2					
		P4		2	1	1	2	2	2					
		P5		0	0	2	4	3	3					
					•	-	-	•	-		•	-	•	
		in about sv												
11.	a. Consi	der the fol				of the								21D41A05Q
		Process		locat			Max			ilable	-			7
			Rl		2	Rl	R		Rl	B	2			_
		Pl	7	2		9	5		2	1				to
		P2	1	3		2	6			_				21D41A05R1
		P3 P4	1	1	•	2	2							21D41HOJKI
) What is t	-	100			1000							
		i) Is the sy					eteka :							
		in the basi					neme	Show	r the h	andw	rame sin	pport	for it	
	with a di											P.P.		
		in the diffe	erent r	netho	ds for	alloc	ating	disk s	pace i	to file	55.			
12.	a. Write	the differe										огу		21D41A05R2
	allocatio													
		are the var											iat are	to
		types of s						types	of op	erati	ng sys	tem?		21D41A05R6
		der the foll 2.1.5.6.2.1					-							222 12203200
		,4,1,3,0,4,1 ny page fa					io PTE	Oarv	a program	l newl	aceme	mt		
	algorithm		nuu.5 W	CHILL	OCCUL	DOT (I	ac a al	O OLID	a antikiki	, repu	ar cuit	-11		
13		is meant b	v dem	and:	paging	? Exa	lain i	n deta	ril.					21D41A05R7
ar.	b. Expla	in the Usar	ge of c	open.	create	e, read	l, wri	te, clo	se, Isa	ek, s	tat, iod	tl sys	tem	
	b. Explain the Usage of open, create, read, write, close, Iseek, stat, ioctl system to									to				
		m consists												
		e type Rl												21D41A0520
		e type R3				. The	follo	wing	snap	shot	of the	syste	om has	
	been tak	en. Find o			_		_			7				
		Pn	ocess	_	llocat		70.7	Mas	_	4				
	R1 R2 R3 R1 R2 R3													

		Pl	2	2	3	3	5	8			
		P2	2	0	3	3	2	3			
		P3	1	2	4	4	4	4			
14.	a. Explain the	гезоштсе-	alloc	ation	graph	algo	rithm	for de	eadlock detection	with	21D41A0521
	relevant diagra:										
	b. Consider the following reference string 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1										to
	Assume there are three frames. Apply LRU replacement algorithm to the										217341 40527
	Telefelice String 1-1									21D41A0527	
	aboveandfindouthowmanypagefontsareproduced. IllustratetheLRUpagereplaceme										
	nt										
	Algorithm in detail and also two feasible implementation of the LRU algorithm.										
	c. Explain about sequential and indexed file access methods.										

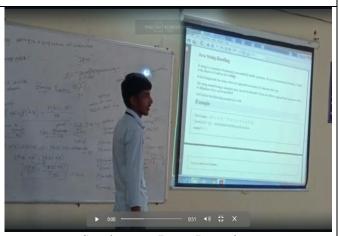
STUDENTS SEMINAR Semester - I

S.No.	Year/ Sem	Roll. No.	Name Of The Student	Торіс
1.	II/I	21D41A1230	Kadiyala Shivani	Search In Social Media
2.	II/I	21D41A1232	Kamatham Gopika	Deep Learning
3.	II/I	21D41A1236	Kasthala Sharath Chandra	Register Transfer Commutation
4.	II/I	21D41A1246	Mohammed Tajuddin	Quantum Complexity Theory
5.	II/I	21D41A1208	Badugula Hindu Reddy	Kernel Methods For Patten Analysis
6.	III/I	20D41A1217	J. Mamatha	Experiment In Computer Science
7.	III/I	20D41A1233	M. Nikhitha	Advanced Topics In Text Format
8.	III/I	20D41A1256	V. Akhil	Ethical Hacking
9.	III/I	20D41A1233	G. Akshitha	Black Chain Technology
10.	III/I	20D41A1206	Keerthana	Blue Eye Using Machine Learning
11.	IV/I	19D41A1215	J.Vineeth	Workflow Engine for Clouds
12.	IV/I	19D41A1246	T. Sri Harsha	Supply Chain Portal
13.	IV/I	19D41A1201	A.Mani Teja	Information Security Model
14.	IV/I	19D41A1211	G.Rushika	Clustering high dimensional data
15.	IV/I	19D41A1248	K.Vignesh Reddy	Python program with Raspberry PI with focus of interfacing external gadgets

Sample Photos

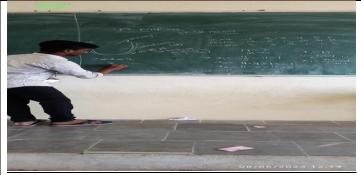
Seminar on Search In Social Media

Seminar on Deep Learning



Seminar on Register Transfer Commutation

Seminar on Kernel Methods For Patten Analysis


Seminar on Deep Learning

Seminar on Experiment In Computer Science

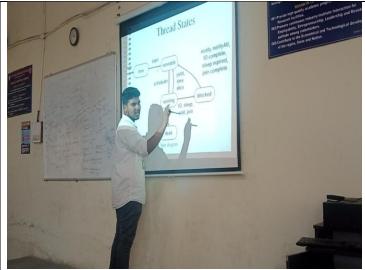
Seminar on Advanced Topics In Text Format

Seminar on Ethical Hacking

Seminar on Black Chain Technology

Seminar on Workflow Engine for Clouds

Seminar on Supply Chain Portal


Seminar on Information Security Model

Seminar on Clustering high dimensional data

Semester - II

S.No.	Year/ Sem	Roll. No.	Name Of The Student	Торіс			
16.	II/II	21D41A1204	A. Sadhana	Python			
17.	II/II	21D41A1252	Polkam Nithin	Machine Learning			
18.	II/II	21D41A1224	Gouru Sathvika	Artificial Intelligence			
19.	II/II	21D41A1220	Dendi Harshik Reddy	Java Servlet			
20.	II/II	21D41A1230	Kadiyala Shivani	Digital Image Processing			
21.	II/II	20D41A1203	B.Chandana	Unsupervised Representing Learning			
22.	II/II	20D41A1220	Srikanth	Data Sources For EmergingTechnology			
23.	II/II	20D41A1226	K.Raju	Ml And Optimizing			
24.	II/II	20D41A1258	Akhil	Ontology Based Data Access			
25.	II/II	20D41A1249	Rajasree	Concurrent Debugging			
26.	IV/II	19D41A1215	J.Vineeth	Behavioral Neuroscience			
27.	IV/II	19D41A1201	A.Mani Teja	Information Theory In Computer			
28.	IV/II	20D45A1205	T.Sai Kumar	Science			
29.	IV/II	19D41A1246	T. Sri Harsha				
30.	IV/II	19D41A1248	K.Vignesh Reddy	Behavioral Neuroscience			
31.	IV/II	19D41A1211	G.Rushika	Information Theory In Computer			
32.	IV/II	18D41A1259	E. Vishnu Vardhan Reddy	Science			
33.	IV/II	19D41A1229	Mogili Archana				
34.	IV/II	19D41A1219	K.Kranthi Kumar	Information Theory In Computer			
35.	IV/II	19D41A1251	Padala Jashwanth	Science			

Seminar on Python

Seminar on Machine Learning

Seminar on Artificial Intelligence

Seminar on Java Servlet

Seminar on Unsupervised Representing Learning

Seminar on Data Sources For Emerging Technology

Seminar on Ml And Optimizing

Seminar on Ontology Based Data Access

Seminar on Behavioral Neuroscience Information Theory In Computer Science Behavioral Neuroscience

Seminar on Information Theory In Computer Science

Seminar on Behavioral Neuroscience Information Theory In Computer Science

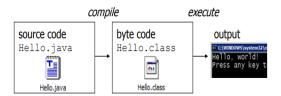
Class: IV B.Tech. I Sem Teacher: Ms. J. Radhika Date: 11-07-2023

Activity: Students Seminar

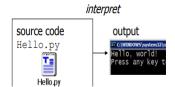
Student Name: Ms. Sadhana (21D41A1204)

Topic: Introduction to Python Programming

Introduction to Programming with Python


Programming basics

- code or source code: The sequence of instructions in a program.
- syntax: The set of legal structures and commands that can be used in a particular programming language.
- **output**: The messages printed to the user by a program.
- console: The text box onto which output is printed.
 - Some source code editors pop up the console as an external window, and others contain their own console window.

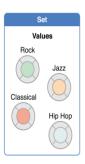


Compiling and interpreting

 Many languages require you to compile (translate) your program into a form that the machine understands.

Python is instead directly interpreted into machine instructions.

The Python Interpreter


- •Python is an interpreted language
- •The interpreter provides an interactive environment to play with the language
- Results of expressions are printed on the screen

>>> 3 + 7
10
>>> 3 < 15
True
>>> 'print me'
'print me'
>>> print 'print me'
print me
>>>

llo, world! ess any key to continu

Types for Data Collection List, Set, and Dictionary

Pairs of values

Defining a Class

- Python program may own many objects
 - An object is an item with fields supported by a set of method functions.
 - An object can have several fields (or called attribute variables) describing such an object
 - These fields can be accessed or modified by object methods
 - A class defines what objects look like and what functions can operate on these object.
- Declaring a class:

class name:

statements

Example:

class UCSBstudent:
 age = 21
 schoolname='UCSB'

Constructors

def __init__(self, parameter, ..., parameter):
 statements

a constructor is a special method with the name init

•Unordered list

Example:

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 How would we make it possible to construct a Point () with no parameters to get (0, 0)?

Operator Overloading

- operator overloading: You can define functions so that Python's built-in operators can be used with your class.
 - See also: http://docs.python.org/ref/customization.html

Operator	Class Method				
-	neg(self, other)				
+	pos(self, other)				
*	mul(self, other)				
/	truediv(self, other)				

Unary Operators					
-	neg(self)				
+	pos(self)				

	Operator	Class Method
	==	eq(self, other)
	!=	ne(self, other)
	<	lt(self, other)
	>	gt(self, other)
	<=	le(self, other)
	>=	ge (self, other)

Inheritance

class name (superclass) : statements

Example:

class Point3D(Point): # Point3D extends Point
z = 0
...

Python also supports multiple inheritance

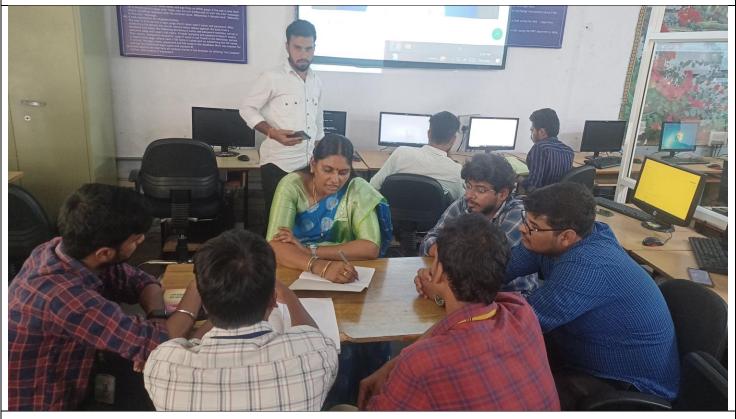
class name(superclass, ..., superclass):
 statements

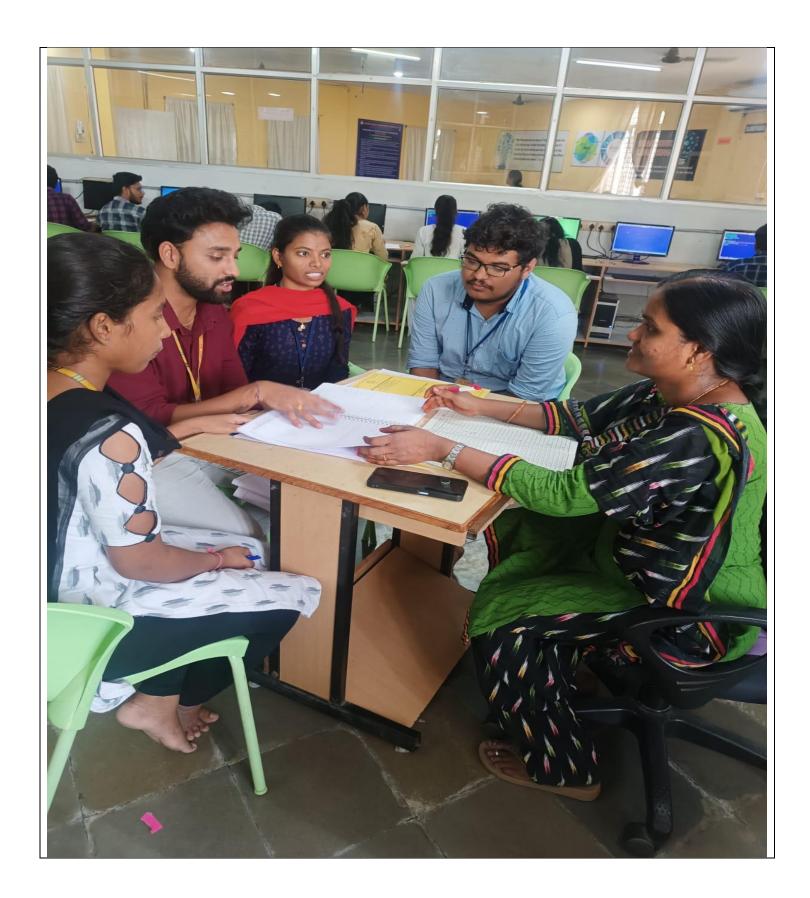
(if > 1 superclass has the same field/method, conflicts are resolved in left-to-right order)

Calling Superclass Methods

methods: class.method (object, parameters)

constructors: class. init (parameters)


```
class Point3D(Point):
    z = 0
    def __init__(self, x, y, z):
        Point.__init__(self, x, y)
        self.z = z


def move(self, dx, dy, dz):
    Point move(self, dx, dy)
```

Point.move(self, dx, dy)
self.z += dz

TEAM COLABORATION IN PRACTICAL SESSION

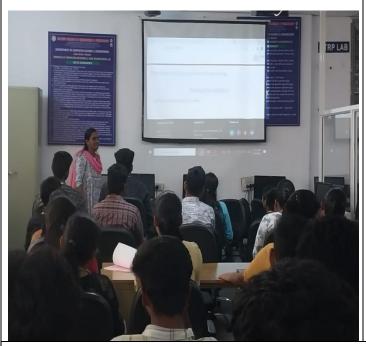
SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

D4

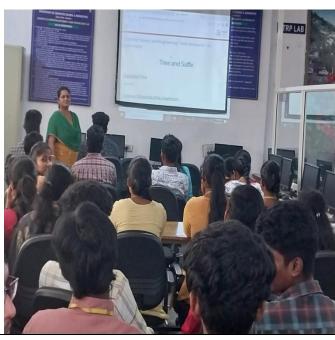
Recognized under 2(f) and 12(B) of UGC Act 1956
NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH
Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

BR-22

DEPARTMENT OF INFORMATION TECHNOLOGY


Simulation Tools And Virtual Labs (A.Y: 2022-23)

S.N o.	YEAR/S EM	LAB CODE	NAME OF THE LABORAT ORY	SOFT WARE	VIRTUAL LABS LINK	DURATI ON
1.	II/I	R20ECE2 1L4	Analog Electronics lab	-	https://be-iitkgp.vlabs.ac.in/	3 Sessions
2.	II/I	R20CSE2 1L1	Data Structures Lab	Turbo C	https://ds1- iiith.vlabs.ac.in/List%20of%20exp eriments.html	5 Sessions
3.	II/I	R20CSE2 1L3	C++ Programming Lab	Turbo C	https://cse02- iiith.vlabs.ac.in/List%20of%20 experiments.html	3 Sessions
4.	II/II	R20CSE2 2L1	Operating Systems Lab	Turbo C	https://www.cse.iitb.ac.in/~my thili/os/	5 Sessions
5.	II/II	R20CSE2 2L3	Java Programming lab	Java Developer Kit	https://java-iitd.vlabs.ac.in/	3 Sessions
6.	III/I	R20CSE3 1L1	Software Engineering Lab	Turbo C	http://vlabs.iitkgp.ernet.in/se/	3 Sessions


SAMPLE PHOTOS

Subject : C++ Programming Lab Staff : Mrs. J. Radhika

Title: Inheritrance

Subject: Data Structures Staff: Mrs. J. Sasirekha Title: Tries and its types

Subject : Operating Systems Lab

Staff: Mr. Shek Shakeel **Title: Scheduling Algorithm**

Subject : Software Engineering

Staff: Mrs. K. Priyanka
Title: Software Engineering Model

NPTEL – VIDEO LECTURE

II-II NPTEL topic on Introduction To Artificial Intelligence

II-II NPTEL Topic On DBMS

III-II NPTEL topic on the Joy Of Computing Using Python

III-II
NPTEL topic on Cloud Computing

IV-II NPTEL topic on Deep learning For Computer Vision

IV-II NPTEL topic on Natural language Processing

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

D4

Recognized under 2(f) and 12(B) of UGC Act 1956
NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH
Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

BR-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Project based learning

(A. Y: 2022-23)

YEAR/SEM: 1V B.TECH (CSE-A) (MAJOR PROJECT)

S.No.	Batch	Roll No.	Name of the	Major Project Title
	No.		Student	
1.		19D41A0543	CH.Mahitha	Deep learning begad object detection and
2.		19D41A0503	A.Anusha	Deep learning based object detection and recognition framework for the visually-impaired
3.		19D41A0546	D.SaiKiran	
4.	1	19D41A0527	B.SaiTeja	
5.		19D41A0504	A.Kavya	Detect spam from twitter comment us in detect
6.		19D41A0560	G.Kiranmai	spam from twitter comment using machine
7.		19D41A0512	A.Srikar	
8.		19D41A0547	D.Swetha	
9.	2	19D41A0538	CH.NagaJyothi	
10.		19D41A0505	A.Niharika	
11.		19D41A0541	CH.Naveen Kumar	Cyber threat detection based on an using event
12.		19D41A0554	E.Rajkumar	profiles
13.	3	20D41A0503	B.Pranisha	
14.		19D41A0555	E.Ramesh	
15.		19D41A0551	E.Pavan Kumar	Face recognition using ml techniques
16.		20D41A0502	B.Akhila	
17.	4	19D41A0531	B.JaganDatta	
18.		19D41A0508	A.Sushmitha	
19.		19D41A0545	D.Vishwakanth	IRIS RECOGNITION USING ML TECHNIQUES
20.		19D41A0510	A.Pavan Kumar	
21.	5	19D41A0552	E.SaiCharan	


22.		19D41A0514	A.Rajitha	
23.		19D41A0521	B.Madhuri	Digitized and decentralized block chain technology
24.		19D41A0559	G.Ganesh	
25.	6	19D41A0522	B.Tarun	
26.	0	19D41A0524	B.Rani	
27.		19D41A0511	A.MadhuShalini	Vehicle detection and speed detection
28.		20D41A0504	B.Siddhartha	
29.	7	20D41A0501	A.Nagaraju	
30.	<u> </u>	19D41A0550	D.Swathi	
31.		19D41A0520	B.Pranay Kumar	Predicting cyberbullying on social media in the big data
32.		19D41A0528	B.Murali	dutu
33.	8	19D41A0509	A.Meghana	
34.		19D41A0532	B.Varsha	
35.		19D41A0535	CH.Sathwika	Lung cancer classification using SVM of k-means
36.		19D41A0501	A.Vamshi	
37.	9	19D41A0553	E.Sairam	
38.		19D41A0536	CH.Dinesh	
39.		19D41A0544	CH.Nandhini	A machine learning model for average fuel consumption in heavy vehicles
40.		19D41A0549	D.Nagaraj	ons want to a new y
41.	10	19D41A0525	B.SaiKiran	
42.		19D41A0539	C.Chaitanya	The game use two paddles to hit a ball back and
43.		19D41A0515	A.Shivani	forth (pong)
44.		19D41A0502	A.Bharath	
45.	11	19D41A0523	B.Bhargav	
46.	11	19D41A0557	G.Arunkanth	Performance improvement of smart surveillance
47.		19D41A0518	B.Nagesh	camera using modified CNN technique
48.		19D41A0556	E.Tharal Reddy	
49.	12	19D41A0529	B.Abhilash	
50.		19D41A0548	D.Varsha	Missing child identification system using deep
51.		19D41A0558	Gr.Gaurav	learning & svm
52.	13	19D41A0513	A.Navaneetha	

53.		19D41A0519	B.Avinash	
54.		19D41A0517	B.Sharon	
55.		19D41A0537	CH.Anitha	Fake images detection
56.		19D41A0540	C.Keerthi Reddy	
57.	14	20D41A0505	C.Sandhya Rani	
58.		19D41A0507	A.Nagaraj	
59.		19D41A0506	A.Surya	Classification of online toxic comments using
60.		19D41A0516	A.Sriram	machine learning
61.	15	19D41A0530	B.Gopinath	

SRI INDU COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution under UGC, New Delhi)

D4

Recognized under 2(f) and 12(B) of UGC Act 1956
NBA Accredited, Approved by AICTE and Permanently affiliated to JNTUH
Sheriguda (V), Ibrahimpatnam, R.R.Dist, Hyderabad - 501 510

BR-22

DEPARTMENT OF INFORMATION TECHNOLOGY

Project based learning

(A. Y: 2022-23)

YEAR/SEM: 1V B.TECH (IT) (MAJOR PROJECT)

S.No.	Batch No.	Roll No.	Name of the Student	Major Project Title
1.		19D41A1206	C.KARTHIK	
2.	1	19D41A1207	CH BALAJI	Crop Recommendation Systems using ML
3.		19D41A1245	S.SAI	
4.		19D41A1215	J.VINEETH	
5.	2	19D41A1201	A.MANI TEJA	Object Count in Images
6.		20D45A1205	T.SAI KUMAR	
7.		20D45A1206	U.MANI SHANKAR	
8.	3	19D41A1226	M.AVINASH	Smart Health Disease Prediction System
9.		19D41A1216	K.PATANJALI BRAHMA	
10.		19D41A1224	LAKKIREDDY NIVEDITHA REDDY	
11.	4	19D41A1238	NAGA RUCHITHA REDDY	Mining Fraudsters and Fraudulent Strategies in Large- Scale Mobile Social Networks
12.		19D41A1240	RALLAGUDEM ABHISHEK REDDY	
13.		19D41A1202	AERVA ANUSHA REDDY	Continuent Analysis of Leakdayym in India dymina
14.	5	19D41A1241	RAMIDI NIHARIKA	Sentiment Analysis of Lockdown in India during Covid-19 a Case Study on Twitter
15.		19D41A1204	B.HARSHITH	
16.		19D41A1246	T. SRI HARSHA	
17.	6	19D41A1218	K.SAMARASIMHA REDDY	A Hybrid E-Learning Recommendation Approach Based on Learner's Influence
18.		19D41A1228	MD AMAAN	

19.		19D41A1213	G.AKHIL REDDY		
			K.VIGNESH		
20.	7	19D41A1248	REDDY	Using Data Mining to Predict Hospital Admission	
21.	•	19D41A1249	Y.RAKESH REDDY	from the Emergency Department	
22.		19D41A1217	K.RISHITHA REDDY		
23.		19D41A1230	NAGARALA DIVYA		
24.	8	19D41A1233	NANDYALA CHANDANA	Efficient Keyword-Aware Representing Travel Route Recommendation	
25.		19D41A1254	ANTHATI PAVAN		
26.		19D41A1229	MOGILI ARCHANA		
27.	9	19D41A1209	DAREDDY SHREYA REDDY	Protecting User Data in Profile-Matching Social Networks	
28.		20D45A1202	D.SIDDARTHA REDDY		
29.		19D41A1236	PALLREDDY YASHWITHA REDDY		
30.	10	19D41A1205	B.CHARAN	Web Data Mining to Detect Online Spread of Terrorism	
31.		19D41A1255	K.SAINATH	Terrorism	
32.		19D41A1243	S.MARUTHI		
33.		19D41A1242	RANABOTHU ROHILA		
34.	11	11	19D41A1219	K.KRANTHI KUMAR	Secure Data Transfer and Deletion From Counting bloomfilter in Cloud Computing
35.		19D41A1237	PAMPARI MAHESH		
36.		19D41A1214	GUDIPATI SHYLAJA		
37.	12	19D41A1234	N SIDDU	Crime Analysis Mapping , Intrusion Detection- Using Data Mining	
38.		19D41A1212	G.NITHEESH REDDY	S	
39.		19D41A1221	K.RAHUL		
40.	13	19D41A1244	S.AKHILESH	Data Mining with Big Data	
41.		19D41A1235	RISHITH		
42.		20D45A1201	CHIDURALA AKSHAYA	Connecting Social Modic to E. Commence for Entered	
43.	14	19D41A1247	VASA SAI TEJA	Connecting Social Media to E-Commerce for Future Generation Systems	
44.		20D45A1204	KOTTE SURYA		
45.		19D41A1211	G RUSHIKA	Similarity Search for Encrypted Images in Secure	
46.	15	19D41A1222	K MANIKANTH REDDY	Cloud Computing	

47.		19D41A1232	N.MANI SAI VARMA	
48.		19D41A1239	RACHAMALLA REENA SAI	
49.	16	19D41A1210	E.THANUJ GOUD	SPCSS Social Network Based Privacy Preserving Criminal Suspects Sensing
50.		19D41A1231	N.NAVEEN	
51.		19D41A1203	AUMOLU PAVANI	
52.	17	19D41A1250	YENUGULA AKSHAYA	Secure Keyword Search and Data Sharing Mechanism of Cloud Computing
53.		18D41A1212	ANIL KUMAR	
54.		19D41A1251	PADALA JASHWANTH	
55.	18	20D45A1203	JONNAALAGADDA JAGADEESH	Attribute Based Storage Supporting Secure Deduplication of Encrypted data in Cloud
56.		19D41A1253	BADAM RAMA KRISHNA	
57.		19D41A1223	KURAPATI SWAPNA	
58.	19	19D41A1225	M.SPANDANA	"CDA Generation and Integration for Health Information Exchange Based on Cloud Computing
59.	19	19D41A1227	M.SAI KIRAN	System"
60.		18D41A1259	E.VISHNU VARDHAN REDDY	

Project Review: PPT Presentation

PPT Sample

SRIINDU COLLEGE OF ENGINEERING AND TECHNOLOGY

AGRICULTURE CROP RECOMMENDATION BASED ON PRODUCTIVITY AND SEASON

PRESENTED BY

L.Niveditha Reddy-19D41A1224 A.Pavani-19D41A1203 G.Nitheesh Reddy-19D41A1212 N.Mani Sai Varma-19D41A1232

Under The Guidance of

G.Sushmitha

ABSTRACT

- Agriculture is a major contributor to the Indian economy. The common problem existing among the Indian farmers is they don't choose the right crop based on their soil requirements.
- Precision agriculture is a modern farming technique that uses research data of soil characteristics, soil types, crop yield data collection and suggests the farmers the right crop based on their site-specific parameters.
- By this system, the Indian farmers will be able to form a decision about which crop to grow depending on the sowing season, his farm's geographical location and soil characteristics.

EXISTING SYSTEM

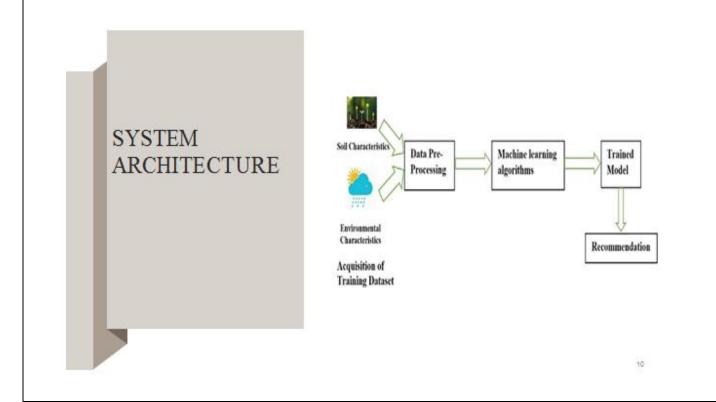
- An approach proposes a model that makes use of historical records of data training sets.
- It predicts the yield of crop on the basis of monthly weather patterns.
- Artificial neural network, K-nearest neighbor such algorithms were also used.

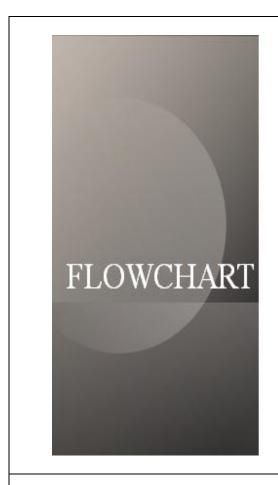
Drawback

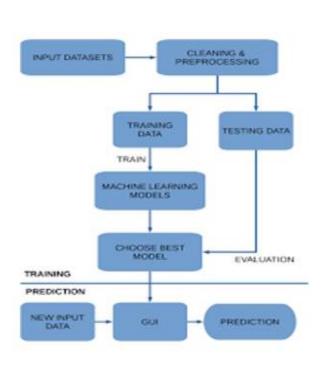
This model concentrated on single parameter i.e. weather or soil for the prediction of crop growth.

PROPOSED SYSTEM

- This system considers all the appropriate parameters, including temperature, rainfall, location and soil condition, to predict crop suitability.
- This system also provides the profit analysis on crops grown in different states which gives the user an easy and reliable insight to decide and plan the crops.


MACHINE LEARNING MODELS


- Decision Tree
- · Logistic Regression
- Support Vector Machine
- · Naive Baye's
- · Random Forest


10/5/202

- During system analysis the feasibility study of the proposed system is to be carried out.
- Three key considerations involved in the feasibility analysis are
- ECONOMICAL FEASIBILITY
- TECHNICAL FEASIBILITY
- SOCIAL FEASIBILITY

11

WATERFALL MODEL Requirement Analysis System Design Implementation Testing Maintenance Maintenance

CONCLUSION

1

This system helps the farmer to choose the right crop and decreases the chance of crop failure and increases productivity and also prevents from losses 2

Boost's the Indian economy and most importantly assist farmers in increasing their income

13